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because the number of discarded packets was not high in the previous
queue.

Tables I and II show that the FDR-dominant region expands in
regard to transmission efficiency and packet loss rate as the queue
size increases. A large-sized queue with AM can hold packets when
the SINR worsens and then forward them when the SINR improves,
thus compensating for performance degradation caused by interfer-
ence. With respect to delay, a large-sized queue reduces the FDR-
dominant region when the number of packets arriving from the upper
layer is relatively high, compared with the supportable number of
packets transmitted by AM. Otherwise, it expands the FDR-dominant
region. In the former case, reliable packet transmission is a difficult
proposition, as shown in Fig. 3. Moreover, note that the crossing SNR
for the delay is not significantly changed by the size of the queue, as
compared to the transmission efficiency and packet loss rate shown in
Tables I and II. Therefore, in general, FDR proves more advantageous
than HDR as the queue size increases.

V. CONCLUSION

This paper has proposed a framework for investigating the queuing
aspects of FDR and HDR. We have first derived FSMC models with
AM. Next, the transmission efficiency, packet loss rate, and delay have
been evaluated and compared. Our results have shown that FDR is
superior to HDR in the low-SNR region but have lost its advantage
as the SNR increases. Unless the number of arriving packets from
the upper layer is so high that it hinders reliable packet transmission,
increased queue size generally benefits FDR more than HDR.
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Cooperative Sensing With Correlated Local
Decisions in Cognitive Radio Networks

Lamiaa Khalid and Alagan Anpalagan

Abstract—In this paper, we analyze the impact of correlated secondary
users’ local decisions on the performance of cooperative spectrum-sensing
schemes when the counting rule is employed at the fusion center. We
employ a correlation model that is indexed by a single parameter ρ.
We derive the system probabilities of detection and false alarm for the
K-out-of-M counting rule when the secondary users’ local decisions
are correlated under both hypothesis. Our performance evaluations are
based on two performance criteria, which are the Neyman–Pearson (NP)
criterion and the minimization of the sensing errors. Our results show
that, for each value of the correlation index, there exists an optimal value
of K that satisfies each criterion. We use genetic algorithm to find the
optimal setting that minimizes the total probability of sensing error since
the optimization problem under the correlation model used in our analysis
is a mixed integer nonlinear problem with nonlinear constraint.

Index Terms—Cognitive radio, cooperative spectrum sensing, correla-
tion index, decision fusion.

I. INTRODUCTION

Cognitive radio (CR) is considered a promising approach for op-
portunistic access of underutilized licensed spectrum [1]. CRs employ
spectrum sensing to determine vacant licensed frequency bands and
restrict their secondary transmissions to empty bands to meet the
regulatory requirements of limiting harmful interference to licensed
systems [2]. Spectrum sensing is often considered as a detection prob-
lem, in which the main challenge is the detection of the weak signal
from a primary transmitter through local observations of CR users.
Several detection techniques can be used in spectrum sensing such as
energy detection, matched filter detection, and cyclostationary feature
detection [3]. In this paper, we focus on the energy detection approach
since it has low computational and implementation complexities, and
prior knowledge of the primary users’ signal is not needed [4].

Cooperative spectrum sensing, in which information from multiple
CR users are incorporated for the detection of the primary user,
can improve the spectrum-sensing performance [4]. To combine the
sensing information from multiple CR users, decision-based fusion [5]
or data-based fusion [6] schemes can be used. For the decision fusion
scheme, each CR user independently performs local spectrum sensing
and then makes a binary decision and forwards this decision to a fusion
center, which makes the final decision. For the data fusion scheme,
each CR user directly sends its observation value to the fusion center
for it to make the final decision. In [6], a linear cooperation strategy
that is based on the optimal combination of the local statistics from
spatially distributed CRs is developed. In [5], for the case of indepen-
dent CR observations, it was shown that cooperating with all users
in the network does not necessarily achieve optimum performance.
They used a constant detection rate and a constant false alarm rate
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for optimally selecting the CR users with the highest primary user’s
signal-to-noise ratio (SNR) for cooperation using AND and OR fusion
rules. In [7], it was shown that the optimal fusion rule when the sensor
observations are conditionally independent is a majority voting (MV)
rule in the case of binary local detectors. In [8], optimizing the K value
of the K-out-of-M fusion rule was considered, and it was found that
the optimal decision fusion rule to minimize the total error probability
is the MV rule.

