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Abstract—Opportunistic spectrum access (OSA) has been re-
garded as the most promising approach to solve the paradox
between spectrum scarcity and waste. Intelligent decision making
is key to OSA and differentiates it from previous wireless tech-
nologies. In this article, a survey of decision-theoretic solutions
for channel selection and access strategies for OSA system is pre-
sented. We analyze the challenges facing OSA systems globally,
which mainly include interactions among multiple users, dynamic
spectrum opportunity, tradeoff between sequential sensing cost
and expected reward, and tradeoff between exploitation and
exploration in the absence of prior statistical information. We
provide comprehensive review and comparison of each kind of
existing decision-theoretic solution, i.e., game models, Markovian
decision process, optimal stopping problem and multi-armed
bandit problem. We analyze their strengths and limitations and
outline further research for both technical contents and method-
ologies. In particular, these solutions are critically analyzed in
terms of information, cost and convergence speed, which are key
concerns for practical implementation. Moreover, it is noted that
each kind of existing decision-theoretic solution mainly addresses
one aspect of the challenges, which implies that two or more kinds
of decision-theoretic solutions should be incorporated to address
more challenges simultaneously.

Index Terms—Opportunistic spectrum access, cognitive radio,
distributed channel selection, game theory, Markovian decision
process, optimal stopping problem, multi-armed bandit problem.

I. INTRODUCTION

THE EXPLOSIVE increase in wireless service demand
has made spectrum scarcity a serious problem facing

today’s wireless communication systems. Historically, most
of the spectrum less than 6 GHz has been almost completely
assigned to different services, which were called the licensed
spectrum owners. However, the reports released by FCC
and the practical measurements carried out by researchers
show that the allocated spectrum is largely under-utilized in
time and space, which is referred to as spectrum waste. To
address the paradox between spectrum scarcity and waste, lots
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of attentions have been given to the following two aspects
of effort: (i) explore and utilize unknown spectrum, e.g.,
non-line-of-sight ultraviolet communications [1], visible light
wireless communications [2] and Terahertz communications
[3], and (ii) seek and opportunistically utilize the “spectrum
hole” that is not utilized by the licensed owners in the current
spectrum, which is referred to as opportunistic spectrum access
(OSA) technology. In comparison, OSA technology operates
in the current spectrum and hence is compatible with existing
technologies, which has made it a hot research topic in the
last decade. In this article, we focus on opportunistic spectrum
access technologies.

Technically, the successful implementation of OSA tech-
nology is mainly relying on cognitive radio (CR), which
was firstly coined by J. Mitola [4]. More importantly, some
developed hardware and software platforms, e.g., GNU Radio
[5], Universal Software Radio Peripheral (USRP) [6], Shared
Spectrums XG Radio [7], Wireless open-Access Research
Platform (WARP) [8]–[10] and Open-Source SCA Imple-
mentation Embedded (OSSIE) [11]–[13], make it realizable.
Generally, the operational procedure of OSA technology can
be described by the following steps [14]:

1) Observation: sample and collect multi-domain informa-
tion about the environment, which may include infor-
mation about spectrum occupancy, location, user prefer-
ence, traffic and network state.

2) Decision: make intelligent decisions based on the ob-
servation results, e.g., identify spectrum holes and find
the optimal spectrum bands to use, learn the behaviors
of other users, predict the interactions among multiple
users and infer useful knowledge from the collected
data.

3) Reconfiguration: change the parameters of the radio
accordingly to implement the decisions.

In summary, observation belongs to the field of traditional
signal detection and processing while reconfiguration is related
to hardware operation. On the other hand, decision making
is key to technologies and differentiates them from previous
wireless technologies.

There are always multiple channels in opportunistic spec-
trum access systems and the key concern is the joint optimiza-
tion for channel sensing and access, which can be abstracted as
channel selection [15]. For the problem of channel selection,
there are two basic decision issues: (i) in the parallel sensing
strategies, which channels are chosen to sense and access in
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each slot? (ii) in the sequential sensing strategies, how to
determine the sensing order and control the sensing process
to balance the tradeoff between sensing cost and expected
reward? To address the two issues, different decision-theoretic
solutions were proposed.

In addition, various challenges facing the problem of chan-
nel selection in opportunistic spectrum access systems arise
as the results of flexible speculum usage. Specifically, the
challenges mainly include: interactions among multiple users,
dynamic spectrum opportunity, tradeoff between sequential
sensing cost and expected reward, and tradeoff of between
exploitation and exploration in the absence of prior statisti-
cal information. To address these challenges, some powerful
decision-theoretic solutions have been extensively studied,
e.g., game models, Markovian decision process, optimal stop-
ping problem and multi-armed bandit problem. It is seen that
each kind of these solution mainly addresses one aspect of
challenges.

Thus, the focus of this article is to provide a comprehensive
review of the state-of-the-art on decision-theoretic solutions
for opportunistic spectrum access systems. Based on the in-
depth review and comparison of results, strengths and limita-
tions of each kind of existing decision-theoretic solutions are
discussed. More importantly, several future research problems
for both technical content and methodology are suggested.

A few surveys that review existing solutions for opportunis-
tic spectrum access systems have already been out. General
review related to opportunistic spectrum access technologies
and applications were provided in [16]–[20]. A multitude of
articles for reviewing medium access control (MAC) protocols
in opportunistic spectrum access systems can be found in
[21]–[25]. A Markovian decision process framework for OSA
technologies was proposed in [26] and game-theoretic solu-
tions for opportunistic spectrum access systems were surveyed
in [27]–[29]. Furthermore, a survey on spectrum decision
in cognitive radio networks was presented in [30], machine-
learning techniques in cognitive radios was surveyed in [31],
techniques for improving reliability of wireless networks using
cognitive radios were surveyed in [32] and a survey of artificial
intelligence for cognitive radios was presented in [33].

With respect to previous surveys, the contributions of this
work are threefold. First, we present a global and integrated
analysis of the challenges facing the problem of channel
selection in OSA systems. Second, we provide comprehensive
review and comparison for each kind of existing decision-
theoretic solution and analyze their strengths and limitations.
Third, we provide global and critical analysis for the four
important decision-theoretic solutions and outline future re-
search for both technical contents and methodologies. In par-
ticular, these solutions are contrastively analyzed in terms of
information, cost and convergence speed, which are concerns
for practical implementation. Moreover, it is noted that each
kind of existing decision-theoretic solution mainly addresses
one aspect of the challenges, which implies that two or more
kinds of decision-theoretic solutions should be incorporated to
address more challenges simultaneously.

The rest of this article is organized as follows. In Section II,
background and challenges of opportunistic spectrum access
systems are presented. We review and compare four kinds of

decision-theoretic solutions for opportunistic spectrum access
systems in Sections III–VI respectively; specifically, game
models in Section III, Markovian decision process in Section
IV, optimal stopping problems in Section V and multi-armed
bandit problem in Section VI. Finally, contrastive analysis for
the four kinds of solutions and future research directions are
presented in Section VII, and summary is provided in Section
VIII.

II. BACKGROUND AND CHALLENGES OF OPPORTUNISTIC
SPECTRUM ACCESS

A. Background

We mainly consider decision-theoretic solutions for slotted
OSA systems in this article, i.e., the secondary user (SU)
employs a sensing-then-access structure with equal slot length.
There are two traffic models for the primary users (PUs): (i)
slotted traffic [15], i.e., the state of PU (idle or active) remains
unchanged in each slot and changes over slots independently
or correlatively, and (ii) continuous traffic [35], i.e., the PU
does not have slotted transmission structure and it may become
idle or active at any time. For decision-theoretic solutions,
continuous traffic models can be converted to slotted traffic
models by imposing collision constraints on the SUs [36].
We focus on slotted opportunistic spectrum access systems
since the used slotted transmission structures coincide with
the nature of periodic procedure of decision theories1.

There are two basic components in opportunistic spectrum
access systems: (i) a spectrum sensing strategy for detecting
the activities of PUs to determine whether to perform sensing,
the number of sensing channels and which channels to sense,
and (ii) a channel access rule for determining whether access
the channels and which channels to access based on the
sensing results. Axiomatically, the access channels are exactly
those sensed idle or a subset of them. Basically, channel sens-
ing and channel access strategies should be jointly optimized,
which is a distinct feature differentiating OSA from traditional
wireless technologies.

There are always multiple channels in opportunistic spec-
trum access systems and the key concern of the task for joint
channel sensing and access can be abstracted as channel selec-
tion [15]. Specifically, the task of channel selection in oppor-
tunistic spectrum access systems mainly includes determining
channels to sense and selecting the channels to access. When
more than one SUs choose to access the same channel, only
one or none of them will receive positive payoff depending
on the channel collision models, e.g., using perfect contention
resolution mechanisms or not. Surely, the task of optimizing
the parameters in the contention resolution mechanisms is also
an important issue, but it is key to traditional multiple access
control problem but not to slotted opportunistic spectrum
access systems. Therefore, we mainly discuss the problem of
channel selection for spectrum sensing strategy and channel
access rule in this article.

1It should be pointed out that there are also a large number of studies
for unslotted OSA systems, where the SUs do not have slotted transmission
structure and can sense and access the licensed channels in arbitrary time
[37]. However, we limited our work to slotted opportunistic spectrum access
systems as the decision theories used in opportunistic spectrum access systems
are more classical and typical.



XU et al.: DECISION-THEORETIC DISTRIBUTED CHANNEL SELECTION FOR OPPORTUNISTIC SPECTRUM ACCESS 1691

C
h
a
n
n
e
ls

C
h
a
n
n
e
ls

Fig. 1. An illustrative and general diagram of two basic sensing strategies for the slotted opportunistic spectrum access. In the parallel sensing strategy, the
SU simultaneously senses a fixed number set of channels at the beginning of the slot and updates the channel selections in the next slot. In the sequential
sensing strategy, the SU sequentially senses a variable number set of channels according to a control policy. In the parallel sensing strategy, an extensively
studied model is that only one channel is sensed in a slot.

From the perspective of control model, OSA technologies
can be implemented in centralized [38], [39] or distributed
[15] manner. In the centralized OSA model, there is a central
controller which schedules the sensing and access of SUs. On
the contrary, the SUs in the distributed OSA models behave
distributively and autonomously. In comparison, the central-
ized OSA models involve heavy computational complexity and
communication overhead, while the distributed models can be
implemented with low computational complexity and commu-
nication overhead. Furthermore, distributed control model is
easy to implement and robust to observation error and link
failure. Based on this consideration, we discuss distributed
and slotted OSA models in this article.

An illustrative and general diagram for sensing strategies
in opportunistic spectrum access systems are shown in Fig.
1. Due to hardware limitation, the SUs can not sense all the
channels simultaneously; instead, they can only sense a small
part of channels in a slot [40]. As a result, there are two basic
sensing strategies in the literature: parallel sensing [15], i.e.,
the SU simultaneously senses a fixed set of channels in a
slot, and sequential sensing [41], i.e., the SU sequentially
senses the channels according to a pre-defined order and
stops to sense when some criterion is met. From a systematic
perspective, the decision-theoretic research problems are: (i)
in the parallel sensing strategies, which channels are chosen
to sense and access in each slot? (ii) in the sequential sensing
strategies, how to determine the sensing order and control
the sensing process to balance the tradeoff between sensing

cost and achieved performance? In different scenarios and
under different conditions, variants of the above two basic
problems have been investigated using different decision-
theoretic solutions. Our goal in this article is to provide a
comprehensive review and comparison of existing decision-
theoretic studies and seek for new solutions to cope with
the challenges facing opportunistic spectrum access systems,
which will be discussed in the following subsection.

Remark 1: Besides the above discussed share-use OSA
systems, there is also another form of OSA, i.e., the free-use
model [43]–[45]. The free-use model is differentiated from the
share-use one in that there is no PU and all the SUs can access
the spectrum equally and freely. Although spectrum sensing
may not be needed anymore, channel selection is also a key
concern. Therefore, the decision-theoretic methodologies are
suitable not only for share-use OSA systems but also free-
use OSA systems. We will also discuss existing studies for
free-use OSA systems when the decision-theoretic models are
commonly used in the two kinds of opportunistic spectrum
access systems.

