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Abstract—This paper investigates the problem of distributed
channel selection for interference mitigation in a time-varying
radio environment without information exchange. Most existing
algorithms, which were originally designed for static channels, are
costly and inefficient in the presence of time-varying channels.
First, we formulate this problem as a noncooperative game, in
which the utility of each player is defined as a function of its
experienced expected weighted interference. This game is proven
to be an exact potential game with the considered network utility
(the expected weighted aggregate interference) serving as the
potential function. However, most game-theoretic algorithms are
not suitable for the considered network, since they are coupled,
i.e., the updating procedure is relying on the actions or pay-
offs of other players. Then, we propose a simple, completely
distributed, and uncoupled stochastic learning algorithm, with
which the users learn the desirable channel selections from their
individual trial-payoff history. It is analytically shown that the
proposed algorithm converges to pure strategy Nash equilibrium
in time-varying radio environment; moreover, it achieves optimal
channel selection profiles and makes the network interference-free
for underloaded or equally loaded scenarios, while achieving, on
average, near-optimal performance for overloaded scenarios.

Index Terms—Canonical network, distributed orthogonal chan-
nel selection, exact potential game, interference mitigation, uncou-
pled stochastic learning.

I. INTRODUCTION

E FFICIENT interference mitigation is key to improving
the performance of wireless communication networks

[1]–[7]. Currently, most existing works, for example [8]–[17],
have assumed that the interference channel gains are static.
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Based on this assumption, several nongame-theoretic [8], [9]
and game-theoretic [10]–[17] interference mitigation algo-
rithms have been proposed in the literature. The assumption
of static channel leads to mathematical tractability but is not
true since wireless channels are always time varying in practice.
To track the channel variations, an instinctive method is to
reiterate the algorithms in each quasi-static block. This method,
however, is costly and inefficient, particularly for fast-varying
channels. Thus, it is important to develop new algorithms
for interference mitigation in the presence of time-varying
channels.

In this paper, we consider a multiuser multichannel dis-
tributed network, where the users choose orthogonal chan-
nels to mitigate mutual interference [9], [12], [13], [15]–[17].
Specifically, the considered network has the following three
characteristics: 1) there is no centralized controller, 2) there is
no information exchange among users, and 3) the channels un-
dergo block fading. The reason for emphasizing no information
exchange here is that information exchange in distributed net-
works always leads to unsustainable communication overhead
and is not even feasible in some cases, e.g., in the presence
of moving obstacles [18]. Furthermore, block fading means
that the channel gains remain stationary in a slot and change
randomly and independently in the next slot. This kind of time-
varying channel model is realistic and has been extensively used
in past literature.

Following similar ideas proposed in [9], [14], and [17],
wherein the authors considered minimizing the weighted ag-
gregate interference for static channels, the network utility
in this paper is naturally extended to the expected weighted
aggregate interference for block-faded channels. As a result,
the optimization objective is to achieve channel selection pro-
files that minimize this network utility. It is seen that the
channel selections are made by the users distributively and
autonomously; moreover, the users have conflicting objectives,
i.e., every user selfishly minimizes its experienced interference.
This motivates us to formulate the problem of channel selection
for interference mitigation as a noncooperative game [19].

Game model, as a powerful tool, can reveal the underlying
structures of multiuser decision problems, e.g., the existence of
Nash equilibrium (NE), and the performance gap between NE
and the global optimum. However, game-theoretic solutions for
the interference mitigation problem cannot be straightforwardly
obtained, since most existing game-theoretic algorithms, e.g.,
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best response dynamic [20], no-regret learning [12], fictitious
play [21], and spatial adaptive play [22], require the envi-
ronment to be static. More importantly, these algorithms are
coupled, which means that the updating procedure is relying on
the actions or payoffs of other players. Notably, these coupled
algorithms are not suitable for the considered network, and
hence, we need to develop uncoupled [23] algorithms in time-
varying environment, which is a challenging task.

