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Abstract—Hanly and Yates proposed algorithms for combined power
and cell (P/C) control that proved to be an optimal solution to P/C control
if such a solution exists. Anpalagan and Sousa have proposed a combined
rate, power, and cell (R/P/C) control algorithm with the main idea of
interference balancing between base stations. They proposed an algorithm
which was empirically proved to yield the optimal solution in terms of the
average transmit bit energy of the system. In this paper, a mathematical
proof is given that shows the optimality of the R/P/C algorithm. The
R/P/C algorithm gives flexibility in setting the rate in response to the
congestion level in the network, and hence, it has applications in the areas
of delay-tolerant data services.

Index Terms—Cellular code-division multiple-access (CDMA) systems,
combined rate, interference balancing, optimal transmit bit energy, power
and cell (P/C) control.

I. INTRODUCTION

This paper deals with the proof of a combined rate, power, and cell
(R/P/C) control algorithm used in a cellular code-division multiple-
access (CDMA) network. Hanly [1] proposed a combined power and
cell (P/C) control algorithm. At the same time, and independently,
Yates and Huang proposed a similar scheme in [2]. It can be shown
that the two approaches are basically the same in terms of minimum
transmission power. Anpalagan and Sousa [3] proposed an algorithm
for R/P/C control for delay-insensitive applications, where the data rate
and the power of transmission for each user are adjusted according
to the congestion (or level of interference) at the corresponding base
station and the average congestion in the network. It was shown that
the proposed algorithm results in congestion balance of the network.
For a number of delay-insensitive applications, such as the ones on
the Internet, the algorithm is an ideal solution. In [3], an extensive
simulation study was performed that empirically proved the superior
performance of the algorithm, as compared to P/C control schemes. As
the proof of the optimality of the technique, the authors heavily relied
on [1], which proved the optimality of the P/C control algorithm.

This paper addresses the details of the proofs given in [1] adapted
to the R/P/C control scheme. To this end, the same steps toward the
proof of P/C control algorithm are followed. Most of the lemmas and
theorems presented in this paper are modifications of the lemmas and
theorems given in [1] toward the proof of existence, characterization,
and obtaining of the optimal P/C control. The iterations in R/P/C
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control aim to adjust transmit power and data rate with the goal
of interference balancing in the background. We do not address the
issue of interference balancing in this paper. Rather, we consider
the algorithm and its proof toward optimality in terms of minimizing
the average transmit bit energy.

This paper is organized as follows. Section II states the formal
problem of the R/P/C control. In Section III, the algorithm for R/P/C
control is very briefly presented. Section IV is devoted to the math-
ematical proof of the optimality and convergence of the algorithm,
followed by concluding remarks in Section V.

II. PROBLEM STATEMENT

Let us consider a cellular CDMA system consisting of N trans-
mitters and B base stations. The uplink gain between mobile-user
transmitter i and base-station receiver j is denoted by Gij . Transmitter
i broadcasts with transmit power Pi. Thermal noise at base station
j has a power-spectral density of ηj/2. The channel is assumed to
have a spectral bandwidth of W . It is assumed that transmitter i
communicates with base station b(i). With these notations, we get (1)
for the total interference power at base station b(i). On the other hand,
the total received power at base station b(i) and the mean value of
the total received power at all base stations are given by (2) and (3),
respectively

Ib(i) =
∑
k �=i

Gkb(i)Pk + ηb(i)W (1)

Qb(i) =

N∑
k=1

Gkb(i)Pk + ηb(i)W (2)

Q =
1

B

B∑
j=1

Qj . (3)

The required energy per bit to interference density ratio (Eb/I0)
and the required data rate for user i are denoted by γreq

i and Rreq
i ,

respectively. Similarly, γi and Ri are the instantaneous Eb/I0 and
data rate, respectively, for user i when communicating with home
base station b(i). Hence, γi = (WGib(i)Pi)/(RiIb(i)). For notational
convenience, let us define Γi = (γiRi)/W . The transmit bit energy
(as defined in [3]) of user i is denoted by θi = Pi/Ri. Thus, the
average transmit bit energy is given by