It should be pointed out that the channels considered in
this article are also referred to as abstract channels. For
orthogonal frequency division multiplex (OFDM) systems,
spectrum sensing and access exhibit distinct attributes, e.g.,
exploiting the features of OFDM signals to improve the
sensing performance [46] and the task of channel selection
involves a constraint that no more than two users can choose
the same sub-carrier simultaneously [47]. Generally, these
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attributes involve optimization techniques rather than decision-
theoretic solutions. Thus, spectrum sensing and access in
OFDM systems is beyond the scope this article and we do
not discuss them.

B. Challenges

In this subsection, we summarize the main challenges facing
the distributed opportunistic spectrum access systems and
briefly present existing decision-theoretic solutions. Basically,
opportunistic spectrum access systems suffer from challenges
in traditional wireless communications; more importantly, they
suffer from challenges caused by the manner of opportunistic
spectrum access. To summarize, the main challenges facing
the distributed opportunistic spectrum access systems are:

1) Interactions among multiple SUs. There are generally
multiple SUs competing for the limited spectrum resources
and their decisions are mutually affected. Such interactions
are not easy to analyze by traditional optimization methods,
but can be well analyzed by game theory. Depending on
the system models and the degree of information availability,
different game models can be formulated to address the
interactions. Furthermore, when encountering other challenges
which will be illustrated below, game based solutions become
complicated and challenging.

It is emphasized here that the basic assumption in game
theory is that the users are rational and utilitarian. In other
words, the objective of each user in a game is to maximize
its individual utility function. When the utility function only
considers the individual payoff of each player, it is referred to
as a non-cooperative game [48]. Such selfish behaviors may
cause inefficiency. In some other game models, users may
cooperate to complete tasks to achieve increased aggregate
payoffs, and the key concern therein is how to allocate the
increased payoffs among the participants. These models are
referred to as cooperative games [49].

Based on the above analysis, it should be pointed out
that some existing research, e.g., [15], [43], which explicitly
consider multiple SUs, do not belong to game based solutions.
The reason is that SUs in these work are not utilitarian, despite
the impact of interactions among SUs being considered.

2) Dynamic spectrum opportunity. In OSA models, the
PU may become idle and busy randomly in each slot on each
channel, which thus makes the available spectrum opportuni-
ties for the SUs change dynamic. On one hand, the spectrum
opportunity dynamics may be correlated or independent from
slot to slot, and the commonly used correlated dynamics over
successive slots is Markovian process [50]. On the other hand,
the spectrum opportunity dynamics is generally assumed to be
independent from channel to channel.

For the decision-theoretic solutions, the spectrum opportu-
nity dynamics cause uncertainty. Specifically, such uncertainty
leads to random payoff in each decision episode. If the dynam-
ics is Markovian from slot to slot, Markovian decision process
(MDP) can be used to address this uncertainty for single
user opportunistic spectrum access systems and Markovian
game models [51] can be applied to multiuser opportunistic
spectrum access systems. If the dynamic is independent from
slot to slot, the SU would choose the channel with the
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Fig. 2. The challenges and solutions in distributed and slotted OSA systems.

highest availability to access, which naturally achieves the
highest expected throughput. However, all the users choosing
the channel with the best channel seems unreasonable for
multiuser opportunistic spectrum access systems, since the
best channel will be overcrowded while others are not utilized
by any SU. To deal with this problem, a game with random
payoff [52] can be formulated.

Some previous research, e.g., [55], [56], have assumed
quasi-static spectrum opportunities for SUs, i.e., the spectrum
opportunities remain unchanged during the convergence of the
decision solutions. Thus, these research do not consider dy-
namic spectrum opportunities, since the algorithms proposed
therein were designed for static spectrum opportunities.

3) Tradeoff between sequential sensing cost and expected
reward. The channel status, which mainly includes the occu-
pation of PU and channel quality, are random and uncovered
to the SUs until they are sensed. In the sequential sensing
strategies, there is a fundamental tradeoff between sensing cost
and the expected reward. Specifically, as the number of sensing
channels increases, the expected received reward increases and
so does the sensing cost. In wireless communication systems,
sensing cost mainly includes time, bandwidth and energy; in
addition, it is proportional to the number of sensing channels.
Thus, it needs random optimization approaches to control the
sequential sensing procedure, which is adaptively determined
and is based on the previously sensed channel results.

For illustration, we present an example below. In a share-use
opportunistic spectrum access system, the SUs would select
an idle channel with the strongest quality to access, which is
referred to as achieving multichannel diversity. It is known
that identifying the channel status leads to sensing cost. In
such systems, as the number of sensed channels increases,
the achieved multichannel diversity increases and so does the
sensing cost. Thus, there is a tradeoff between the achieved
multiple diversity and sensing cost. To be more specific, there
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are two issues in such a random control problem. First, the
SUs need to determine the sensing order. Second, based on
the observed results, they need to decide whether to stop
to explore the residual channels or not, after each channel
sensing. This problem can be solved by the theory of optimal
stopping [57].

4) Tradeoff between exploitation and exploration in the
absence of priori statistical information. In practical op-
portunistic spectrum access systems, the SUs may not have
the statistical information about the spectrum environment a
priori, e.g., the idle probabilities of licensed channels. This
generally occurs when the SUs move into a new region
covered by a PU system. Intuitively, a candidate method is that
the SUs firstly collect information and estimate the channel
idle probabilities, and then access the channels based on the
estimated results. Due to hardware limitation, the SUs can only
sense a small part of channels in a slot [40], which implies
that the SU needs to use a round-robin scheduler to collect
information of all the channels. Such an offline approach is
inefficient and costly, since the transmissions of SUs can not
be optimized during the estimation periods.

To overcome the problem of lack of prior statistical in-
formation, an online learning approach which estimates the
statistical information from the decision-payoff history infor-
mation of the SUs and meanwhile optimizes their selections, is
desirable. For online learning approaches, there is a fundamen-
tal tradeoff between exploitation, i.e., maximizing the reward
based on the current estimated statistics, and exploration,
i.e., spending time on sampling the resources to increase the
accuracy of estimated statistic with the prospect of better
future rewards.

For single user opportunistic spectrum access systems, the
theory of multi-armed bandit problem [58] provides efficient
online learning solutions. For multiuser opportunistic spectrum
access systems, the task of dealing with the interactions among
multiple users in the absence of prior statistical information
about the spectrum environment is challenging and is begin-
ning to draw attention recently.

The main challenges facing opportunistic spectrum access
systems and the corresponding decision theories are sum-
marized in Fig. 2. Other decision-theoretic solutions for the
problem of channel selection in opportunistic spectrum access
systems include graph coloring [59], rule-regulated strategies
[60] and evolutionary algorithms [61]. We will mainly discuss
the above four decision theories, i.e., game theory, Markovian
decision process, optimal stopping theory and multi-armed
bandit problem. It is noted that these decision-theoretic so-
lutions only address a single challenge facing OSA systems
respectively, which implies that the problem of channel se-
lection would be more complicated and challenging if two
or more aspects of the challenges are jointly considered. We
will clearly classify the applied scenarios of each decision
theory, review and compare existing studies, and discuss how
to incorporate two or more of them to study the problem of
channel selection for opportunistic spectrum access systems
more practically.

Remark 2: Besides the above four decision-theoretic solu-
tions, there are also some other important research issues in
opportunistic spectrum access systems, e.g., cooperative spec-

trum sensing [62], sensing and access duration optimization
[63]–[66], queuing analysis [38], [67]–[69] and capacity anal-
ysis [70]–[72]. Technically, these issues can be solved by other
optimization techniques, e.g., convex optimization and discrete
optimization. However, we do not discuss these studies in
this article since they are centralized optimization technologies
rather than distributed decision-theoretic solutions.

III. THE APPLICATION OF GAME THEORY IN
OPPORTUNISTIC SPECTRUM ACCESS

Game theory is an applied mathematical tool that mod-
els and analyzes the mutual interactions in multiuser sys-
tems [48]. It was originally developed to study the compe-
tition/cooperation behavior in economics. Nowadays, it has
been widely used in other scenarios, e.g., biological systems
[73], human society [74] and engineering [75]. Recently, game
theory has been successfully applied to distributed wireless
communication systems [76]–[79]. Furthermore, due to the
distributed and autonomous decision process, game theory has
been regarded as one of the most important decision-theoretic
solutions for future communication systems, e.g., 4G [80] and
femtocells [81].

In this section, we firstly present the basic models of game
theory, review and compare the state-of-the-art game-theoretic
solutions for distributed and slotted OSA systems, and finally
conclude their strengths and limitations.

A. Basic models of game theory

There are two major branches in game theory: cooperative
game and non-cooperative game. In a cooperative game, the
users make rational decisions to maximize their individual
utility function. In a cooperative game, the users are grouped
together according to an enforceable agreement for payoff
allocation.

1) Non-cooperative game: A non-cooperative game is gen-
erally denoted by G = {N , An, un}, where N = {1, . . . , N}
is the player (user) set, An is the strategy set of player n
and un is the utility function of player n. A player selects
a pure strategy if a single action is chosen from its action
set. Denote an ∈ An as a chosen strategy of player n and
a = {a1, . . . , aN} as a strategy profile of all the players.
The space of pure strategy profiles is defined as the Cartesian
product of the individual strategy spaces: A = ×n∈NAn. It is
conventional to denote a−n as the pure strategy profile of all
the users except n. Similarly, A−n = ×i∈N ,i�=nAi. The utility
function in pure strategies can be expressed as un(an, a−n).

Besides pure strategies, a player can also select strategies in
a stochastic manner, which is referred to as a mixed strategy.
A mixed strategy of player n is denoted as σn. Specifically,
we denote by σn(an) the probability that player n selects
strategy an. Then, the mixed strategy space of player n is
determined by Σn = {σn :

∑
an∈An

σn(an) = 1 and 0 ≤
σn(an) ≤ 1}. A mixed strategy profile of all the players
is denoted as σ = {σ1, . . . , σN} and the space of mixed
strategy profiles is defined as the Cartesian product of the
individual strategy spaces: Σ = ×n∈NΣn. Similarly, σ−n

denotes a mixed strategy profile and Σ−n = ×i∈N ,i�=nΣi

denotes the space of mixed strategy profiles of all the users
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except player n respectively. The utility function in mixed
strategies can be expressed as the expected utility under the
mixed strategy profile σ = (σn, σ−n), i.e., un(σn, σ−n) =∑
a∈A

( ∏
n∈N

σn(an)
)
un(a).

In a non-cooperative game, each user maximizes its indi-
vidual utility function. To address interactions among mul-
tiple players, Nash equilibrium (NE) [48] is the most well-
known solution concept. Specifically, a strategy profile a∗ =
{a∗1, . . . , a∗N} is a pure strategy NE if and only if no player
can improve its utility function by deviating unilaterally, i.e.,

un(a
∗
n, a

∗
−n) ≥ un(an, a

∗
−n), ∀n ∈ N , ∀an ∈ An, an �= a∗n

(1)
Similarly, a mixed strategy profile σ∗ = {σ∗

1 , . . . , σ
∗
N} is a

mixed strategy NE if and only if the following equation holds:

un(σ
∗
n, σ

∗
−n) ≥ un(σn, σ

∗
−n), ∀n ∈ N , ∀σn ∈ Σn, σn �= σ∗

n

(2)
Another important solution concept of non-cooperative

games is correlated equilibrium (CE) [82]. The key difference
is that the decisions of the players in NE are independent while
those in CE are correlated. Suppose that there is a third party
sending a recommendation signal to all the players2. These
recommendation signals allow players to coordinate their
actions and to perform joint randomization over their strategies
according to a certain probability distribution. Formally, a joint
probability distribution π over A is a CE if and only if for
all n ∈ N , for all actions an ∈ An and all alternative actions
a′n ∈ An,

∑
a−n∈A−n

π(an, a−n)
(
un(an, a−n)− un(a

′
n, a−n)

) ≥ 0, (3)

where π(an, a−n) ≥ 0 represents the probability that player n
takes strategy an while all other players take strategy profile
a−n, and un(an, a−n) is the utility function of player n.
The inequality (3) indicates that when the recommendation
to player n is to choose action an, then choosing any other
action a′n rather than an can not yield a higher expected
utility for player n. In fact, every NE is also a CE and Nash
equilibria correspond to the special case where π(an, a−n) is
a product of each individual user’s probability for different
actions. Moreover, CE may include the distribution that is not
in the convex hull of the NE distributions.