Although the independence assumption on the local detector
observations simplifies the problem, this assumption is not practical in
the case where the proximity of the local detector results in correlated
observations. The observations at the local detectors will be dependent
if one detects a random signal in noise or if the detector noise samples
are correlated when detecting a deterministic signal in noise [9]. The
performance of a distributed detection system with the given local
decision rules and correlated local decisions was studied in [10], and
the optimum decision fusion rule in the Neyman-Pearson (NP) sense
was derived and analyzed. In [11], the authors studied the effect of
correlated noise on the performance of a distributed detection system
in terms of the probability of detection using the NP criterion when the
fusion rule was fixed to one of the standard rules such as AND, OR, or
the MV rule. They did not consider any specific correlation model but
instead considered only symmetric multidimensional noise densities,
which can be completely described by correlation coefficient. The
optimal data fusion rule was developed for correlated local binary de-
cisions, in terms of the conditional correlation coefficients conditioned
on the hypothesis, for all orders in [12]. However, their model, in its
general form, is computationally complex since it needs the estimation
of 2(2n − n − 1) correlation coefficients, where n is the number of
detectors, to obtain the optimal log-likelihood ratio test. In [13], the
authors studied the special case that the probability density functions
under both hypotheses are multivariate Gaussian, with the aim of
detecting the shift in the mean of a pair of dependent Gaussian random
variables. The problem of fusing the decisions made at the local de-
tectors when the CR users observe conditionally dependent data due to
correlated shadowing was studied in [14], with the assumption that the
noise observations are independent. A suboptimal temporal detector
was proposed based on a linear quadratic (LQ) detector, which uses
partial statistical knowledge to improve detection performance. Their
results showed that the suboptimal LQ detector outperforms the
counting rule only when the correlation between the secondary users
is strong.

In this paper, we analyze the impact of correlated CR users’ local de-
cisions on the performance of cooperative spectrum-sensing schemes
when the K-out-of-M counting rule is employed at the fusion center.
The main contributions of this paper are given here.

1) We derive the system probability of detection and the probability
of false alarm, when the CR local decisions are correlated under
both hypotheses, for the K-out-of-M counting rule and the
special cases of the AND, OR, and MV fusion rules.

2) We use the NP criterion to optimize the network probability
of false alarm with constraint on the network probability of
detection when the local decisions are correlated.

3) We show that there is an optimal value of K that satisfies the NP
criterion for each correlation index.

4) Motivated by this finding, we formulate the problem of minimiz-
ing the total probability of sensing error under the correlation
model used in our analysis as a mixed integer nonlinear pro-
gramming (MINLP) problem.

5) To solve the problem, we employ genetic algorithm (GA) to find
the optimal assignments for K and the local probability of false
alarm for a certain correlation index.

The rest of this paper is organized as follows: The system model and
correlation model adopted in this paper are described in Sections II
and III, respectively. Based on the models, we derive the system
probability of detection and false alarm for the different fusion rules
in Section IV. In Section V, we formulate the problem of minimizing
the probability of sensing error as a mixed integer nonlinear problem.
Simulation results and comparisons are presented in Section VI.
Section VII concludes this paper.

II. COGNITIVE RADIO SYSTEM MODEL

In this paper, we consider energy detection in an additive white
Gaussian noise (AWGN) channel. We consider a CR network with M
secondary CR users, which can opportunistically access the licensed
spectrum allocated to primary users. The problem of detecting the
presence of primary users is equivalent to distinguishing between the
following two hypotheses:

xi(n) =

{
vi(n), H0

his(n) + vi(n), H1

(1)

where xi(n) is the received signal of the ith secondary user at the
nth time instant; hi is the ith user channel gain, which is assumed
to be constant during the detection interval; s(n) is the primary
user’s transmitted signal; and vi(n) is the AWGN. Without loss of
generality, s(n) and vi(n) are assumed to be independent. The goal
of spectrum sensing is to decide between two hypotheses H0 and H1,
which are the hypotheses that the primary user is absent and present,
respectively.