θ =
1

N

N∑
i=1

θi. (4)

The problem of R/P/C control can be stated as finding b(i)’s and θi’s
∀i such that θ is minimized. The constraints are the required energy to
interference density ratio (γi = γreq

i ,∀i) and a positive data rate and
transmission power (Pi ≥ 0, Ri ≥ 0,∀i). Formal formulation relating
transmit power, data rate, energy-per-bit to interference-density ratio,
link gains, and noise power level in this system can be simplified to
vector notation, as given by

(I−H)P = U (5)
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where I is the N × N identity matrix

H = [Hij ] with Hij =
ΓiGjb(i)

Gib(i)

, i, j = 1, . . . , N (6)

U = [U1U2 . . . UN ]T with Ui =
WΓiηb(i)

Gib(i)

(7)

and P = [P1P2 . . . PN ]T. Note that, in (6), H represents the N × N
matrix, where row i of H represents (normalized) reverse link gain of
user i with its home base station and also with all the other users’ base
stations. Equation (5) is the basic equation of the network that is fixed
in all control schemes and is solved for a snapshot of the network
condition.

III. R/P/C CONTROL

In [3], an algorithm (called Algorithm III in [3] and R/P/C
Algorithm in this paper) was proposed for R/P/C control in a cellular
CDMA system. It is an iterative algorithm in which user i computes
the required transmit bit energy θij(n) to each base station j in each
iteration n and picks up the (home) base station for which this quantity
is minimum. θij(n + 1) is calculated by

θij(n + 1) =
Pij(n + 1)

Rij(n + 1)
(8)

where

Pij(n + 1) =
γreq

i Rreq
i Q(n)

WGij

(9)

Rij(n + 1) =Rreq
i

Q(n)

Qj(n)
(10)

where Pij(n) and Rij(n) are the transmit power and the transmit
data rate of user i in iteration n when user i connects to base station
j. From the above equations, it can be seen that the transmit power
and data rate are dependent on the average congestion level in the
network. We drop the index j when a mobile is communicating with
its home base station, which is defined as b(i) = arg min〈j〉{θij(n)}.
Similarly, index j is dropped from Pij , Rij , and θij in the following
whenever it is appropriate.

IV. EXISTENCE, CHARACTERIZATION, AND

CAPTURE OF THE OPTIMAL SOLUTION

In this section, a proof is given for the existence of the solution of
the problem stated in Section II. In (5), H is a nonnegative primitive
matrix. Perron–Frobenius theory [4] guarantees a dominant positive
eigenvalue for H that will be denoted by r. The main theorem to be
used in this section is the following.
Theorem 1: Equation (5) has a positive solution if and only if r < 1,

where r is the dominant positive eigenvalue of H. In this case, the
solution is unique.
Definition 1: Di is the set of allowable base stations to which user

i can connect. {b(i)}N
i=1 shows the allocation of the mobiles to the

(home) base stations. Due to geometric restrictions dictated by Di’s

{b(i)}N
i=1∈B(D) ≡

{
{b(i)}N

i=1∈{1, 2, . . . , B}N : b(i) ∈ Di,∀i
}

.

In this paper, D = {Di}N
i=1 is considered as fixed. In other words,

the change in the geometry of the system due to mobility of users is
considered slow. This is one of the basic assumptions on which the
proofs in later sections are based. Everywhere in the proofs, we are
looking at a snapshot of the system. The more detailed analysis of the

networks considering mobility of the transmitters at a speed greater
than system convergence speed is a challenge.
Definition 2: The triple (N,Γ, γ) ∈ F (D), if and only if there

exists an allocation {b(i)}N
i=1 of base stations and a vector P > 0

(componentwise) of transmitter powers such that (W/Ri)Γi = γi,
∀i. In the above discussion, γ = [γ1γ2 . . . γN ], and F (D) is the
collection of all possible configurations. Since Γi can be considered
as the service characteristic of user i, a row of matrix Γ represents all
possible service characteristics that can be achieved by connecting to
B possible base stations. There are N users in the system and, hence,
Γ is an N × B matrix representing all possible service characteristics
that can be achieved instantaneously from the network.