Compared with NE, CE admits the following advantages:
(i) the set of correlated equilibria is structurally simpler than
that of Nash equilibria. Because it is a convex set, whereas the
Nash equilibria are isolated points at the extrema of this set,
and (ii) since the set of correlated equilibria is convex, fairness
between players can be well addressed in this domain.

To formulate non-cooperative game-theoretic models, what-
ever NE or CE solutions are used, the following two aspects
should be considered carefully [56]:

• Design a utility function carefully to prevent the users
from utilizing the resources selfishly and greedily, i.e.,
the well-known tragedy of common [83]. A current and
efficient way is to define the utility function as the

2In fact, the third party can fictitiously exist and the CE can be achieved
in a distributed and autonomous manner.

received payoff minus the cost [84]–[86]. Using this
method, the cost needs to be carefully designed.

• Develop efficient behavior update rules for the users that
can achieve the desirable solutions. This issue, how-
ever, was underestimated in the previous literature, since
achieving NE/CE solutions in the presence of perfect
information about other users is not challenging. For
example, best response [87] converges to pure strategy
NE points for a potential game and regret matching [88]
converges to the set of correlated equilibria of a general
game. However, having information about others is not
always possible in practical applications, especially in
wireless communication systems. Thus, achieving desir-
able solutions without information about others is an
interesting but challenging task.

There are several non-cooperative game models that have
been widely used in wireless communication engineering, e.g.,
static game, graphical game, dynamic game, repeated game
and evolution game. We will illustrate them in detail in the
next subsection.

2) Cooperative game: While noncooperative games study
competitive behavior, cooperative games focus on coopera-
tive behavior among rational players. Specifically, cooperative
games are concerned primarily with coalitions, which are
groups of players, and coordinate their actions to achieve
increased payoffs based on an enforceable agreement for
payoff allocation. Consequently, the primary problem in co-
operative games is how to fairly divide the extra benefit
among the members of the formed coalition. For mathematical
formulation of models in cooperative game theory, refer to
[49]. In the next subsection, we will discuss some important
cooperative games that were applied in OSA systems.

B. The application of game models in opportunistic spectrum
access systems

In a multiuser opportunistic spectrum access system, chan-
nel selections of the SUs are highly interactive. Specifically,
SUs choosing the same channel cause interference to each
other when they transmit simultaneously, or share the channel
using some multiple access control mechanisms. Such interac-
tions can be well modeled and analyzed by game models. In
this subsection, we review and compare existing game models
in opportunistic spectrum access systems in Table I. There,
the behavior update rule is highlighted since it is a key step
for practical implementation of game models. Moreover, it is
noted that a common characteristic is that all existing game
based solutions employ the parallel sensing strategies.

1) Static game: The basic model of non-cooperative games
is static game, in which the game is played only once. In
this sense, a static game is also referred to as an one-shot
game. In quasi static or slowly time-varying environment, e.g.,
the available channels remain unchanged for a long duration,
and in this case OSA problems can be well modeled and
analyzed as static games. Other interpretation of static games
in opportunistic spectrum access systems is that it is designed
only for one slot.

In [89], N. Nie et al. formulated the problem of channel
selection in a free-use opportunistic spectrum access system
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TABLE I
SUMMARY OF GAME MODELS IN OSA SYSTEMS.

Game
type

Game
model Objective Spectrum

sharing model
Spectrum
dynamics

Behavior
update rule Solution Ref.

Non-cooperative

Static game

Interference avoidance–
choose a channel to minimize

the aggregate interference
Free-use Static Φ-no-regret

learning NE [89]

Price of Anarchy
Characterization Free-use Static — NE [90]

Interference avoidance–
choose a channel to minimize

the aggregate interference
Free-use Static Best response &

Spatial adaptive play NE [91]

Throughput maximization–
choose transmission rates over
different channels to maximize

the achievable throughput

Free-use Static Regret
matching CE [95]

Global utility maximization–
choose idle channels to

maximize the satisfaction
level of the worst-off user

Share-use Static Regret
tracking CE [55]

Repeated game

Throughput maximization–
choose a channel to maximize
the expected throughput with

contention overhead consideration

Share-use Time-varying Stochastic
learning automata NE [52]

Throughput maximization–
choose a channel to maximize

the expected throughput
Free-use Static Reinforcement

learning NE [96]
[97]

Graphical game

Throughput maximization–
choose a channel to maximize

the achievable throughput
Free-use Static Regret minimization NE [100]

Throughput maximization–
choose a channel to maximize

the achievable throughput
Share-use Static Exponential learning ESS [101]

Collision level maximization–
choose a channel to minimize

the collision level
Share-use Static Best response NE [102]

Throughput maximization &
Collision level Minimization Share-use Static Spatial adaptive play NE [56]

Congestion minimization–
choose a resource to minimize

the congestion level
Free-use Static Best response NE

[99]
[103]
[104]

Evolutionary game
Throughput maximization–

choose a channel to maximize
the achievable throughput

Share-use Time-varying Replicator dynamic &
A distributed algorithm ESS [111]

Cooperative Coalition game Jointly improve sensing and
access performance Share-use Static Coalition formation

algorithms – [114]

as a static game. They proposed two utility functions: the
first is the aggregate interference experienced by a SU and
the second is the aggregate interference experienced by a SU
plus the interference it caused to other SUs. The first utility
function is for selfish users while the second is for cooperative
users. In particular, with the second proposed utility function,
the channel selection game admits a potential function. The
proposed behavior update rule therein is Φ-no-regret learning,
which converges to mixed strategy NE for the first utility
function and pure strategy NE for the second utility function.

In [90], L. Law et al. studied the price of anarchy (PoA)
of channel selection game for a free-use OSA system. PoA,
which is an important metric of non-cooperative games, is
defined as the ratio between the aggregate payoffs of all the
players in the worst NE point and the social optimum. They
derived closed-form expressions of PoA for both symmetric
and asymmetric games, and presented several insights to
improve the PoA of channel selection games for OSA systems.
It is noted that PoA is an inherent feature of non-cooperative
games, regardless of the used behavior update rule.

In our earlier work [91], we re-studied the greedy asyn-
chronous distributed interference avoidance (GADIA) algo-
rithms, which were originally proposed in [92] and inves-
tigated from a non-cooperative game theoretic perspective
therein. The problem of channel selection for a free-use OSA

system was formulated as a potential game in [91] and some
incremental results in favor of [92] were obtained. Specifically,
it is shown that the basic and soft GADIA algorithms proposed
in [92] correspond to the best response [87] and spatial
adaptive play [93], [94] respectively.

The solution concept of correlated equilibrium for oppor-
tunistic spectrum access systems was firstly introduced by
Z. Han et al. in [95], where they formulated the problem of
rate adaptation over different channels for a free-use OSA
system as a static game. A distributed channel algorithm
named regret matching [88] was proposed to converge to the
set of correlated equilibria.

Another static game model with CE solution for distributed
channel selection in a share-use OSA system was proposed by
M. Maskery et al. in [55]. The payoff of a user is defined as
the proportion of received resources divided by its demand,
which is also interpreted as satisfaction level. Interestingly,
although the formulated game is non-cooperative, the proposed
behavior update rule, i.e., the regret tracking, achieves coop-
erative design solution. Furthermore, it should be pointed out
that although some simulation results for dynamic spectrum
opportunities were presented therein, the considered spectrum
opportunities are actually static, or varying slowly in time.

2) Repeated game: Unlike static games, a repeated game
is repeatedly played in finite or infinite horizon. The players
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update their strategies based on their action-payoff history
in previous plays. Recalling the illustrative diagrams of op-
portunistic spectrum access systems, as shown in Fig. 1, it
is seen that the SUs always make decisions repeatedly from
slot to slot. This characteristic makes repeated games suitable
for modeling and analyzing opportunistic spectrum access
systems in long-run time.

H. Li formulated the problems of distributed channel selec-
tion in free-use OSA systems as repeated games. The authors
proposed reinforcement learning based channel selection algo-
rithms for two-user two-channel systems in [96] and multiuser
multichannel systems in [97]. It is shown the reinforcement
learning based algorithms converge to Nash equilibria of the
game. However, they only considered static spectrum, which
is not always true in opportunistic spectrum access systems.

Recently, the problem of distributed channel selection for
a share-use OSA system with time-varying spectrum environ-
ment was considered in our earlier work [52]. We formulated
the problem as a repeated with random payoffs. An interesting
result presented in this work is that although the spectrum is
varying from slot to slot independently with unknown statis-
tics, a learning algorithm called stochastic learning automata is
proposed to converge to NE of the formulated repeated game.

3) Graphical game: A graphical game, which is also
called as a local interaction game [98] or spatial game [99],
is characterized by: the action of a player only affects its
neighboring players rather than all other players. In a wide
area opportunistic spectrum access system, the transmission
from a SU only causes interference to the nearby SUs and
hardly interferes with distant players. In fact, it leads to the
so-called spatial reuse in wireless communication systems.
Recently, graphical games have been applied to opportunistic
spectrum access systems as it captures the limited range of
mutual impact of the SUs.

The graphical game was firstly introduced into oppor-
tunistic spectrum access systems by H. Li et al. in [100],
where they considered a free-use system and proposed regret-
minimization algorithms to converge to NE. In a subsequent
study [101], M. Azarafrooz et al. considered graphical game
for a share-use OSA system and proposed an exponential
learning algorithm to converge to evolutionary stable strategy
(ESS), which is the solution concept of evolutionary games
[106].

Motivated by the game formulation in [100], we further
studied graphical games for share-use OSA systems in our
earlier work [102] and [56] respectively. The objective con-
sidered in [102] is minimizing the collision level, while those
considered in [56] include both maximizing the throughput
and minimizing the collision level. The formulated graphical
games in [56], [102] are potential games. The behavior update
rule in [102] is best response, which is averagely suboptimal,
and that in [56] is spatial adaptive play [93], [94], which was
shown to be asymptotically optimal with local information
exchange.

In another study series [99], [103], [104], the authors also
formulated graphical games for free-use OSA systems. The
games are called spatial congestion games therein, since the
payoff of a player is a function of the number of players
who interact with it and use the same resource (channel),

which is similar to that in traditional congestion game [105].
Compared with [56], [102], the focus of [99], [103], [104] is to
investigate conditions under which the spatial games possess
a pure strategy NE.

4) Evolutionary game: Evolutionary game theory was first
introduced by biologists studying population dynamics [106].
The solution concept of evolutionary games is the evolutionary
stable strategy (ESS), which was first defined in [107]. ESS
is characterized by robustness against invaders (mutations): i)
the proportions of each population remains unchanged, as far
as an ESS is reached, and ii) at ESS, the populations are robust
to perturbations by a small fraction of players. Evolutionary
games are being applied to wireless communication systems
and several related work can be found in the literature, e.g., an
evolutionary game framework for power control and multiple-
access control [108], cooperative spectrum sensing [109], and
network selection in heterogeneous networks [110].

Very recently, X. Chen et al. formulated the problem of
channel selection in a share-use OSA system as an evolu-
tionary game in [111]. The spectrum opportunities are time-
varying with Bernoulli distribution in each slot. With complete
network information, the replicator dynamics was applied to
converge to an ESS. More importantly, a distributed learning
mechanism with incomplete network information was also
proposed to converge to an ESS. This work provides several
insights in terms of the interactions among SUs and the
dynamics of channel selections, and hence would draw great
attention in the near future.

5) Coalition game: In essence, coalitional games involve
a set of players who seek to form cooperative groups, i.e.,
coalitions, to achieve increased payoffs. A good tutorial of
coalition game theory for communication networks can be
found in [112]. The formation of coalitions is ubiquitous
from human society to wireless communications. For example,
countries can form coalitions for improving their human
potential while SUs can form coalitions for improving the
spectrum sensing performance [113].

W. Saad et al. proposed a coalition game in partition form to
study the problem of spectrum sensing and access in a share-
use OSA systems in [114]. The proposed coalition approach
is promising in three aspects: (i) the SUs in a coalition sense
different channels and share their sensing results to reduce the
sensing times, which eventually leads to increased throughput,
(ii) the SUs in a coalition jointly coordinate the channel
access order to reduce the mutual interference, and (iii) the
SUs in a coalition share their instantaneous sensing results
to improve capacity by distributing their total power over
multiple channels.