The test statistics for the energy detector for the ith user Yi is
computed as the sum of the received signal energy over an interval
of N samples and is given by [5]:

Yi =

N−1∑
n=0

|xi(n)|2 . (2)

Without loss of generality, in this paper, we assume that noise vi(n)
is real Gaussian noise with zero mean and variance σ2 and that the
primary user signal s(n) is a binary phase-shift keying modulated sig-
nal. For a large number of samples N (N ≥ 10 [6]), using the central
limit theorem [15], the distribution of the test statistics Yi can be ap-
proximated by a Gaussian distribution such that Yi ∼ N (Nσ2, 2Nσ4)
under H0 and Yi ∼ N ((N + Γi)σ

2, 2(N + 2Γi)σ
4) under H1 [6].

Assuming that the primary users have uniform transmitted power, i.e.,
E[(s(n))2] = 1, the SNR of the primary signal at the ith secondary
user will be Γi = (N |hi|2)/(σ2).

The decision on the occupancy of a certain subchannel can be
obtained by comparing test statistic Yi to threshold γi. The per-
formance of the detection algorithm is characterized by two proba-
bilities, i.e., the probability of detection Pd and the probability of
false alarm Pf . Terms Pd and Pf are defined as the probabilities of
detecting a primary user signal on the considered subchannel when
the subchannel is occupied and vacant, respectively, and they are
given by

P i
d =P (Yi > γi|H1) = Q

(
γi − N (σ2 + |hi|2)√
2N (σ2 + 2|hi|2)σ2

)
(3)

P i
f =P (Yi > γi|H0) = Q

(
γi − Nσ2

√
2Nσ4

)
. (4)
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III. SPECTRUM SENSING UNDER CORRELATED

COGNITIVE RADIO OBSERVATIONS

Cooperative sensing is the process of making a final decision for the
network based on the sensing data that were collected from various
secondary users. We consider the case in which each individual CR
user i makes a one-bit hard decision di in the absence or presence of
the primary user based on the sensing information, such that

di =
{

1, if Yi ≥ γi

0, if Yi < γi.
(5)

Each CR user then sends this one-bit decision to the fusion center,
which makes the final decision regarding the occupancy of each
subchannel. We further assume that the local decisions are correlated
and that the correlation coefficients are given by

E

[∏
i∈I

di|Hj

]
=E

[
di1di2 · · · dig |Hj

]
=P

(
di1 = 1, di2 = 1, . . . , dig = 1|Hj

)
(6)

where E[x|Hj ] and P [x|Hj ] are the conditional expectation and
conditional probability, given Hj , where j = 0, 1, respectively; I ⊆
{1, 2, 3, . . . , M}; |I| = g is the cardinality number of set I; and
iv ∈ I, v = 1, . . . , g.

For |Il| = 1, we have

E[di|H1] =P (di = 1|H1) = P i
d (7)

E[di|H0] =P (di = 1|H0) = P i
f (8)

where P i
d and P i

f are the probability of detection and false alarm of
the ith secondary user, respectively.

The correlation coefficient ρj
xy between two local decisions dx and

dy under hypothesis Hj is given by

ρj
xy =

E[dxdy|Hj ] − E[dx|Hj ]E[dy|Hj ]√(
E[d2

x|Hj ] − (E[dx|Hj ])
2
) (

E[d2
y|Hj ] − (E[dy|Hj ])

2
)
(9)

where j ∈ {0, 1}, x and y ∈ {1 · · ·M}, and x �= y. Since dx ∈ {0, 1},
it follows that dx = (dx)2. Therefore

ρj
xy =

E[dxdy|Hj ]−E[dx|Hj ]E[dy|Hj ]√
E[dx|Hj ]E[dy|Hj ] (1−E[dx|Hj ]) (1−E[dy|Hj ])