A. Existence of the Optimal Cell Allocation

If there is more than one feasible network configuration such as
(N,Γ, γ) ∈ F (D), then we can search for the optimal solution for
which the θ given by (4) is minimized. In this section, it is shown that
such an optimal solution exists. In the following sections, this solution
is characterized, and it is captured with the help of the algorithm given
in Section III.
Definition 3: F (N,Γ, γ,D) has the set of solutions (P ,R,

{b(i)}N
i=1) such that {b(i)}N

i=1 ∈ B(D). Let us define P (c), R(c), and
γ(c) to be the transmit power, the rate, and the Eb/I0 vector, respec-

tively, in configuration c. In addition, θ = [θ1θ2 . . . θN ], and θ(c) is
defined as P (c)/R(c), where componentwise division takes place, and
b(i)(c) denotes the home-base-station assignment for user i in con-
figuration c. Correspondingly, P

(c)
i ,R(c)

i , and γ
(c)
i are instantaneous

power, rate, and Eb/I0, respectively, for user i in configuration c.
Lemma 1: Suppose that (N,Γ, γ(1)) ∈ F (D) and, therefore,

(P (1), R(1), {b(i)(1)}N
i=1) are the corresponding power, rate, and

cell allocation. If γ(2) ≤ γ(1) (componentwise), then there exists

a configuration (P (2), R(2), {b(i)(2)}N
i=1) ∈ F (N,Γ, γ(2),D) such

that θ(2) = (P (2)/R(2)) ≤ θ(1) = (P (1)/R(1)) (componentwise).
Proof: Since there is a configuration for (N,Γ, γ(1)) ∈ F (D),

Theorem 1 implies that r(1) < 1. It is given that γ(2) ≤ γ(1), so if we

fix the rates to be R(2) = R(1)(componentwise), then H(2) ≤ H(1),
thus, r(2) < 1, which guarantees the existence of a solution for P (2) ≤
P (1). In the above discussion, a componentwise comparison is made
in H and P with a superscript in r and H indicating the configuration
number. This is based in [4, Th. 1.4]. This implies that there exists a
solution with θ(2) ≤ θ(1), which means that θ(2) ≤ θ(1). �
Corollary 1: If (N,Γ, γ(1)) ∈ F (D) and γ(2) ≤ γ(1), then

(N,Γ, γ(2)) ∈ F (D). In other words, if there is a solution for the sys-
tem for a certain required level-of-energy to interference-density ratio,
a solution exists for lower required level-of-energy to interference-
density ratios, as expected.
Lemma 2: Suppose (N,Γ, γ) ∈ F (D) and (P (1), R(1),

{b(1)(i)}N
i=1) ∈ F (N,Γ, γ,D) and (P (2), R(2), {b(2)(i)}N

i=1) ∈
F (N,Γ, γ,D). Let us define I∗ = {i : P

(2)
i < P

(1)
i }. In addition,

define for i ∈ I∗, b(3)(i) = b(2)(i), P
(3)
i = min(P

(1)
i , P

(2)
i ), and

R
(3)
i = R

(2)
i if R

(2)
i ≥ R

(1)
i and R

(3)
i = R

(2)
i (I

(2)

b(i)
/I

(3)

b(i)
) otherwise,

and for i /∈ I∗, b(3)(i) = b(1)(i), P
(3)
i = min(P

(1)
i , P

(2)
i ), R

(3)
i =

R
(1)
i if R

(1)
i ≥ R

(2)
i and R

(3)
i = R

(1)
i (I

(1)

b(i)/I
(3)

b(i)) otherwise. Here,

I
(c)

b(i) is the total interference-power vector at home base station of
each user, as defined by (1), with c being the configuration number.
Then, there is an allocation {b(3)(i)}N

i=1 such that γ(3) ≥ γ with

(P (3), R(3), {b(3)(i)}N
i=1) ∈ F (N,Γ, γ,D).