To cope with the given difficulty, we resort to learning
technologies, which are characterized by having the ability to
observe the response from the environment, adjust the decision
strategy, and, finally, learn desirable solutions from historical
information. Specifically, we incorporate stochastic learning
automata [30] into a game model to solve the interference
mitigation problem. The main contributions of this paper are
summarized as follows.

1) We formulate an interference mitigation game, which
is further proved to be an exact potential game with
the considered network utility as its potential function.
The formulated game exhibits several promising features.
Most importantly, it is proved that all pure strategy NE
points lead to interference-free channel selection profiles
for underloaded or equally loaded networks, and there ex-
ists at least one pure strategy NE point that minimizes the
expected weighted aggregate interference for overloaded
networks.

2) We propose an uncoupled stochastic learning algorithm,
which converges to pure strategy NE points of the inter-
ference mitigation game in time-varying environment. It
is simple, completely distributed, and uncoupled. Specif-
ically, 1) the updating rule is linear; moreover, it requires
no prior information of the system, e.g., the distance
among nodes, the characteristics of channels, and the
number of nodes; 2) it does not need central control and
information exchange; and 3) the updating procedure is
only relying on the individual trial-payoff history of each
user; in fact, each user is even not aware of other users.

3) Simulation-based performance evaluation shows that
the proposed learning solution averagely achieves near-
optimal performance.

The rest of this paper is organized as follows: In Section II,
we review the related work. In Section III, we present the
system model and problem formulation. In Section IV, we for-
mulate the interference mitigation game, prove it to be an exact
potential game, and investigate its properties. In Section V,
we propose a stochastic learning algorithm to converge toward
pure strategy NE points in fading environment. In Section VI,
simulation results and discussion are presented. Finally, we
provide conclusions in Section VII.

II. RELATED WORK

Distributed interference mitigation is a timely research topic
with enormous number of wireless devices currently in use.
Most existing work focused on the problem of power control
and/or waveform adaptation for interference mitigation, e.g.,
[1], [8], and [14]. Our work is differentiated from these studies
in that we consider orthogonal channel selection for mitigating

interference, which is suitable for future broadband wireless
networks, e.g., orthogonal frequency-division multiple-access
systems.

It should be mentioned that a game-theoretic interference
avoidance algorithm for dynamic networks was proposed in
[14]. The dynamics considered in this reference is triggered
by some events, e.g., a user becoming in-active, or vice versa.
The network then remains static for a while after a triggered
event. The considered dynamics is different since the channels
are always time varying. In addition, there also exists some
work using potential games to solve the problem of distributed
channel selection for interference mitigation [12], [13], [15]–
[17]. These studies, however, only considered static channels.

There are some studies for orthogonal resource selection (one
can see that channels naturally belong to orthogonal resources)
in the literature. Specifically, in [10] and [11], the problem
of orthogonal sequence selection for interference mitigation is
investigated, and the interference mitigation is formulated as
potential games. Although the formulation proposed in [10]
and [11] can be extended to the channel selection problem,
there are two key differences in our work: 1) The channel
gains considered in the previous two studies are static, whereas
we consider time-varying (block-fading) channels, and 2) the
algorithms proposed in them are coupled, whereas our proposed
algorithm is uncoupled. In addition, game-theoretic approaches
for channel allocation (selection) in wireless networks have
been extensively investigated in the literature [24]–[28]. Our
work is differentiated from these works in that we consider
the distributed channel selection problem in time-varying radio
environment. In our recent work [29], some preliminary results
for the channel selection problem in time-varying environment
were reported.

It is known that learning is the core of cognitive radios
[31] and draws much attention. Some learning algorithms can
be found in the literature, e.g., reinforcement learning for
interference control for wireless regional area networks [32],
opportunistic bandwidth sharing [33], and channel access in
cognitive radio networks [34]–[36]. (For a comprehensive re-
view on learning technologies in cognitive radios, see [37] and
references therein.) In addition, a survey for decision-theoretic
approaches for the channel selection problem in cognitive radio
networks can be found in our recent work [38].