. (10)

Assuming that the distance between any two CR users is small,
compared with the distance between the CR user and the primary
transmitter, the received signal at each CR will experience almost
identical path loss. Therefore, in the case of an AWGN environment,
we can assume equal SNRs for the different CR users [8]. Assuming
that the same threshold for all CR users γi = γ, we have P i

f = Pf . In
the case of an AWGN channel, as previously assumed, we will also
have P i

d = Pd. Since E[dx|Hj ] = E[dy|Hj ] from (7) and (8), ρj
xy is

independent of x and y, and every pair of local detectors are equally
correlated [16]. Therefore

ρ1 =
P [dx = 1, dy = 1|H1] − P 2

d

Pd(1 − Pd)
(11)

ρ0 =
P [dx = 1, dy = 1|H0] − P 2

f

Pf (1 − Pf )
(12)

where ρ1 and ρ0 are the correlation coefficients under H1 and H0,
respectively. It is clear from (11) and (12) that ρj varies only with

P [dx = 1, dy = 1|Hj ], which is a function of only Pd under H1 and
a function of only Pf under H0 [17].

If we assume that the fusion center has input vector D =
[d1, d2, . . . , dM ], where D can take 2M possible realizations, the joint
probability P (D|Hj) at the fusion center will be given by [10]

P (D|Hj) =

r∑
i=0

(−1)i

(
r

i

)
εj
M−r+i. (13)

If Aµ = {i : di = µ}, such that 1 < i < M and µ = 0, 1, then r =
|A0| and M − r = |A1| denote the number of secondary users that
decide in favor of H0 and H1, respectively, and

εj
q =E[di1di2 · · · diq |Hj ]

= εj
1

q−2∏
s=0

ρj
(
s + 1 − εj

1

)
+ εj

1

1 + sρj
for q ≥ 2 (14)

where q is the number of secondary detectors sending their decisions

to the fusion center; ρj is the correlation index under Hj ; ε01
∆
=

E[dx|H0] = Pf and ε11
∆
= E[dx|H1] = Pd; and for q < 2, ε10

∆
= 1.

IV. DECISION FUSION WITH CORRELATED LOCAL DECISIONS

In cooperative spectrum sensing, each CR user independently per-
forms local spectrum sensing and sends a one-bit binary decision in
the absence or presence of the primary user to the secondary base
station for fusion. In this paper, we consider the general K-out-of-
M fusion rule as the decision fusion rule employed at the fusion
center, where K is the number of users that claim that the primary
user is present and M is the total number of cooperating users. For the
sake of comparison, we give special attention to some special cases of
the K-out-of-M fusion rule, which are the OR, AND, and MV fusion
rules.

In the K-out-of-M rule, if K users or more decide in favor of H1,
i.e., if M − r ≥ K, then the final decision declares that there is a
primary user.

In the MV rule, the final decision is based on the majority of the
individual decisions, i.e., K = �(M/2)� in

PD =

M−K∑
z=0

M−K−z∑
i=0

(−1)i

(
M

K + z

)(
M − K − z

i

)
ε1K+z+i (15)

PF =

M−K∑
z=0

M−K−z∑
i=0

(−1)i

(
M

K + z

)(
M − K − z

i

)
ε0K+z+i (16)

where �x� denotes the smallest integer not less than x.
In the OR fusion rule, the fusion center decides that the primary user

is absent only if all secondary users decide the absence of the primary
user signal [3], i.e., setting K = 1 in (15) and (16). This is equivalent
to the following simplified form:

PD =1 − P (d1 =0, . . . , dM =0|H1)=1 −
M∑

i=0

(−1)i

(
M

i

)
ε1i (17)

PF =1−P (d1 =0, . . . , dM =0|H0)=1 −
M∑

i=0

(−1)i

(
M

i

)
ε0i . (18)

In the AND fusion rule, if all local detectors decide that there is a
primary user, then the final decision at the fusion center declares that
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there is a primary user, i.e., setting K = M in (15) and (16). This is
equivalent to the following simplified form:

PD =P (d1 = 1, d2 = 1, . . . , dM = 1|H1,) = ε1M (19)

PF =P (d1 = 1, d2 = 1, . . . , dM = 1|H0) = ε0M . (20)

Next, we will show that the number of users K that optimizes
the system probability of false alarm (detection) is dependent on the
threshold γ and the correlation index ρ. It is clear that both PD and
PF are dependent on εj

q in (14). Since Pd and Pf are both dependent
on γ from (3) and (4) and assuming ρ1 = ρ0 = ρ, we can rewrite εj

q as
follows:

εj
q = f(γ)

q−2∏
s=0

ρ (s + 1 − f(γ)) + f(γ)

1 + sρ
(21)

where f(γ) represents a function of the local sensing threshold. Taking
the logarithm of both sides, we get

log εj
q = log f(γ)

+

q−2∑
s=0

log (ρ (s + 1 − f(γ)) + f(γ)) − log(1 + sρ). (22)

Taking the derivative with respect to s and rearranging the terms,
we get

∂εj
q

∂s
= ρεj

q

q−2∑
s=0

(
1

ρ (s + 1 − f(γ)) + f(γ)
− 1

1 + sρ

)
. (23)

To find the optimal value of q that optimizes εj
q , we set ∂εj

q/∂s = 0.
Assuming that ρ �= 0 and εj

q �= 0, we get

q−2∑
s=0

1
ρ (s + 1 − f(γ)) + f(γ)

=

q−2∑
s=0

1
1 + sρ

. (24)

Therefore, the optimal value of K, which is directly related to q as
seen from (15) and (16), is a function of both ρ and γ, as shown in (24).

Next, we plot the receiver operating characteristic (ROC) curves for
the different fusion rules when the local decisions of the CR users are
correlated. The degree of correlation between the CR local decisions
is described by parameter ρ, which is assumed equal under the two
hypotheses H0 and H1 [16], [18]. In [11], it was shown that the
correlation coefficient between two sensor decisions cannot exceed
that between the corresponding sensor observations. Based on this, our
results provide a lower bound on the degree of correlation between CR
local observations. We consider a network with M CR users, with all
the CR nodes participating in the decision fusion, and fix the fusion
rule to one of three rules. The number of detection symbols N is set
to 100, and we assume that all the cooperating users have equal noise
variance, such that σ2

i = 1 ∀i and equal received SNR.
In Fig. 1, we plot the ROC curves for the MV rule with ρ =

0, 0.05, 0.1, 0.2, and 0.6, respectively, when M = 5 and the SNR is
set to −10 dB. From the figure, we observe that the highest PD is
obtained when ρ = 0, which represents the case when CR observations
are independent. The value of PD then decreases with the increase
in the correlation between the observations of the CR users until,
eventually, the system is reduced to the case of a single CR user (no
cooperation) as ρ becomes closer to 1. Similar results are obtained
when the OR and AND fusion rules are considered. Our results show
that, for low values of PF (PF < 0.1), depending on the fusion rule
considered, we can have up to a 7%–13% increase in the system
probability of detection when ρ decreases from 0.6 to 0.1.

Fig. 1. ROC curves (PD versus PF ) for different correlation indexes for the
MV fusion rule with M = 5 and SNR = −10 dB.

Fig. 2. Comparison of ROC curves (PD versus PF ) for the OR, AND, and
MV rules when ρ = 0.05.

Figs. 2 and 3 show the ROC curves for different numbers of
cooperating users K with ρ = 0.05 and 0.2, respectively, when M = 5
and the SNR is set to −10 dB. From Fig. 2, we notice that, when
ρ = 0.05, although the MV rule (K = 3) is not the optimal fusion
rule, the MV fusion rule still outperforms the OR (K = 1) and AND

(K = 5) fusion rules, in terms of the probability of detection, for
low values of the system probability of false alarm (PF < 0.1 for the
considered case). As PF increases, the OR and AND fusion rules get
progressively closer to the MV rule. From Fig. 3, we observe that,
as the correlation index (ρ) increases (ρ > 0.1), the OR fusion rule
outperforms all the considered fusion rules.