As there are four cases (in the comparison) with R
(1)
i , R

(2)
i , P

(1)
i ,

and P
(2)
i , we needed to separate them in such a way as to show that
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we can construct a new configuration that provides for better γ(3).
Accordingly, data rates are set differently for difference cases.

Proof: Since b(3)(i) is either equal to b(1)(i) or b(2)(i), it is
a feasible cell allocation. For user i ∈ I∗, there are two cases, as
discussed below.

Case 1) R
(2)
i ≥ R

(1)
i

It can be shown that using the definitions for transmit
power and data rate assignment in Lemma 2 and with
b(3)(i) = b(2)(i) that we have (11), shown at the bottom of
this page, where P

(3)
i = min(P

(1)
i , P

(2)
i ). Since P

(3)
k ≤

P
(2)
k , the denominator in (11) is smaller (or equal to) than

what would be in γ
(2)
i . Therefore, γ(3)

i ≥ γ
(2)
i = γi.

Case 2) R
(2)
i < R

(1)
i

It can be shown that using the definitions for transmit
power and data rate assignment in Lemma 2 and with
b(3)(i) = b(2)(i) and R

(3)
i = R

(2)
i (I

(2)

b(i)/I
(3)

b(i)) that

γ
(3)
i =

WGib(2)(i)P
(2)
i

R
(3)
i I

(3)

b(i)

=
WGib(2)(i)P

(2)
i

R
(2)
i I

(2)

b(i)

= γ
(2)
i = γi. (12)

From (11) and (12), it can be seen that γ
(3)
i ≥ γi for

i ∈ I∗. Note that R
(3)
i ≥ R

(2)
i , as I

(3)

b(i) ≤ I
(2)

b(i), with

P
(3)
k = min(P

(1)
k , P

(2)
k ), ∀k in a fixed network.

For user i /∈ I∗, there are also two cases. Following the similar steps
discussed above, it can be shown that γ(3)

i ≥ γi for i /∈ I∗. As a result,

we can conclude that γ
(3)
i ≥ γi, ∀i and (P (3), R(3), {b(3)(i)}N

i=1) ∈
F (N,Γ, γ(3),D).

The interpretation of Lemma 2 is that, whenever two possible
configurations for transmit power and data rate are available, it is
possible to pick a new configuration, as constructed in Lemma 2, that
preserves the energy to interference-density condition and has less
transmit power as compared to the previous configurations.

We summarize the power and rate allocations as follows for
the new configuration: P = min(P (1), P (2)) and R = {{Ri}N

i=1 :

for i ∈ I∗, Ri = R
(2)
i if R

(2)
i ≥ R

(1)
i and Ri = R

(2)
i (I

(2)

b(i)/I
(3)

b(i)),

otherwise; and for i /∈ I∗, Ri = R
(1)
i if R

(1)
i ≥ R

(2)
i and Ri =

R
(1)
i (I

(1)

b(i)/I
(3)

b(i)), otherwise}. �
Corollary 2: Suppose (N,Γ, γ) ∈ F (D) and (P (1), R(1),

{b(1)(i)}N
i=1) ∈ F (N,Γ, γ,D) and (P (2), R(2), {b(2)(i)}N

i=1) ∈
F (N,Γ, γ,D). Then, there exists an allocation {b(i)}N

i=1 ∈ B(D) of
user cells with P and R such that (P ,R, {b(i)}N

i=1) ∈ F (N,Γ, γ,D).
Proof: By Lemma 2, there is an allocation {b(3)(i)}N

i=1 such that
γ(3) ≥ γ and (P (3), R(3), {b(3)(i)}N

i=1) ∈ F (N,Γ, γ(3),D). Since
γ(3) ≥ γ by Lemma 1, there exists a solution (P ,R, {b(i)}N

i=1) ∈
F (N,Γ, γ,D) such that θ ≤ θ(3).