Remark 3: In addition to the above presented game models,
a large numbers of papers using game theory to study OSA
technologies from economic perspectives can be found in the
literature [115]–[121]. Specifically, game models for spectrum
trading between SUs and PUs were formulated in these
studies. We do not analyze these studies, since they are not in
the scope of channel selection.

C. Discussion of hierarchical game models
It is noted that the players in the above reviewed game

models are treated equally with no hierarchy, which is caused
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TABLE II
INFORMATION REQUIREMENT OF BASIC LEARNING ALGORITHMS IN GAME MODELS.

Information Best
response

Better
response

Fictitious
play

Regret
matching

Spatial
adaptive play

Reinforcement
learning

Learning
automata

an

action of user n � � �
a−n

actions of other users � � � � �
un(an, a−n)

received payoff of user n � � � � � �
un(a

′
n, a−n), a

′
n �= an

payoff for unchosen actions of user n � � � � �

by the completely distributed structure of the considered
system. However, the system architecture of the opportunistic
spectrum access systems is hierarchic in essence, i.e., the
secondary users use the idle spectrum of the primary users.
Thus, it is interesting to include the primary users into the
game by considering the utilities of both secondary users
and primary users. To achieve this, it needs to introduce
hierarchy into the games. In game theory, some approaches
utilize the hierarchical game models. The most important
one is Stackelberg game [122]–[124], which consists of a
leader and several followers competing with each other on
certain resources. The leader takes an action first and the
followers take actions subsequently. The solution concept is
the Stackelberg equilibria from which neither the leader nor
the followers have incentives to deviate.

In Stackelberg game, the leader maximizes its utility func-
tion and so do the followers. However, in some scenarios,
the leaders has no individual utility and its goal is just to
maximize the aggregate utility of the followers. To cope with
this problem, J. Park et al. [125]–[129] recently proposed
a new hierarchal game in which the leader first chooses an
intervention rule and then the followers choose their actions
according to the intervention rule. They are called intervention
games and more suitable than Stackelberg games when the
leader is not a resource user but a manager who regulates
resource shared by followers. Essentially, intervention game
is a variant of Stackelberg game.

It is seen that Stackelberg games have been widely applied
to opportunistic spectrum access systems for several research
issues, e.g., power control [130], [131], bandwidth allocation
[132], [133], and joint power control and bandwidth allocation
[134], [135]. The investigations in these references are infor-
mative since it has been shown that the Stackelberg equilibria
can improve the efficiency of Nash equilibria significantly.
Although the application of hierarchical games for distributed
channel selection has not been reported yet, we believe that
the hierarchical control models are promising and would be
applied to solve the distributed channel selection problem for
opportunistic spectrum access systems.

D. Information requirement of learning algorithms in game
models

As stated before, the task of achieving stable solutions,
e.g. NE or CE, is important for practical implementation; in
particular, different learning algorithms require different infor-
mation. In this subsection, we present information requirement
of basic learning algorithms in game models. The comparison

results are shown in Table II. We divide these algorithms
into two groups: coupled and uncoupled. Specifically, the
former needs information about other players in terms of
chosen actions and/or payoffs, while the latter only needs
local information of a player. For the presented algorithms
in the table, coupled algorithms include best (better) response
[87], fictitious play, regret matching [88] and spatial adaptive
play [56], while uncoupled algorithms include reinforcement
learning [96] and learning automata [52]–[54].

For wireless systems, uncoupled algorithms are more prefer-
able than coupled algorithms, since obtaining information
about other players cause heavy communication overhead or
is not even feasible in some scenarios. However, it is noted
from Table II that most existing game learning algorithms in
the literature belong to coupled algorithms. The reasons are
twofold: (i) coupled algorithms have been well investigated
in pure game theory and (ii) it is generally hard to develop
uncoupled algorithms that converge to some stable solutions
for game models. Clearly, uncoupled game learning algorithms
are desirable in OSA systems and should be studied in future.

E. Strengths and limitations of game models

Based on the review and comparison results of game models
in OSA systems, its strengths can be summarized as follows:

1) Game models provide an efficient framework for cap-
turing the interactions among multiple SUs. With game
formulations, the system steady states can be well
predicted and achieved by learning algorithms. Also,
the performance of steady states can be analytically
characterized.

2) Game models yield flexible design. As has been shown
before, utility function is key to game models, as it
determines the structure and the steady state of the game.
Thus, some new utility functions have been proposed to
guarantee the existence of game solutions (e.g., NE) and
their optimality. For example, an approach commonly
used for utility design is minus cost or price in the
received payoff. Such an idea has been extensively and
successfully applied to many wireless research issues,
e.g., rate adaptation [84], distributed power control [85]
and multiple access control [86].

However, game models also have some inherent limitations
as summarized below:

1) Game models fail to find more speculum opportunities
in OSA systems. It can be seen that almost all the
referenced game models employ the parallel sensing
strategies, i.e., sense a fixed number set of channels in
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a slot. Such strategies enjoy convenience in analysis but
also lead to conservative throughput. In a scenario where
the chosen channels are busy in a slot, the SU has to
suspend its transmission until the next slot. However,
there is a probability that channels which are not chosen
to sense may be idle in the slot. Thus, an alternative
and desirable approach is that the SU does not limit
itself to a fixed number of channels; instead, it proceeds
to sense the residual channels to find more spectrum
opportunities in the current slot.

2) Most dynamic game models need to know the statistical
information about the spectrum environment, e.g., the
idle probabilities of licensed channels with independent
and identical distributions or the transition probabili-
ties of Markovian channels. Relying on them, repeated
games or stochastic games can be formulated to cope
with the spectrum dynamics. However, the statistical in-
formation of the spectrum is always not known a priori,
which makes traditional game models not workable in
the absence of statistics information.

IV. THE APPLICATION OF MARKOVIAN DECISION
PROCESS IN OPPORTUNISTIC SPECTRUM ACCESS

Markov decision process (MDP) models, which were in-
troduced in 1960 [136], are mainly used to analyze and
solve a sequential decision making problem with multi-periods
in Markovian environment. MDP models have been studied
extensively and successfully applied into several engineering
fields [137], e.g., telecommunication, signal processing, arti-
ficial intelligence and economics. In OSA systems where the
activities of PUs evolve in a Markovian stochastic manner,
the spectrum sensing and channel selection strategies can be
naturally formulated as a MDP problem. In this section, we
introduce the basic models of MDP, review and compare
existing MDP models in OSA systems, and finally discuss
their strengths and limitations.

A. Basic models of Markovian decision process (MDP)
There are three basic branches of MDPs which have been

commonly used in communication systems: the basic discrete
time MDP (DTMDP), partially observable MDP and con-
strained MDP. A DTMDP model is formally defined by the
following elements:

• Discrete time k = 0, 1, 2, . . .
• A discrete set of countable states s ∈ S.
• A discrete set of countable actions a ∈ A.
• A reward function R : S × A �−→ R indicating the

received reward R(s, a) when it takes action a at state s.
• A stochastic transition model p(s′|s, a) indicating the

probability that the system will transfer to state s′ in the
next period when the player takes action a at state s.

The goal of the player is to find an optimal policy π(s)
mapping states to actions so as to achieve the optimal value
function of state s, which is defined as the maximum expected
aggregate discounted reward starting from state s, i.e.,

V ∗(s) = max
π

E
[ ∞∑
k=0

γkR(sk, ak)|s0 = s, ak = π(sk)
]
,

(4)

where E[·] is the expectation operation, γ ∈ [0, 1) is the
discount factor. Similarly, the optimal Q-value function of
state-action pair (s, a) is the maximum discounted future
reward the player can receive after taking action a in state
s:
Q∗(s, a)

= max
π

E
[ ∞∑
k=0

γkR(sk, ak)|s0 = s, a0 = a, ak>0 = π(sk)
]
.

(5)
It has been proved that a DTMDP has an optimal policy

which is deterministic and stationary. Deterministic means
that π∗(s) specifies a single action per state, while stationary
means that every time the user observes a state s, the optimal
action is always π∗(s). The optimal policy is given by:

π∗(s) = arg
a∈A

maxQ∗(s, a), (6)

where the optimal Q-value Q∗(s, a) of each state-action pair
(s, a) can be calculated by the value iteration method [136]
or Q-learning [138]. For specific solutions for DTMDP, refer
to [136]. For comparison, it should be pointed out that in
DTMDP models, the system state is completely observed by
the player in each decision period.

Different from the basic DTMDP model, the state informa-
tion in a partially observable MDP (POMDP) model is only
partially observed by the player in each decision period. Thus,
the internal state of the underlying Markov process is unknown
in POMDP problems. To address this, the player needs to
construct a belief vector which is the conditional probability
(given the decision and observation history) that the system
is in each state and update it after each decision. Based on
the maintained belief vector, the user would find an optimal
policy. For detailed discussion on the solutions of POMDP,
refer to [139].

In addition, unlike DTMDP and POMDP where no con-
straint is imposed, a constrained MDP (CMDP) is to model
and analyze sequential decision problems with constraints.
This model is very useful since there are always constraints
that must be met in practice, e.g., the interference requirement
imposed by the PUs. For detailed discussion on solutions for
CMDP, refer to [140].

B. The application of MDP in opportunistic spectrum access
systems

Experimental measurement results [50] have validated that
the activities of PUs can be approximately characterized by
discrete-time or continuous Markovian processes. This feature
makes MDP models efficient and promising solutions in
OSA systems. Table III provides an overview of existing
MDP models for different OSA scenarios, in terms of action,
optimization objective, sensing strategy and sensing reliability.
In all the referred MDP models, the system state is defined as
the speculum occupancy of PUs.

1) DTMDP: In [141], S. Yin et al. exploited spectrum
correlation between different channels [142] and proposed a
new metric, i.e., channel availability vector, to characterize the
state information by spectrum prediction. Due to prediction
error, collision with PU is not inevitable. Based on the
real-time prediction results, the user decides to sense which
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TABLE III
SUMMARY OF MDP MODELS IN OSA SYSTEMS

Models Action Objective Traffic of PU Sensing Strategy Sensing
Reliability Ref.

DTMDP Sense which channels
or not to sense

Maximize throughput
subject to collision constraints Slotted Sequential sensing Perfect [141]

CMDP

Transmit or not after
each channel sensing

Maximize throughput
subject to collision constraints Continuous Sense all

channels periodically Perfect [143]

Determine which
channel to sense

Maximize throughput
subject to collision constraints Continuous Sense one

channel in a slot Perfect [144]

Determine which
channel to sense

Obtain maximum throughput
region of multiuser OSA systems

subject to collision constraints
Continuous Sense one

channel in a slot Perfect [36]

Determine which
channel to sense

Maximize throughput
subject to collision constraints Slotted Access one

channel in a slot Perfect [145]

POMDP

Determine which
channel to sense

Maximize throughput
subject to collision constraints Slotted Sense one

channel in a slot
Perfect and
Imperfect [15]

Determine which
channel to sense

Maximize throughput
subject to collision constraints Slotted Sense one channel & Sense

multiple channels in a slot Imperfect [146]

Determine which
channel to sense

Maximize throughput
subject to collision constraints Slotted Sense one

channel in a slot Imperfect [147]

Determine the sensing
duration in a slot

Maximize net reward
with energy consideration Slotted Sense one channel in a slot

(there is only one channel) Imperfect [148]

Sense which channel
or to sleep

Maximize throughput
during the battery lifetime Slotted Sense one channel in a slot Perfect [149]

channels and when to stop sensing, aiming to maximize the
throughput while satisfying the collision probability with the
primary user. Interestingly, although the activities of the pri-
mary users are independent from slot to slot in each channel,
the authors formulated a MDP model by using the channel
availability vector. In this work, the sensing overhead (time) is
explicitly considered and the SU may sense multiple channels
sequentially in a slot, which is determined by the channel
availability vector and the collision probability requirement.