Next, we evaluate the performance of the cooperative spectrum-
sensing algorithm under the NP criterion. We aim to minimize the
probability of false alarm PF for a given probability of detection
PD for the K-out-of-M rule when the local decisions are correlated.
In Fig. 4, we plot the network probability of false alarm versus the
number of users K that are in favor of H1 out of the M cooperating
users for M = 30, an SNR of −10 dB, and PD = 0.9. We show
that there is an optimal number of users K that gives the minimum
probability of false alarm for the network for a given probability of
detection. This value of K changes with correlation index ρ, as shown
in the figure.

In the remainder of this paper, we will consider the K-out-of-M
rule at the fusion center, together with the correlation model described
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Fig. 3. Comparison of ROC curves (PD versus PF ) for the OR, AND, and
MV rules when ρ = 0.2.

Fig. 4. System probability of false alarm versus the number of users K, with
M = 30, SNR = −10 dB, and PD = 0.9.

in Section III. We will formulate the problem of finding the optimal
settings that minimize the total probability of sensing error in the next
section.

V. PROBLEM FORMULATION AND GA-BASED SOLUTION

Motivated by the aforementioned reported results, we aim to find the
optimal number of users (K∗) and the local sensing threshold (γ) that
jointly minimize the probability of sensing error at the fusion center
subject to a limit on the probability of detection for a given correlation
index. Using this sensing objective, we are jointly considering the
sensing errors that occur when the channel is busy and idle, i.e., PF

and 1 − PD . Therefore, the problem can be formulated as

arg
K,γ

min PE(K, γ) = (1 − PD(K, γ))PB + PF (K, γ)PI (25)

s.t. PD(K, γ) ≥ β and K ∈ {1, . . . , M} (26)

where PE is the probability of sensing error. The terms PB and PI are
the prior probabilities that the primary user is present and absent on
the channel, respectively. Those two terms will depend on the channel
occupancy model [19]. The total probabilities of detection PD and
false alarm PF for the K-out-of-M rule are given in (15) and (16),

Fig. 5. Probability of sensing error versus the local sensing threshold for
different numbers of users K when ρ = 0.05.

Fig. 6. Probability of sensing error versus the number of users K when
β = 0.9.

respectively. The limit on the total PD , i.e., β, is used to guarantee a
satisfactory level of protection for the primary users.

The aforementioned optimization problem is an MINLP problem
that constitutes simultaneously minimizing two conflicting nonlinear
objective functions subject to a lower limit on a nonlinear function.
Due to the complexity and nonlinearity of the problem, we propose to
use GA, which is a general-purpose optimization algorithm developed
by Holland [20], to minimize the probability of a sensing error.

For a certain correlation index ρ, the optimal values of γ and K∗

are obtained using GA as follows.

Step 1 Generate a population of S chromosomes by randomly
assigning values for γ such that the constraint in (26) is satisfied. The
value of γ will depend on the desired local probability of false alarm
in (4).

Step 2 Encode the value of γ by representing them in binary form.
Step 3 Evaluate the fitness function for each of the chromosomes by

converting PE in (25) to a function to be maximized for the encoded
version of γ.

Step 4 Choose a number of chromosomes Sbest, such that
0 < Sbest < S, with the best fitness value (elite chromosomes), and
directly place them in the next generation.

Step 5 Select S − Sbest parents from the entire population accord-
ing to their fitness value by using the roulette wheel selection method.



848 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 2, FEBRUARY 2012

TABLE I
MEAN AND STANDARD DEVIATION OF THE MINIMUM PROBABILITY OF ERROR OVER 20 RUNS

Step 6 Perform crossover and mutation on the selected chromo-
somes from Step 5 with probability pc and pm, respectively, and obtain
a new population of S chromosomes.

Step 7 Compute the fitness value for the new population. Terminate
the algorithm if the budget of the fitness function evaluations is
exhausted; otherwise, return to Step 1.