By Corollary 2, one can reduce any pair of solutions to an optimal
one. Given any pair of possible configurations, it is possible to find
a third configuration that is feasible and for which the goal function
θ is minimized. Therefore, one can begin by reducing the possible
configurations to the optimal one in F (N,Γ, γ,D). Theorem 2 states
this fact, which proves the existence of the optimal solution. �

Relationship Between R/P/C Algorithm and Lemma 2: In Lemma 2,
a user chooses a new base station (if necessary) with minimum power
and with data rate set in such a way as not to decrease γ from the other
two configurations. In the base station, a new configuration is con-
structed for user i with Pi and Ri as set in the definition, and the ration
of these parameters is as follows: θi() = (γ

(3)
i Ib(i)())/(WGib(i)).

The constraint on Eb/I0 is that γ(3)
i = γreq

i at the optimal point. In the
R/P/C algorithm, user i chooses a base station that directly gives min-
imum θi, which is given as θi(n + 1) = (γreq

i Qb(i)(n))/(WGib(i))
from (9) and (10). Therefore, the difference between the θi’s is on
the numerator with I (total interference power) and Q (total receive
power) used in Lemma 2 and R/P/C algorithm, respectively. In a large-
capacity CDMA system, the difference between Q and I is very small,
and hence, both in effect do the same.
Theorem 2: If (N,Γ, γ) ∈ F (D), then there exists a solu-

tion (P ∗, R∗, {b∗(i)}N
i=1) ∈ F (N,Γ, γ,D) such that if (P ,R,

{b(i)}N
i=1) ∈ F (N,Γ, γ,D), then θ∗ ≤ θ.

B. Characterization of the Optimal Solution

Lemma 3: Suppose (P ,R, {b(i)}N
i=1) ∈ F (N,Γ, γ,D) has the

property that for any i, k ∈ Di, ((WθiGik)/(
∑

j �=i
PjGjk +

ηkW )) ≤ γi, then (P ,R, {b(i)}N
i=1) ∈ F (N,Γ, γ,D) is the optimal

solution for F (N,Γ, γ,D). �
Proof: See [1] for the proof.

C. Proof of Convergence of R/P/C Algorithm to the
Optimal Solution

To show that algorithm given in Section III converges to the optimal
solution, the action of the algorithm is considered to be a mapping on
RN

+ × RN
+ .

Definition 4: T : RN
+ × RN

+ → RN
+ × RN

+ is the mapping, tak-
ing any pair (P (n), R(n)) such that P = {Pi(n)}N

i=1 and R =
{Ri(n)}N

i=1 to the next pair (P (n + 1), R(n + 1)), according to (9)
and (10).
Lemma 4: If (N,Γ, γ) /∈ F (D), then T has no fixed point. On the

other hand, if (N,Γ, γ)∈F (D), then (P ∗, R∗) is the fixed point of T .
Proof: First, note that if (P ,R) is a fixed point of T ,

then there exists an allocation {b(i)}N
i=1 ∈ B(D) ≡ {{b(i)}N

i=1 ∈
{1, 2, . . . , B}N : b(i) ∈ Di,∀i} such that ((WGib(i)Pi)/
(Ri(

∑
k �=i

Gkb(i)Pk + ηb(i)W ))) = γi for ∀i. Then, for i = 1, 2,

. . . , N , one has ((WGib(i)Pi)/(Ri(
∑

k �=i
Gkb(i)Pk + ηb(i)W ))) ≤

γi, where, together with the characterization of optimal solution, one
concludes that (P ,R) = (P ∗, R∗).