2) CMDP: Q. Zhao et al. [143] proposed a novel periodic
channel sensing strategy. The traffic of the PU is modeled
as a continuous-time Markovian process and the SU senses
only one channel in a slot. In order to get full observation
of the channels, the SU is designed to sense all the channels
periodically. The action of the SU is determine whether to
transmit after each sensing or not. Since the activities of the
PUs are continuous, collision with the PU is inevitable. As a
result, the authors formulated a CMDP model whose objective
is to maximize the throughput while satisfying the collision
probability requirement. Also, two simple heuristic algorithms,
i.e., memoryless access and greedy access, were proposed to
achieve suboptimal solutions.

Another CMDP model for opportunistic spectrum access
systems was proposed by X. Li et al. [144], where the traffic
of PU is also modeled as a continuous Markovian process.
The SU senses one channel in a slot and the objective is
to maximize the throughput subject to collision constraints
imposed by the PU. The heuristic memoryless access (MA)
algorithm proposed in [143] was also applied to solve the
formulated CMDP problem. It is shown that the MA algorithm
is optimal when the collision constraints are tight. In another
recent study [36], where the considered scenario is similar to
that in [144], the maximum throughput region of a multiuser
OSA system was obtained. Specifically, the authors established
inner and outer bounds for the maximum throughput region
respectively. An interesting and promising result in [36] is that
when collision constraints are tight, the outer and inner bounds
match.

In the above references, the PU traffic is modeled as
a continuous-time Markovian process and the interference

fraction with PU were naturally formulated as the constraints.
A drawback is that the QoS of the SU was not considered.
Recently, D. Niyato et al. [145] also formulated the channel
selection problem as a CMDP model in cognitive vehicular
networks with QoS support, where the PU traffic is slotted
and the considered constraints include not only the maximum
probability of collision with PU, but also the maximum packet
loss probability and the maximum packet delay for the vehic-
ular nodes. Since both share-use and exclusive-use channels
were considered, a CMDP for opportunistic spectrum access
and another CMDP for exclusive-use channel reservation and
clustering control form a hierarchical MDP model. The former
was summarized in Table III.

3) POMDP: The pioneer work related to the application
of POMDP into opportunistic spectrum access systems was
in [15], which kindled great attention later. The traffic of PU
is modeled as a slotted Markovian process therein. The SU
can sense one channel in a slot, which makes the system
state partially observable. Both perfect and imperfect spectrum
sensing were considered. For perfect sensing scenario, the
objective is to maximize the throughput, while that for imper-
fect sensing scenario is to maximize the throughput subject to
collision constraints. The main contribution of [15] is that a
POMDP framework was established and a simple but efficient
algorithm was proposed. The methodology proposed there is
constructive.

Another important existing work related to POMDP model
is [146], which is a significant improvement in favor of [15].
The objective therein is also to maximize the throughput
subject to collision constraints. In particular, the joint design of
an sensing and access strategy is formulated as a constrained
POMDP. The authors established a separation principle which
reveals that the optimality of myopic policies for the design
of the sensing strategy and the access strategy lead to closed-
form optimal solutions. The spectrum sensing is imperfect
and the SU can either sense one channel or multiple channels
simultaneously in a slot.

J. Unnikrishnan et al. [147] considered a similar but more
practical scenario also using a POMDP model. In particular,
they investigated two scenarios where the channel availability



1700 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 4, FOURTH QUARTER 2013

statistics are known or unknown. When the channel availabil-
ity statistics is unknown, a greedy channel selection algorithm
was proposed and an upper bound on the performance of the
optimal policy was derived. When unknown, an algorithm is
developed to learn the true statistics while guaranteeing the
collision constraints.

Different from the above studies, A. Hoang et al. [148]
considered energy consumption for spectrum sensing and also
formulated a POMDP model to solve the sensing and access
control problem. Only one channel is considered in this work.
The achievable net reward in a slot is jointly determined
by the channel idle probability and the sensing duration,
which determines the mis-detection probability, false alarm
probability and energy consumption. As a result, the objective
is to decide the sensing duration in each slot (zero duration
corresponds to the event of not sensing) to maximize the net
reward.

Similarly, Y. Chen et al. [149] considered energy consump-
tion for both spectrum sensing and data transmission. Two
operating modes of the SU are considered therein: one is
sleeping, i.e., the SU does nothing, and the other is sensing,
i.e., the SU chooses one channel to sense. Both continuous
(saturated) and bursty traffic models of the SU are considered.
The objective is to maximize the throughput during its battery
lifetime using a POMDP model. Note that the formulation for
energy consumption in this work is interesting and should be
considered in future research.

Remark 4: The above reviewed solutions are for single user
systems. For multi-user systems, Markovian games, which is
also referred to as stochastic games [28], [51], [150], can be
applied. This will be discussed in Section VII.

C. Strengths and limitations of MDP
The most attractive strength of MDP models is that the

Markovian dynamics of spectrum environment can be well
modeled and analyzed, as all the above referred work focused
on them. In addition, it should be pointed out that the con-
sidered spectrum environment in the opportunistic spectrum
access systems are non-reactive, i.e., the system evolution is
not affected by the actions taken by the SU. More specifically,
the state transition probability p(s′|s, a) is degraded to p(s′|s),
where a in the taken action, s and s′ are the system states in
the current slot and the next slot respectively. This feature
eventually simplifies the analysis of the MDP models in OSA
systems.

On the other hand, the limitations of MDP models in OSA
systems are summarized in the following:

1) MDP models are more suitable for single SU systems
rather than multiple SU systems. The reason is that
in order to obtain the optimal policies of a MDP
model, it requires the environment to be stationary [136].
However, in a multiple SU system, other SUs naturally
serve as parts of the environment facing one SU, which
implies that the environment is non-stationary. Although
some existing work, e.g., [15], [146], [147], consider
multiple SUs explicitly, their solutions are originally
designed for single SU and the interactions among
multiple SUs on the spectrum access problem are not
well considered yet.

2) Most MDP models only seek for idle channels but not
consider the channel quality. However, only finding an
idle channel is not enough, since an idle channel may
have poor transmission quality. Thus, one may want
to jointly consider the occupancy state of PU and the
channel quality of the data channel to formulate new
MDP models with channel quality consideration.

3) MDP models need to know the transition probabilities of
the Markovian process. In practical OSA systems, how-
ever, such statistical information are always unknown a
priori. In the absence of these statistical information, the
algorithms originally proposed for solving MDP models
will not function.

4) Most MDP models fail to find more speculum opportu-
nities in OSA systems as game models, since they also
employ the parallel sensing strategies.

V. THE APPLICATION OF OPTIMAL STOPPING THEORY IN
OPPORTUNISTIC SPECTRUM ACCESS

The theory of optimal stopping is concerned with the prob-
lem of sequentially taking actions to maximize the expected
reward based on a sequence of observed random variables
[57]. Specifically, the observed variables determine the current
reward. The achieved reward of proceeding to observe the
residual variables is random and may be greater or less than
the current received reward. Therefore, a rational action, i.e.,
stopping or proceeding to observe, should be taken after each
observation. When an action of stopping is taken, the decision
process is terminated. We refer to this model as optimal
stopping problem (OSP) in this article. OSP models have been
extensively applied to many fields [151], e.g., management
science, economics and wireless communications. In this
section, we firstly introduce the basic models of OSP, review
and compare existing OSP models in OSA systems, and finally
discuss their strengths and limitations.

A. Basic models for optimal stopping problem (OSP)

Generally, an OSP model has the following two elements:
• A sequence of random variables, X1, X2, . . . , XN , whose

joint distribution is known and their realizations are
denoted by x1, x2, . . . , xN .

• A sequence of functions mapping the observed random
variables to real-valued rewards, i.e.,

y1(x1), y2(x1, x2), . . . , yN (x1, . . . , xN ) (7)

For presentation, suppose that you are now involving in
the sequential decision problem. If you choose to stop after
observing the nth variable, xn, you will receive a known
reward yn(x1, . . . , xn). If you choose to proceed to observe
and stop in the mth variable, m > n, the achieved reward
in the future, i.e., ym(x1, . . . , xn, . . . , xm), is random and
unknown. This is naturally due to the fact that the unobserved
variables xn+1, . . . , xm are random and unknown. In this
circumstance, deterministic optimization is not feasible and
your objective would be to choose the right time to stop
to maximize the expected reward, based on the sequence of
observed variables. The decision horizon N may be infinite
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and finite. We only consider OSP models with finite horizon
in this article, since those with infinite horizon are rare in
practice.

OSP models with finite horizon can be solved by the method
of backward induction [57]. Since we must stop at stage N ,
we first find the optimal rule at stage N−1. Then, we can find
the optimal rule at stage N − 2 with the known optimal rule
at stage N − 1, Inductively, the optimal rule backward to the
initial stage (stage 1) can be found with the known optimal
rules in future stages. Mathematically, we can define the stage
value as follows:

Vn =

⎧⎨
⎩

yN (x1, ..., xN ), n = N
max

{
yn(x1, ..., xn),
E[Vn+1|{xi}ni=1]

}
, n < N,

(8)

where E[Vn+1|{xi}ni=1] represents the expected reward of
proceeding to observe when X1 = x1, X2 = x2, . . . , Xi =
xi have been observed, and Vn represents the maximum
achieved reward one can obtain starting from stage i. At
stage n, we compare the current reward of stopping, i.e.,
yn(x1, . . . , xn), and the expected reward of proceeding to
observe the residual stages using the optimal rules, which at
stage n is E[Vn+1|{xi}ni=1]. In order to maximize the expected
reward, it is optimal to stop at stage n if yn(x1, . . . , xn) ≥
E[Vn+1|{xi}ni=1], and to continue otherwise.

There are two main branches: OSP with no recall (NR-OSP)
and OSP with recall (R-OSP). In NR-OSP models, recalling
a previously observed variable is prohibited and the decision
maker only can access the currently observed variable, which
implies that the current reward can be simplified as yn(xn).
In R-OSP models, recalling previously observed variables is
allowed, i.e., at stage n the decision maker can recall xk,
k ≤ n. For NR-OSP models, the backward induction method
can be easily constructed. In contrast, the backward induction
method is not feasible for R-OSP models, since it involves
huge computation complexity which increases exponentially
as the number of decision horizon increases. To address this
challenge, it is possible to consider a truncated version of
the original problem, e.g., the commonly used k-stage look-
ahead rule (k-SLA). In the k-SLA rule, the expected reward
of continuing to observe, i.e., E[Vn+1|{xi}ni=1], is replaced
by that of continuing to observe the following consecutive
k stages and then stop. The simplest truncated rules, i.e., 1-
SLA, are quite good in general; moreover, they are optimal
for monotone R-OSP models [57].

OSP models have been extensively applied to wireless
communication systems, which always encounter sequential
decision problems. For example, in a system exploiting multi-
channel diversity, the user would explore state information of
the channels and then choose one with the strongest quality
for transmission. However, increasing the number of explored
channels definitely increases both achievable diversity and
exploration cost; in addition, the state information of unex-
plored channels are random and unknown until being explored.
Clearly, such a problem can be formulated and analyzed by
OSP models. There are several existing work related to the
application of OSP models in wireless communications, e.g.,
distributed opportunistic scheduling for random access control
[152], opportunistic relaying control [153], traffic scheduling

for vehicular delay tolerant networks [154] and opportunistic
scheduling for multiuser diversity [155].

B. The application of OSP in opportunistic spectrum access
systems

As stated before, the sequential sensing strategy is more
efficient than the parallel one, since it determines the sens-
ing channels adaptively based on the sequential observation
results. Mathematically, sequential sensing strategies can be
well analyzed by OSP models and the ultimate objectives are
to achieve good balance between the achieved performance
and sensing cost. In order to comply with OSP formulations,
one needs to first clarify the random variables in opportunistic
spectrum access systems. Specifically, the random variables
in the share-use OSA systems include the occupancy state of
PUs, a pair consisting of the occupancy state of PUs and the
instantaneous channel quality, while those in the free-use OSA
systems mainly include the instantaneous channel quality. In
this subsection, we review and compare existing OSP models
in opportunistic spectrum access systems as given in Table IV.
The review and comparison results are in terms of actions,
objectives, spectrum sharing models, and observed random
variables.