Recently, there is a new research direction: incorporating
learning technologies into game theory [39]–[42]. This topic
is very interesting and important because game theory charac-
terizes interactions among multiple users while learning tech-
nologies, particularly uncoupled learning algorithms, address
the constraints of lacking information exchange and dynamic
environment. Some previous studies addressing this topic can
be found in the literature, e.g., multiagent Q-learning channel
selection algorithms for two-user two-channel cognitive radio
systems [35] and for multiuser multichannel cognitive radio
systems [36], stochastic learning solution for distributed dis-
crete power control [43], and stochastic learning algorithms for
opportunistic spectrum access [18], [44]. The challenging task
here is to investigate the convergence of the learning algorithms
when incorporating into game theory, which greatly differs in
different scenarios.
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Fig. 1. Example of canonical networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a distributed canonical network consisting of
multiple autonomous nodes. It should be pointed out that each
node in canonical networks is not a single communication
entity; instead, it is a community of multiple entities with intra-
node communications [46]–[48]. The entities in a community
are closely located, and there is a leading entity that manages
the whole community. Generally, the leading entity chooses the
operational channel, and the followers share the channel using
some multiple-access control mechanisms. Examples of nodes
in canonical network are given by, e.g., a wireless local area net-
work access point with its serving clients [47] and a cluster head
together with its members [9]. An example of the considered
canonical networks is shown in Fig. 1. (Furthermore, see [9] for
a comprehensive review on canonical networks.) In this paper,
we will use node and user interchangeably. Suppose that there
are N nodes autonomously competing for one of M channels.
Denote the node set as N = {1, . . . , N} and the channel set
as M = {1, . . . ,M}. In addition, Table I summarizes the used
notations in this paper.

We assume that all the channels undergo block fading, i.e.,
the channel gains are block-fixed in a time slot and randomly
change in the next slot. Furthermore, it is assumed that each
node chooses exactly one channel for intranode communication
at a time. When two nodes, for example, m and n, choose
the same channel, mutual interference emerges; specifically, the
instantaneous interference gain from nodes m to n in a slot can
be expressed as

ws
mn = (dmn)

−αεsmn (1)

where superscript s is the selected channel, dmn is the distance
between nodes m and n, α is the path loss exponent, and εsmn

is the instantaneous random component of the path loss [49],
e.g., Rayleigh fading. The instantaneous random components
between two nodes in each slot may be the same or different.
Their expected values, however, are assumed to be the same,
which implies that we can denote the expected value of the
random components between two nodes on a channel as ε̄smn =
E[εsmn] = E[εsnm], ∀m, n ∈ N , ∀s ∈ M.

TABLE I
SUMMATION OF USED NOTATIONS

Remark 1: The above mutual interference channel model is
very general and realistic, as the instantaneous random compo-
nents, i.e., εsmn, can vary from slot to slot, from channel to chan-
nel, and from user to user. More importantly, such variations
may be independent or correlated. Furthermore, the expected
value of random component, i.e., ε̄smn, can vary from channel to
channel and from user to user. This makes the results obtained
in this paper suitable for several scenarios. For instance, the
instantaneous random component may be unit-constant, i.e.,
εsmn = 1, ∀m, n, s, which corresponds to a no-fading scenario
where only large-scale power loss is considered. In addition, it
may be with lognormal distribution, which corresponds to the
medium-scale power loss, and Rayleigh/Nakagami distribution,
which corresponds to multiple-path power loss.

B. Problem Formulation

Denote an ∈ M as the selected channel of node n in a slot,
then the instantaneous rate of node n is given as follows:

Rn = B log

(
1 +

pnw
an
nn

BN0 + In

)
(2)

where wan
nn = (dnn)

−αεan
nn is the intracommunication channel

gain of node n, pn is the transmitting power of n, N0 is the
noise power spectrum density, B is the bandwidth, and In is the
interference experienced by user n. Given the network action
profile being a = {a1, . . . , aN}, In is a random variable and is
given by

In =
∑

m∈{N\{n}}
f(am, an)pmwan

mn (3)
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where X\Y means that Y is excluded from X , and f(·) is the
Kronecker delta function defined as

f(x, y) =

{
1, x = y
0, x �= y.