Now, if (N,Γ, γ) ∈ F (D), then Theorem 2 implies the existence
of a solution (P ∗, R∗), which is a fixed point of T . Iteration on T and
application of T iteratively on the obtained solutions is equivalent to
finding the fixed point of T . As indicated in Lemma 4, if there exists
a solution, T converges to it. This concludes the proof of the conver-
gence of the algorithm given in Section III to the optimal solution. �

V. CONCLUSION

For delay-tolerant applications, such as file video streaming or file
downloading from the wireless Internet, the R/P/C control algorithm

γ
(3)
i =

WGib(2)(i)P
(2)
i

R
(2)
i

( ∑
k∈l∗,k �=i,

Gkb(2)(k)P
(2)
k +

∑
k/∈l∗

Gkb(2)(k)P
(3)
k + ηb(2)(i)W

) (11)
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proposed in [3] can be effectively used. The proponent of R/P/C algo-
rithm performed extensive simulation study and empirically proved the
superior performance of the algorithm, as compared to P/C schemes.
In this paper, the problem of R/P/C control is presented in correct
mathematical notations. Existence, characterization, and capture of
the optimal solution by using the R/P/C algorithm have been studied
in detail by means of linear-algebraic techniques. A proof has been
outlined toward the optimality of the R/P/C control algorithm.
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I. INTRODUCTION

Starting with the study of Pursley [1], there has been considerable
work into the investigation of whether the overall interference plus
noise process at the input to the detection block in a code division
multiple access (CDMA) receiver can be approximated as Gaussian.
This approximation is known as the standard Gaussian approximation
(SGA). It has been demonstrated for large spreading factors that bit
error rate (BER) in an asynchronous CDMA system in the additive
white Gaussian noise channel can be determined using the SGA (see
[2] and the references therein). The result in [2] can be applied to the
synchronous CDMA forward link to show that forward link intracell
interference is also Gaussian for large spreading factors. For very low
spreading factors, the actual intracell interference probability density
function (PDF) for the CDMA forward link has been derived in [3].

This paper extends the investigation of using a Gaussian random
process to approximate CDMA forward link intracell interference by
making three new contributions. First, it examines how to apply the
Gaussian approximation to the forward link intracell interference in a
CDMA system that uses fast power control. The systems considered
in [2] and [3] assume that all users have fixed transmit gains. In the
following, a PDF for the random transmit power variations in the signal
of each interfering user due to power control adjustments is derived.
This PDF is used to calculate the variance of the forward link intracell
interference process in a CDMA system with a fast forward power
control. That variance is then incorporated in the Gaussian intracell
interference assumption.

The second contribution is to demonstrate that the Gaussian intracell
interference approximation provides very accurate results even for
very low spreading factors and small traffic loads. The results in [2]
are generated only for large spreading factors, and Fan et al. [3]
derive an exact expression for intracell interference rather than an
approximation. The advantage of using the Gaussian approximation
rather than the exact intracell interference process generated at the chip
level is that the Gaussian approximation can be implemented at the
symbol level, greatly improving simulation efficiency.

Finally, the third contribution is to evaluate the effect of channel
coding and realistic power control algorithms on the Gaussian approx-
imation. It will be shown that the approximation can be applied equally
well to systems using convolutional and turbo coding. It will also be
shown that a power control algorithm with finite step size and update
rate can degrade the accuracy of the Gaussian approximation but only
at high mobile velocities.

Section II presents a model for the synchronous CDMA forward
link with fast forward power control and defines a Gaussian intracell
interference approximation for that model. The accuracy of the approx-
imation is verified in Section III by comparing a full chip-level CDMA
forward link simulation to a symbol-level forward link simulation that
uses the Gaussian intracell interference approximation. Concluding
remarks are made in Section IV.

II. CDMA FORWARD-LINK MODEL

By following the notation in [1], the aggregate signal transmitted by
a CDMA base station to K mobiles is

s(t) =

K−1∑
k=0

√
2Pk(t)bk(t)ak(t) cos(ωct + θk) (1)

where Pk(t) is the transmitted signal power, bk(t) is the data signal,
ak(t) is the spreading waveform, ωc is the carrier frequency, and
θk is the carrier phase of the kth user’s spread signal. The data
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