1) NR-OSP: A. Sabharwal et al. [45] investigated the prob-
lem of balancing the tradeoff of finding a good quality channel
(band) and time overhead of exploring multiple channels in a
free-use OSA system. The considered random variable therein
is the instantaneous channel quality. Specifically, the channels
are assumed to undergo Rayleigh block-fading identically and
independently. The fading statistics, i.e., the mean value of the
Rayleigh fading, is known. It is not allowed to use channels
which have already been visited, which naturally leads to
the formulated NR-OSP model therein. The taken actions
are to use the current channel or to explore the residual
channels, and the objective is to find the optimal stopping
rule to maximize the expected throughput. Since the channels
experience homogeneous fading, exploration order can be
arbitrarily picked out and hence was not considered.

In [156], H. Jiang et al. studied the sensing order with opti-
mal stopping rule for a share-use OSA system. The considered
random variables therein are the occupancy state of PU and
the instantaneous channel quality. Their formulated model also
belongs to NR-OSP. An interesting phenomenon found by the
authors is that the intuitive sensing order, i.e., descending order
of the channel availability probabilities, is not optimal even
for scenarios with homogeneous channel fading. Thus, they
proposed a dynamic programming method to find an optimal
sensing order. In addition, the scenario of not knowing the
channel availability probabilities was considered. However, it
should be pointed out that the proposed dynamic programming
method involves heavy computational complexity.

The sensing order with optimal stopping for a share-use
OSA system was also investigated in another work [41]. The
channel transmission rates are assumed to be fixed and the
observed random variable therein is the occupancy state of PU.
Their formulated model also belongs to NR-OSP. An interest-
ing result is that it is optimal to sense the channels according
to the descending order of their achievable rates with optimal
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TABLE IV
SUMMARY OF OSP MODELS IN OSA SYSTEMS

Models Actions Objective Spectrum
Sharing Model

Observed Random
Variables Ref.

NR-OSP

A1. Use the current channel
A2. Proceed to sense the residual channels

Find the optimal stopping rule to
maximize expected throughput Free-use Channel quality [45]

A1. Use the current channel
A2. Proceed to sense the residual channels

Find the optimal sensing
order with optimal stopping rule

to maximize expected throughput
Share-use Channel quality and

occupancy state of PU [156]

A1. Use the current channel
A2. Proceed to sesne the residual channels

Find the optimal sensing
order with optimal stopping rule

to maximize expected throughput
Share-use Occupancy state of PU [41]

A1. Use the current channel
A2. Proceed to sesne the residual channels

Find the optimal stopping rule,
power allocation strategy and

sensing order to maximize
throughput normalized by the
aggregate energy consumption

Share-use Channel quality and
occupancy state of PU [157]

A1. Use the current channel
A2. Proceed to sense the residual channels.
A3. Release the current accessed channel.

Find the optimal rule for the
formulated two-dimensional OSP model. Free-use Channel quality [158]

R-OSP

A1. Use observed idle channels
A2. Proceed to sense the residual channels

Find the optimal stopping rule
to maximize expected throughput Share-use Occupancy state of PU [40]

A1. Use an sensed channel
A2. Use an unsensed channel

A3. Proceed to sense the residual channels.

Find the optimal control rule
to maximize expected throughput Free-use Channel quality [164]

Stop sensing or not after each sampling Find the optimal control rule
to maximize expected throughput Share-use The received

cumulative energy [42]

A1. Use an sensed channel
A2. Proceed to sense the residual channels

Find the optimal stopping rule
to maximize throughput normalized

by the aggregate energy consumption
Free-use Channel quality [44]

A1. Use an sensed channel
A2. Proceed to sense the residual channels

Find the optimal control rule
to maximize expected throughput Share-use Channel quality and

occupancy state of PU [165]

stopping, regardless of the channel availability probabilities. In
comparison, [41] is differentiated from [156] in two aspects:
(i) instantaneous channel fading is not considered, and (ii)
the channel availability probabilities do not affect the sensing
order and the optimal stopping rule.

Recently, besides time overhead of exploring multiple chan-
nels, energy overhead also begins to draw attention. Y. Pei et
al. [157] jointly considered the optimal stopping rule, power
allocation and sensing order for a share-use OSA system with
energy consumption consideration. The spectrum sensing is
imperfect. The observed random variables are the channel
quality and the occupancy state of PU. The optimal stopping
rule and sensing order are obtained by a common dynamic
program method.

In all the above referenced OSP models, the SU releases the
accessed channel for a pre-defined duration and then re-starts
the sequential sensing procedure in the next decision epoch.
These models can be regarded as opportunistic spectrum
access in time domain. Very recently, B. Li et al. [158]
formulated the sequential sensing and access problem for a
free-use OSA system as a two-dimensional NR-OSP model, by
investigating this problem in time-frequency domain. Specif-
ically, they considered finite-state Markovian channels and
formulated a novel NR-OSP model for determining when and
which channel to access and when to release it. There are
three actions: (i) use the current channel, (ii) proceed to sense
the residual channels, and (iii) release the current accessed
channel. This study is a significant improvement of other
NR-OSP models in OSA systems. Also, the authors have
investigated this problem extensively and some interesting
results were reported in [159]–[163].

2) R-OSP: J. Jia et al. [40] investigated the problem of bal-
ancing the tradeoff of finding idle channels and time overhead
of sensing multiple channels in a share-use OSA system. The

observed random variable is the occupancy state of PU. In this
work, the SU can use the previously and currently observed
idle channels, which naturally leads to an optimal stopping
problem with recall (R-OSP). As stated before, finding an
optimal rule for an R-OSP model is generally challenging,
which motivated the authors to apply the k-SLA rules, where
k = 1, 2 are considered. It is shown that the used 1-SLA
rule is quite good since its performance is close to that of
the optimal solution. In addition to the theoretical analysis,
the authors also proposed a MAC protocol to implement the
proposed channel sensing algorithm.

Another important existing work addressing the application
of R-OSP model in free-use OSA systems is [164]. Different
from other existing work, there are three actions: (i) use
an observed channel, (ii) use an unobserved channel, and
(iii) sense unobserved channels. With the formulated R-OSP
model, the authors proposed a dynamic program to compute
the optimal strategy within a finite number of steps, and also
applied the 2-SLA rule to achieve a suboptimal but more
efficient solution.

S. Kim et al. [42] formulated a novel R-OSP model in
a share-use OSA system. Interestingly, although an R-OSP
model is formulated, the SU in this work adopts a parallel
sensing strategy rather than a sequential one. The spectrum
sensing is imperfect and the observed variable in this work is
the received accumulative energy. As the sampling duration
increases, the sensing performance improves, which implies
more spectrum opportunities for the SU. However, increasing
sampling duration definitely results in a decrease in the trans-
mission time. Thus, there is a fundamental tradeoff between
sampling duration and achievable throughput. To adhere to
the collision constraints imposed by the PU, a constrained
dynamic programming problem is proposed to obtain the
optimal rule that chooses the best time to stop sensing and
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the best set of channels to access. Suboptimal algorithms have
also been proposed to avoid computational complexity.

It should be pointed that the above R-OSP models only
considered time consumption and ignored other kinds of cost,
e.g., energy consumption. Recently, study on both time and
energy overhead of exploring multiple channels can be found
in our earlier work [44], where an energy-efficient channel
exploration problem using an R-OSP model is formulated. The
involved random variable is the instantaneous channel quality.
The objective is to maximize the throughput normalized by
the aggregate energy consumption for channel exploration and
data transmission. It is proved that the 1-SLA rule is optimal
for this problem. We also formulated an R-OSP models for
a share-use OSA system in [165]. Besides the 1-SLA rule
for single SU systems, a stochastic recalling algorithm for
multiple SU systems was also proposed to alleviate colli-
sions among SUs. In addition, we also applied the 1-SLA
rule proposed in [44] to study the tradeoff between channel
exploration and exploitation in spectrum sharing systems in
[166] and [167] respectively, where the interference temper-
ature constraints imposed by the primary users are explicitly
considered.

C. Strengths and limitations of OSP

Based on the review and comparison results of existing
work, the strengths of OSP models in OSA systems can be
summarized as follows:

1) Adaptive and efficient spectrum opportunity discovery.
Using OSP models, the SU would discard the parallel
sensing strategy, i.e., sensing a fixed number of licensed
channels in a slot; instead, it adaptively senses the chan-
nels with overhead consideration. Such a design leads
to more efficient and adaptive spectrum opportunity
discovery mechanisms.

2) Exploiting instantaneous channel fading to achieve mul-
tichannel diversity. Traditionally, the unreliability caused
by the time-varying fading needs to be mitigated. With
the OSP models, however, such channel fluctuations can
assist to find a strong channel for transmission. In fact, it
can be regarded as multichannel diversity with overhead
consideration, which is a more practical version of those
without overhead consideration.

However, OSP models also have some inherent limitations
as summarized below:

1) All the OSP models need to know statistical information
about the channels. In order to calculate the expected
payoff of proceeding to sense the residual channels,
the SUs need to know the statistics information of the
channels, e.g., channel idle probabilities. However, such
statistical information may not be available a priori in
some scenarios.

2) The OSP models, including both NR-OSP and R-OSP,
are more suitable for single SU systems rather than
multiple SU systems. In multiple SU systems, an un-
explored channel may have been occupied by other
SUs. As a result, the achievable reward of continuing
to explore the residual channels can not be calculated
and would be less than that of assuming only one SU in

the system, which brings about new challenges for the
OSP models with multiple users. It should be pointed
out that although some existing studies, e.g., [41], [165],
have considered multiple SUs with numeric simulation,
theoretical analysis for optimal stopping rules for mul-
tiple SU systems have not been studied yet.

3) The NR-OSP models admit mathematical tractability
but lead to relatively conservative design. With the
constraint of no recalling, i.e., it is not allowed to use
a previously explored channel, optimal stopping rules
can be easily obtained by backward induction methods.
However, it may miss some transmission opportunities
in the recently explored channels, even though they are
idle and good.

4) The R-OSP models may suffer from outdated channel
state information, especially in a system with large
number of channels. Outdated channel state information
[168] means that the channel state at the moment
of accessing is generally correlated with but different
from that at the moment of observation. The larger the
interval between observation and accessing, the lower
the correlation coefficient between the channel status.
Thus, recalling an observed channel which is far away
from the current channel may not achieve the expected
reward since the qualities of these channels may have
became outdated.

VI. THE APPLICATION OF MULTI-ARMED BANDIT
PROBLEM IN OPPORTUNISTIC SPECTRUM ACCESS

Multi-armed bandit (MAB) problem [169] is a powerful
tool in online learning theory. Specifically, it can be described
as: a player chooses one or more resources among several
alternative candidates whose statistical information are un-
known. Basically, in order to achieve desirable performance,
it needs to sample the resources and collect the statistics
during the decision process. Therefore, there is a fundamental
tradeoff between exploitation, maximizing the current reward
based on the current estimated statistics, and exploration,
i.e., spending time on sampling the resources to increase the
accuracy of estimated statistic with the prospect of better
future rewards. It is noted that the attribute of not knowing a
priori statistical information and partially monitoring in MAB
models is very common in several scenarios. As a result, the
MAB models have been extensively studied and successfully
applied in several technological and scientific fields such
as economics, manufacturing systems, control theory, search
theory, communication networks, etc.

A. Basic models of multi-armed bandits (MAB) problem

The classical MAB problem can be described as a player
playing with K arms. Time is divided into slots with equal
length. At each slot, the player can choose any one of the arms
to play and get a real-valued random reward. The received
reward of playing arm k ∈ {1, 2, . . . ,K} in the tth slot,
which is denoted as rtk, is an independent identical distributed
(i.i.d.) variable following some deterministic but unknown
distribution Φk. Denote the expected reward of playing arm k
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as μk. The objective of MAB is to develop an learning policy
to maximize the cumulative reward.

A learning policy π is defined as a function that maps
previous plays and observed rewards into current decision.
To evaluate the performance of a learning policy, the mostly
widely used metric is regret, which is defined as the reward
loss of the policy compared with the optimal policy under an
ideal assumption that all the statistical information are known.
Formally, the cumulative regret of a learning policy π until
decision epoch T is give by:

Rπ(T ) = Tμ∗ −
T∑

t=1

rtπ(t), (9)

where μ∗ = max{μk} is the maximum expected reward, π(t)
is the chosen arm in epoch t, and rnπ(t) is the received reward
in slot n. The objective is to keep Rπ(T ) as small as possible.
Specifically, if it is sublinear with respective to time, the time-
averaged regret will tend to zero, i.e., Rπ(T )

T → 0, as T →
∞. Accordingly, the maximum time-averaged reward can be
achieved.