Step 8 Repeat the aforementioned steps for 1 ≤ K ≤ M .
Step 9 Choose the value of K that gives the maximum fitness value

(minimum PE), K∗.

The performance of GA greatly depends on the selection of pa-
rameters such as the population size, selection method, probabilities
of crossover and mutation, and the termination criteria. Based on a
number of tests, we choose the GA parameters that are well suited
for our optimization problem. We use the roulette selection method
with population size S = 60 and two elite chromosomes. We use
one-point crossover with a crossover probability of 0.75. The prob-
ability of mutation is set to 0.002, and the termination criterion is
2000 evaluations.

VI. RESULTS AND DISCUSSION

In this section, we evaluate the performance in terms of the total
probability of sensing error when using the K-out-of-M fusion rule
with correlated local decisions. Since the K-out-of-M fusion rule
with the optimal K outperforms the OR and AND fusion rules for
weak correlation coefficients, as shown before, we consider values of
ρ less than 0.1. In our evaluation, we use the following parameters:
number of detection symbols N = 100, SNR = −5 dB, the number
of secondary users M = 30, the probability that the primary user is
absent PI = 0.3, and the probability that the primary user is present
PB = 0.7. We then use the genetic algorithm to find the optimal pair
(K∗, γ) that minimizes the probability of sensing error.

First, we numerically evaluate the total probability of sensing error
PE , with different local sensing thresholds γ. In Fig. 5, we plot PE

versus γ for different numbers of cooperating secondary users K when
ρ = 0.05. The figure shows that, for each value of K, as PE varies
with γ, there exists only one minimum value for PE . This minimum
value of PE will be different for different values of ρ. This relation
can also be deduced from (24). The figure also shows that, for a
certain value of ρ, using the optimal pair (K∗, γ), we can obtain a
much lower PE when compared with using nonoptimal settings. Next,
we present the simulation results obtained by using GA to find the
optimal PE for a given value of correlation index ρ. Fig. 6 shows
PE versus the number of users K, with M = 30, for different values
of ρ. The limit on PD , i.e., β in (26), is set to 0.9. It is clear from
the figure that, for ρ < 0.1, the fusion rule that minimizes PE is the
K-out-of-M rule with the optimal value of K∗, depending on correla-
tion index ρ. However, as ρ gets closer to 0.1, optimizing K becomes
less critical since a similar performance can be obtained using the OR

fusion rule. This observation agrees with the previous results presented

in Section IV. We also notice that the minimum value of PE decreases
with the increase in the degree of correlation between secondary users.
Using GA, we were able to obtain the optimal pair (K∗, γ) that gives
the minimum PE for different values of ρ. The mean and standard
deviation of the minimum probability of error over 20 runs for different
numbers of users K and different values of ρ when β is set to 0.9 are
shown in Table I.

VII. CONCLUSION

In this paper, we have studied the problem of cooperative spectrum
sensing when the local decisions of the CR users are correlated and the
counting rule is employed at the fusion center. Based on a correlation
model that is indexed with a single parameter ρ, we have derived the
system probabilities of detection and false alarm for the K-out-of-
M fusion rule and the special cases of the AND, OR, and MV fusion
rules. We have shown that the detection performance of the cooperative
spectrum-sensing scheme degrades with the increase in the correlation
between CR local decisions for all the considered fusion rules. We
have also shown that, for different values of the correlation index, the
number of cooperating users that optimizes the performance in terms
of minimizing the total probabilities of false alarm and sensing error
also differs. For ρ < 0.1, the MV rule outperforms the AND and OR fu-
sion rules. However, we have shown that better performance than that
achieved by the MV rule can be obtained by optimizing the number of
cooperating CR users, K. For, ρ > 0.1, the optimal fusion rule is the
OR rule (K = 1). Based on our observations, we have used GA to find
the optimal setting that minimizes the probability of sensing error in
CR networks when the correlation index is known at the fusion center.
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Performance Analysis of MRC Diversity
for Cognitive Radio Systems