This problem was originally formulated around 1940 [169].
However, no substantial progress in finding its optimal so-
lution was made until Lai and Robbins [170] presented a
general policy that provides expected regret which is in
order of O(K log T ), i.e., linear in the number of arms and
asymptotically logarithmic in time. More importantly, they
showed that this policy provides a lower bound on the expected
regret, which implies that it is order-optimal and no policy
can do better than the logarithmic order. Lai and Robbins’s
results are for the scenario of playing exactly one arm at a
time, which are extended by Anantharam et al. [171] to the
case of playing multiple arms simultaneously. R. Agrawal in
[172] proposed sample mean based index policies for that also
achieves logarithmic regret. P. Auer et al. [58] also proposed
upper confidence bound (UCB) based policies, which are
simpler and more general than those proposed in [172].

We briefly describe the UCB1 algorithm in [58] since a
large number of its variant have been proposed for different
problems in the literature. Using UCB1 policy, the arm with
the highest index μ̂k(T )+

√
2 log T
mk

is selected at each decision
period T , where μ̂k(T ) is the measured expected reward of
arm k until T and mk is the number of times that arm k
has been played. The first term in the index corresponds to
exploitation while the second term corresponds to exploration
since more chances are given to arms that are not played
often. For detail procedure of solutions for the classical MAB
problem, refer to these references.

Besides the i.i.d. MAB problems, in which the rewards
are independently identically distributed over time, there is
also a class of MAB problems with Markovian rewards
[173]. Basically, Markovian MAB can be categorized into two
branches: (i) rested MAB, in which the state of an arm evolves
only when it is played and frozen when it is not played,
and (ii) restless MAB, in which the arm state evolution is
independent from taken actions and is potentially determined
by some underlying mechanisms. The optimal policy for the
rested MAB is an index policy of playing the arm with the
highest Gittins’index [174] at each time, while that for the

restless MAB is also an index policy of playing the arm with
the highest Whittle’ index [175].

B. The application of MAB in OSA systems

In practical opportunistic spectrum access systems, the
channel availability statistics are initially unknown, e.g., in
the initialization phase or when the SUs move into a new
region. Moreover, due to hardware limitation, the SUs can
only sense and access a part of channels (one or more) rather
than all the channels at a time, which hence exhibits an
attribute of partial monitoring. Due to the above two features,
parallels between MAB models and opportunistic spectrum
access systems can be constructed. In the following, we review
and compare the applications of MAB models in opportunistic
spectrum access systems, and summarize in Table V. As has
been shown before, the dynamics of channel availability may
be independent over time or follow a Markovian process.
Accordingly, we classified existing studies into two branches:
I.I.D. and restless.

1) I.I.D. MAB: It is the first time to consider a share-use
OSA system with unknown channel availability statistics that
was formulated as an i.i.d. MAB model by L. Lai et al. in
[176]. Specifically, they considered scenarios for accessing
a single channel or multiple channels at a time; also, both
scenarios for single SU and multiple SUs were considered.
Each channel is modeled as an arm. For the scenario with a
single player, the UCB1 algorithm [58] was directly applied.
For the scenario with multiple players, a naive stochastic
algorithm in which the probability of choosing channels is
proportional to the measured expected rewards was proposed.
An extended version of this work can be found in [177].

Y. Gai et al. in [178] considered a user-channel matching
problem in a free-use OSA system with a more general
model of one channel offering different transmission rates for
different users, and formulated a combinatorial multi-armed
bandit problem. Interestingly, each user-channel matching is
formulated as an arm, which is different from other work in
which each channel is formulated as an arm. Since the UCB1
algorithm scales with the number of all matching profiles,
which is exponential with respect to the number of channels
and users, the authors proposed a modified UCB1 algorithm by
utilizing the inherent correlation between different arms. The
proposed algorithm is order-optimal, since it achieves regret
which grows logarithmic in time and polynomially in the num-
ber of channels. Although this formulation involves multiple
SUs, the algorithm is implemented in centralized manner with
information exchange and cooperation. An extended version
of this work can be found in [179].

A. Anandkumar et al. [43] also formulated a distributed
I.I.D. MAB model for a free-use multiuser OSA system with
unknown statistics. The objective is to achieve a collision-
free channel selection profile over the best channels. For the
scenario with single SU, the ε-greedy algorithm which was
originally proposed in [58] was directly applied. It is noted
that any single player MAB algorithm will lead to collisions,
since all the users are prone to choose the same channel.
Thus, for scenario with multiple SUs, an adaptive random
UCB1 algorithm was used, where each SU randomly chooses
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TABLE V
SUMMARY OF MAB MODELS IN OSA SYSTEMS

Model Spectrum
Sharing Model Action Arm Learning Algorithm Ref.

I.I.D MAB

Share-use
A1. Access one channel in a slot

A2. Access multiple channels
simultaneously in a slot

Channel i. UCB1 for the scenario with a single SU
ii. A naive distributed stochastic algorithm for multiuser setting

[176]
[177]

Free-use Access one channel in a slot User-channel
matching profile

Modified UCB1 algorithm by utilizing
the inherent correlation between different arms

[178]
[179]

Free-use Access one channel in a slot Channel
i. ε-greedy algorithm for the scenario with a single SU

ii. Modified UCB1 algorithm with adaptive
randomization for the scenario with multiple SUs

[43]
[180]

— Access multiple channels
simultaneously in a slot Channel N -parallel UCB1 algorithm based on time-division access [181]

Share-use Access one channel in a slot Channel A decentralized policy called
the synchronized learning under corrupted data [182]

Free-use Access one channel in a slot Channel
Two distributed algorithms for the scenarios with

prioritized users and fair access respectively, which were
based on the general UCB1 for k-th largest selection

[183]

Free-use Access one channel in a slot Channel A block-based UCB1 algorithm [184]

Restless
MAB

Share-use Access one channel in a slot Channel The tiling algorithm [186]
Free-use Access one channel in a slot Channel The regenerative cycle algorithm based on UCB1 [187]

— Access multiple channels
simultaneously in a slot Channel A myopic but optimal learning algorithm [188]

a channel only if a collision occurs in the previous slot;
otherwise, it follows UCB1. This policy captures well the
effect of collision among multiple SUs choosing the same
channel and also has logarithmic order. This work is further
extended in [180].

K. Liu and Q. Zhao [181] considered a more general prob-
lem than that in [43] and proposed another distributed I.I.D.
MAB solutions. In their formulation, the players can access
multiple channels simultaneously in a slot. They proposed
a N -parallel UCB algorithm, where N is the number of
channels. Their solutions are based on time-division access.
Specifically, a pre-agreement mechanism is essentially needed
to orthogonalize the players via settling them at different
offsets in the time sharing schedule, which eventually diminish
collisions among users. As the users are orthogonalized in
time, they can follow the UCB1 algorithm directly in parallel.
However, it is noted that although multiple SUs are considered
in this work, the proposed learning policies are not fully
distributed.

As an extension of their prior work [181], K. Liu and
Q. Zhao considered minimizing the system regret for an OSA
system with multiple SUs in [182]. Imperfect sensing is also
considered. The proposed decentralized learning policy, called
the synchronized learning under corrupted data, is shown
to be order-optimal since the system regret is increased in
logarithmic order. In fact, the algorithm in [182] can be
regarded as a general version of that proposed in [181].

Recently, Y. Gai et al. re-considered the same scenario for
their priori work [178] but formulated it as a distributed I.I.D
MAB problem in [183]. They proposed a selective learning
policy of the K-th largest expected reward, which is a general
version of UCB1. Based on the selective learning policy, two
distributed algorithms were proposed for the scenarios with
prioritized users and fair access respectively.

It is perhaps the first time to consider the channel switching
cost for opportunistic spectrum access systems in the I.I.D
MAB model by L. Chen et al. [184]. They explicitly included
the channel switching cost in the problem formulation. Also,
they proposed a block-based UCB1 algorithm to avoid fre-
quent channel switching.

2) Restless MAB: As has been validated by some experi-
ment results [50], the activities of PUs can be approximately
modeled as Markovian process; also, the channel quality ex-
hibits Markovian properties [185]. If the transition properties
are known, Markovian decision process (MDP) models can be
applied for the OSA problems. However, such statistics are
always not known a priori in practice, which makes restless
MAB models desirable solutions.

S. Filippi et al. [186] formulated a restless MAB model for
Markovian OSA systems with unknown statistical information.
They considered a share-use OSA system with single SU and
proposed a tiling algorithm which achieves expected regret
in logarithmic order. C. Tekin et al. [187] also formulated a
single-user restless MAB model for free-use OSA systems.
Based on the well-known UCB1 algorithm, they proposed
a sample mean index based policy, the regenerative cycle
algorithm, to achieve expected regret in logarithmic order. In
addition, K. Wang et al. [188] considered a similar restless
MAB problem and proposed a myopic policy which is optimal.
There is also a restless MAB formulation [189] which is
naturally extended from its I.I.D counterpart [178].

However, a common limitation of existing restless MAB
models is that only single user is considered and the proposed
learning policies can not be applied to multiuser OSA systems.

C. Strengths and Limitations of MAB

Based on the review and comparison results of existing
MAB models in opportunistic spectrum access systems, the
strengths of MAB models are summarized as follows:

1) It provides a framework for online learning approaches
in opportunistic spectrum access systems with unknown
statistical information. It addresses the fundamental
tradeoff between exploitation and exploration. Since the
statistical information about the spectrum environment
in opportunistic spectrum access systems, e.g., the chan-
nel availability, is always not known a priori, MAB
models are very promising and useful.

2) It also provides flexible and efficient design. Generally,
the arms in MAB models correspond to resources (e.g.,
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channels), as has been considered in most applications.
In a broader perspective, however, any action of the
player can also be regarded as an arm, e.g., the user-
channel matching profile in [178]. In this sense, one can
also formulate other actions in opportunistic spectrum
access systems as arms, e.g., to sense or not, to switch
or not.

However, it also admits some inherent limitations as sum-
marized below:

1) The MAB models essentially care more about the in-
teraction with the environment rather than those with
other players. In fact, it is noted that all existing
studies involving multiple SUs, e.g., [43], [178]–[181],
have a common assumption that the number of users
is less than that of channels. Under this assumption,
the users are finally spread over distinct channels. In
these scenarios, the interactions with the environment
are dominant while those among users are relatively
unimportant. However, in scenarios where the number
of users is larger than that of channels, which is very
common in opportunistic spectrum access systems, the
interactions among multiple users turn dominant and
traditional MAB learning policies can not be applied.

2) Most existing policies in MAB models are deterministic,
i.e., the players asymptotically choose certain arms.
However, such deterministic strategies are only efficient
for a single player but not in multiuser setting.

3) All MAB policies employ the parallel sensing models,
which means that they also fail to find more speculum
opportunities in opportunistic spectrum access systems,
as game theory and Markovian decision process.

VII. CONTRASTIVE ANALYSIS AND FUTURE RESEARCH

In this section, we discuss some concerns of decision-
theoretic solutions for practical implementation. Based on
this, we re-consider the above-discussed decision-theoretic
solutions from a global and contrastive perspective. Moreover,
we outline some future research directions.

A. Contrastive analysis of concerns for practical implemen-
tation

In this subsection, we list some important concerns of
decision-theoretic solutions in practical opportunistic spectrum
access systems. Specifically, three concerns including informa-
tion, cost and convergence speed are discussed below.

1) Information: As the basic element, information plays
a vital role in decision-theoretic solutions. Information in op-
portunistic spectrum access systems mainly includes spectrum
occupancy status, channel quality and traffic demand of users.
Generally, these information may be local or global, static or
dynamic, deterministic or uncertain, and known or unknown.

In fact, the presented four decision-theoretic solutions in this
survey address different scenarios with different information
considerations. Specifically, the theory of multi-armed bandit
problem considers scenarios where the statistical information
are unknown a priori. The theory of optimal stopping problem
considers scenarios where the information of realizations of
unexplored channels are uncertain. The theory of Markovian

decision process consideration scenarios where the system
state (information) is dynamic and correlated. Furthermore,
game theory considers interactions among multiple users and
studies how the behavior of a user is affected by other users;
in particular, coupled game learning algorithms that need
information about other users or uncoupled algorithms that
only rely on local information are designed to achieve some
stable solutions.

2) Cost: Generally, there are two kinds of costs for
decision-theoretic solutions with respect to practical imple-
mentation. The first kind is due to information exchange in
the network, which consumes resources and causes extra over-
head, e.g., time, power or bandwidth. The second kind is due
to action switching, which involves hardware reconfiguration
and signalling transmission to re-synchronize the transmitter
and the receiver to a new chosen action.

To reduce the first kind cost, uncoupled algorithms that do
not need information exchange and are only relying on local
information have begun to draw great attention. Specifically,
the algorithms for Markovian decision process, multi-armed
bandit problem and optimal stopping problem, are originally
developed for single user systems and of course are uncoupled.
However, it is urgent and important to develop uncoupled
algorithms for these models, when they are applied to mul-
tiuser systems. Furthermore, traditional learning algorithms in
game models are coupled while uncoupled learning algorithms
in game models are current active research topics. Table II
provides detailed discussion on information requirement of
different learning algorithms in game models.

To reduce the second kind cost, an efficient approach is
to include the action cost into the optimization objectives.
For the optimal stopping problems, action switching cost is
obvious and explicitly included in the problem formulation.
In addition, it is seen that the learning algorithms in other
solutions, i.e., game models, Markovian decision process and
multi-armed bandit problem, converge via learning from the
trial-payoff history of SUs. As a result, the SUs frequently
change their selections before convergence, which also leads to
a large amount of switching cost. In current research, however,
only the theory of optimal stopping problems considers this
cost while the other three decision-theoretic solutions do not3.

3) Convergence speed: Fast convergence speed of learning
algorithms is desirable for two reasons: it can better adapt to
dynamic environment and result in less overhead and cost.

However, this concern is not well studied in the presented
decision-theoretic solutions. Specifically, game models and
Markovian decision process mainly investigate the problem
of whether the learning algorithms converge or not, and do
not consider the convergence speed. In fact, most learning
algorithms in the two models admit a feature of asymptoti-
cal convergence, i.e., they converge as the iteration number
goes sufficiently large. Also, the convergence of learning
approaches in the multi-armed bandit problem is generally
studied as the iteration number goes sufficiently large, i.e.,
asymptotical convergence is studied. Finally, it is worthy to
mention that the optimal stopping problems only involve one-

3In MAB models, the channel switching cost was only preliminarily
considered in [184].
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TABLE VI
COMPARISON RESULTS OF THE FOUR DECISION-THEORETIC SOLUTIONS

Game Models Markovian
Decision Process

Optimal
Stopping Problem

Multi-armed
Bandit Problem

Focus Interactions
among multiple SUs

Dynamic
spectrum opportunity

Tradeoff between sequential
sensing cost and expected reward

Tradeoff between
exploitation and exploration

Concerns

Information A user’s action is influenced
by the actions of other users.

System state information
is dynamic and correlated.

The realizations of unexplored
channels are uncertain.

The statistical information of
channels is unknown a priori.

Cost

i. Type-I cost: cost for
information exchange among users.

ii. Type-II cost: cost for
switching action before convergence.

iii. Two types of cost are not
considered in existing game models.

Type-II cost
exists but has not

been considered yet.

Type-II cost exists
and is explicitly included

in the problem formulation.

Type-II cost exists
but is not well studied.

Convergence
Speed

i. Convergence speed for
general algorithms is not studied.

ii. Asymptotical convergence
for a few algorithms is studied.

Asymptotical
convergence is studied. — Asymptotical

convergence is studied.

shot decision, which implies that the concern of convergence
speed does not exist.

Based on the above global and contrastive analysis, we
present the comparison results for the four presented decision-
theoretic solutions in Table VI. It is seen that each kind of
decision-theoretic solutions mainly addresses one challenge
facing opportunistic spectrum access systems and admits its
inherent strengths and limitations. In comparison, they are
summarized below:

• Game theory captures the interactions among multiple
SUs well, while the theories of Markovian decision pro-
cess, optimal stopping problem, and multi-armed bandit
problem require the environment to be stationary. In this
sense, the latter three solutions are more suitable for
single SU systems rather than multiple SU systems.

• The theory of optimal stopping problem provides more
spectrum opportunities as the sequential sensing strategy
is applied, while all other three solutions fail to find
more speculum opportunities as they employ the parallel
sensing strategies.

• The theory of multi-armed bandit problem provides an
efficient online learning framework for unknown statisti-
cal information, while all other three solutions generally
need to know the statistical information a priori.

• Cost in the context of decision-theoretic solutions is very
important. However, only the optimal stopping problem
involves this issue whereas all other three solutions have
not yet considered it.

B. Future research for technical contents

Based on the above comparison results, we list some future
research problems. The presented items mainly consist of
two parts: the first are future research problems for technical
contents and the second are those for methodologies. First, we
list some research issues for technical content in opportunistic
spectrum access systems, which would be investigated by any
kind of reviewed decision theories.

1) Joint optimization of channel sensing and selection:
It is seen that most decision-theoretic solutions are for the
problem of channel selection based on the assumption of
perfect sensing. In addition, although there are some existing
work that considered the impact of imperfect sensing on the
decision results, channel sensing and selection are still studied

separately. Thus, it would be worthy to use decision theories
to jointly optimize channel sensing and selection.

2) Incorporating user demand in metric formulation: It is
noted that most decision-theoretic solutions for opportunistic
spectrum access systems only considered optimization of
allocated resources of SUs. For example, the optimization ob-
jectives in most existing studies are throughput maximization
with or without energy constraint. These optimization metrics
are indeed important but not enough for practical applications,
for which user demand must be considered. The quality of
experience (QoE) [190], which is jointly determined by the
user demand and the allocated resources, should serve as new
optimization metric in future research.

3) Including channel switching cost into the decision-
theoretic solutions: In the decision-theoretic learning algo-
rithms, the SUs frequently switch their selections before con-
vergence. Furthermore, channel switching always consumes
resources since it needs additional signaling to re-synchronize
the transmitter and the receiver in the switched channels, as
analyzed before. However, as shown in Table VI, except for
the optimal stopping problem, the cost of learning algorithms
are not studied in the other three decision-theoretic solutions.
Thus, a desirable approach should be that the algorithms still
converge with decreased switching frequency. To achieve this,
the switching action cost should be explicitly considered in the
three decision theories, which is interesting and challenging.
This issue has begun to draw attention in wireless communi-
cations, e.g., cost of learning in heterogeneous 4G networks
was reported in a recent work [80].

C. Future research for methodologies

The previously presented four decision theories, i.e., game
theory, Markovian decision process, optimal stopping problem
and multi-armed bandit problem, mainly address one challenge
facing opportunistic spectrum access systems. Thus, in order
to address two or more challenges simultaneously, it is natural
to incorporate two or more decision theories. Following this
idea, the methodology roadmap for opportunistic spectrum
access systems is shown in Fig. 3. In the following, we discuss
some possible future research issues.

1) Game models with uncoupled algorithms: As discussed
in Section III. C, traditional learning algorithms in game
models are coupled since a user’s action update needs in-
formation about other users. Moreover, information exchange
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Fig. 3. The methodology roadmap for opportunistic spectrum access systems.

leads to Type-I cost, as shown in Table VI. Thus, it is
desirable to develop game models with uncoupled learning
algorithms for opportunistic spectrum access systems. Since
the action of a user is influenced by the actions of other users,
the convergence and optimality of uncoupled algorithms for
game models are generally hard to guarantee and need to be
carefully designed.

2) Non-reactive markovian game: This naturally emerges
as an incorporation of game theory and Markovian decision
process. In such a game, there are multiple users competing for
resources in Markovian environment. In a classical Markovian
game [51], the system state evolution is jointly determined
by the current system state and the actions chosen by the
players. We call this kind of game reactive Markovian game,
as the system state evolution is affected by current actions.
Different from the classical reactive Markovian games, the
games used in opportunistic spectrum access systems with
Markovian environment exhibit an interesting property of the
system state evolution being non-reactive. To be more specific,
the system state in opportunistic spectrum access systems,
which is generally defined as the spectrum occupancy state,
evolves according to the traffic model of PUs and regardless of
the actions of the SUs. Thus, although there are some solutions
for the classical reactive Markovian games, e.g., value iteration
and stochastic approximation algorithms proposed in [51], the
solutions for non-reactive Markovian games would be more
concise and elegant. In particular, distributed solutions that do
not need information about other users are desirable.

3) Multiuser optimal stopping problem: As discussed
before, the theory of optimal stopping problem is more

suitable for single user OSA systems rather than multiuser
systems. The fact that there are always multiple SUs in
an opportunistic spectrum access system naturally yields the
multiuser optimal stopping problem. For solving the multiuser
optimal stopping problem, the difficulties primarily lie on the
interactions among multiple users. One can incorporate game
theory into traditional optimal stopping problem to develop
desirable solutions. It should be pointed out that although few
existing work, e.g., [41], [165], have considered multiple SUs
with numeric simulation, theoretical analysis for multiuser
optimal stopping problems has not yet been reported.

4) Multiuser multi-armed bandit problem: Also, tradi-
tional multi-armed bandit problem is more suitable for sin-
gle user OSA systems rather than multiuser systems, which
naturally yields the multiuser multi-armed bandit problem. Al-
though some existing studies have begun to consider the effect
of multiple users, e.g., [180], [181], the presented solutions are
only for some specific applications and can not be extended to
general scenarios. Specifically, some methods were proposed
to create orthogonality among users (time orthogonality [180]
and channel orthogonality in [181]), which eventually leads
to stationary environment for the learning policies proposed
therein. In a broad perspective, however, the environment
for multiuser multi-armed bandit problems is non-stationary,
which means that traditional learning policies can not be
applied directly. To achieve a general solution of multiuser
multi-armed bandit problem, one can incorporate game theory
into traditional multi-armed bandit problem. Some preliminary
studies can be found in [182] and further investigations are
needed.
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5) Optimal stopping problem in markovian environment:
In traditional optimal stopping problem, the observed random
variables are distributed independently, from decision epoch
to decision epoch, which means that the decisions in each
epoch are independent from those in previous epoches. For
opportunistic spectrum access systems, however, the dynamics
of the spectrum opportunities between successive epoches
are always formulated as Markovian process. Considering
such dynamics will bring about fundamental challenges; for
example, the sensing order in each epoch will be adaptively
optimized based on the observations in the previous epoches.

6) Optimal stopping problem with unknown statistical in-
formation: As pointed out before, traditional optimal stopping
problem needs to know the statistical information of the chan-
nels to calculate the expected reward of proceeding to sense
residual channels. However, the statistical information of the
channel availability and quality are always unknown a priori,
which means that there is a fundamental tradeoff between
exploration and exploitation. Incorporating the approaches of
multi-armed bandit problems into traditional optimal stopping
problems would yield desirable solutions for this problem.

Remark 5: Surely, one can develop more complicated
solutions to address more than two challenges of opportunistic
spectrum access systems. This might be achieved by incor-
porating more than two of the four decision theories, which
would be definitely extremely challenging. Although we can
not discuss this issue in detail at present, we believe that it
will eventually be achieved in the near future.

VIII. SUMMARY

In this article, we surveyed decision-theoretic solutions
for channel sensing and access strategies for opportunistic
spectrum access (OSA) systems. The main contributions of
this work are threefold. First, we globally analyzed the chal-
lenges facing OSA systems, which mainly include interactions
among multiple users, dynamic spectrum opportunity, tradeoff
between sequential sensing cost and expected reward, and
tradeoff between exploitation and exploration in the absence of
prior statistical information. Second, we provided comprehen-
sive review and comparison of each kind of existing decision-
theoretic solutions, i.e., game models, Markovian decision
process, optimal stopping problem and multi-armed bandit
problem. Third, we analyzed their strengths and limitations
and outlined further research issues for both technical content
and methodology. In particular, contrastive analysis for the
four kinds of solutions are provided in terms of information,
cost and convergence speed, which are key concerns for
practical implementation. Moreover, each kind of existing
decision-theoretic solution mainly addresses a single aspect
of the challenges facing OSA systems, which implies that
two or more kinds of decision-theoretic solutions should be
incorporated to address more challenges simultaneously.
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