Dong Li, Member, IEEE

Abstract—In this paper, we analyze the effect of maximum ratio com-
bining (MRC) diversity on the performance of cognitive radio systems, in
which the cognitive user (CU) shares the same spectrum with a primary
user (PU) and the transmit power of the CU satisfies both the transmit
and interference power constraints. Utilizing the derived cumulative dis-
tribution function (cdf) of the received signal-to-noise ratio (SNR), we
investigate the ergodic capacity and the average symbol error rate (SER)
of the considered system and derive new expressions for their asymptotic
performance. Both analytical and simulation results show that the MRC
diversity can provide full diversity order and a capacity-scaling law as a
logarithmic function of the number of cognitive receive antennas when the
transmit power of the CU is dominated by the transmit power constraint.

Index Terms—Average symbol error rate (SER), capacity-scaling law,
cognitive radio, diversity order, ergodic capacity, maximum ratio combin-
ing (MRC).

I. INTRODUCTION

The electromagnetic spectrum is a precious resource for wireless
communication systems. However, under the current command-and-
control spectrum management policy, spectrum resources are not
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sufficiently utilized as reported by the Federal Communications
Commission [1] and become crowded due to the increasing number
of various bandwidth-consuming wireless applications. Recently, cog-
nitive radio has been proposed as an effective solution to deal with
these problems by allowing cognitive users (CUs) to share the same
spectrum with a primary user (PU) [2]. One challenge in such
spectrum-sharing systems is that the CUs should satisfy two con-
flicting goals, i.e., maximizing the system performance of CUs while
causing no harmful interference to the PU.

Related works on spectrum sharing can be found in [3]–[5]. In
[3], it was shown that significant capacity gains can be achieved in
fading channels, compared with that in additive white Gaussian noise
(AWGN) channels. In [4], the authors studied cognitive system perfor-
mance with imperfect channel knowledge in terms of ergodic capacity
and average bit error rate (BER). The author in [5] concluded that the
capacity performance of the CU could benefit more from the average
interference power constraint than from the peak power interference.
However, they only consider a simple point-to-point system model.

It is well known that maximum ratio combining (MRC) diversity
can significantly improve system performance by equipping the re-
ceiver with multiple antennas. However, applying MRC to cognitive
radio systems has not been well studied. It was shown that the capac-
ity performance of spectrum-sharing systems could be considerably
improved through MRC diversity by mitigating severe fading [6] and
channel estimation error [7] in the interference channel between the
cognitive transmitter and the primary receiver. A major limitation on
[6] and [7] is that they ignored and failed to exploit the effect of
the transmit power constraint. As such, the transmit power of the CU
will approach infinity when the interference channel experiences weak
channel conditions. Furthermore, the symbol error rate (SER) perfor-
mance for cognitive MRC systems is still unknown, which has not
been presently available in the technical literature as far as we know.

To tackle these problems, in this paper, we thoroughly evaluate
the performance of spectrum-sharing systems with MRC diversity
in Rayleigh fading channels by utilizing the derived cumulative
distribution function (cdf) of the received signal-to-noise ratio (SNR).
Both the transmit and interference power constraints on the transmit
power of the CU are considered. Specifically, the contributions of this
paper can be summarized here.

1) We investigate the ergodic capacity of the considered system
and analyze its asymptotic performance when the number of
cognitive receive antennas is large. Analytical and simulation
results show that the ergodic capacity scales as a logarithmic
function of cognitive receive antennas when the transmit power
of the CU is dominated by the transmit power constraint.

2) We also investigate the average SER of the considered system
and analyze its asymptotic performance for low-noise-power
region. Analytical and simulation results show that full diver-
sity order, which is equal to the number of cognitive receive
antennas, can be achieved when the transmit power of the CU
is dominated by the transmit power constraint.

The rest of this paper is organized as follows: Section II describes
the system model. Asymptotic analyses for the ergodic capacity and
average SER are given in Sections III and IV, respectively. Section V
gives the simulation results, and Section VI concludes this paper.

II. SYSTEM MODEL

The system under consideration is composed of a primary
transmitter–receiver pair and a cognitive transmitter–receiver pair.
Both the PU and the CU are equipped with a single antenna, except
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