(4)

Based on (2), the expected network rate can then be given by

Rsum =
∑
n∈N

E[Rn]. (5)

From the perspective of interference mitigation, the con-
sidered network utility in this paper is the expected weighted
aggregate interference defined as

U =
∑
n∈N

pnE[In] =
∑
n∈N

∑
m∈{N\{n}}

pmpnw̄
an
mnf(am, an)

(6)
where

w̄an
mn = E [wan

mn] = (dmn)
−αε̄an

mn (7)

denotes the expected interference gain from node m to node n
in channel an.

Note that some previous studies [9], [14], [17], [50] also
considered a similar network utility metric, i.e., the weighted
aggregate interference. It was shown in [14] that using such
a network utility can balance the transmitting power and the
experienced interference. Furthermore, it has been shown that
it leads to a near-optimal network sum rate in the low-signal-to-
interference-plus-noise-ratio regime [9]. The difference in this
paper is that the expected version is considered to deal with the
random instantaneous fading components εsmn.

Motivated by the previous work addressing interference mit-
igation rather than throughput maximization, for example, [9],
[12], and [13], we focus on minimizing the expected weighted
aggregate interference specified by (6) and do not consider
maximizing the network sum rate specified by (5) in this paper.
Specifically, our goal is to find the optimal selection profile such
that the network utility specified by (6) is minimized, i.e.,

(P1 :) aopt ∈ arga min U. (8)

It is seen that P1 is a combinatorial optimization problem,
which can be solved in a centralized manner, on the condition
that all the system parameters, i.e., pn, dmn, and ε̄smn, ∀m, n ∈
N , s ∈ M, are a priori known. However, in a case that there
is no centralized control and these parameters are unknown,
which is exactly the one considered in this paper, solving P1 is
challenging. Thus, we need to find a distributed solution that is
able to cope with the lack of centralized control, the constraint
of not knowing system parameters, and the random nature of
interference channels.

IV. INTERFERENCE MITIGATION GAME

A. Game Model

We formulate the problem of distributed channel selection
for interference mitigation as a noncooperative game. For-
mally, the interference mitigation game is denoted as Gc =

[N , {An}n∈N , {un}n∈N ], where N = {1, . . . , N} is the set
of players (nodes), An = {1, . . . ,M} is the set of available
actions (channels) for each player n, and un is the utility
function of player n. Notably, the experienced interference
is a random variable in a slot. That is, the players receive
random payoffs in each play. We then consider the following
utility function, which is defined as the expected experienced
interference of each node, i.e.,

un(an, a−n) =D − pnE[In]

=D −
∑

m∈{N\{n}}
pnpmw̄an

mnf(am, an) (9)

where a−n is the channel selection profile of all the players
except player n, In is the experienced interference specified
by (3), and D is a predefined positive constant, which will
be illustrated later. Then, the proposed interference mitigation
game can be expressed as

(Gc) : max
an∈An

un(an, a−n), ∀n ∈ N . (10)

B. Analysis of NE

In the following, we define the NE of the formulated inter-
ference mitigation game and investigate its properties.

Definition 1 (NE): A channel selection profile a∗ = (a∗1, . . . ,
a∗N ) is a pure strategy NE if and only if no player can improve
its utility by deviating unilaterally, i.e.,

un

(
a∗n, a

∗
−n

)
≥ un

(
an, a

∗
−n

)
, ∀n ∈ N , ∀an ∈ An, an �= a∗n.

(11)
The given definition is straightforwardly obtained from game

theory [19]. The properties of the proposed interference mitiga-
tion game are characterized by the following theorem.

Theorem 1: Gc is an exact potential game that has at least a
pure strategy NE point, and the optimal channel selection that
globally minimizes the expected weighted aggregate interfer-
ence constitutes a pure strategy NE point of Gc.

Proof: To prove this theorem, we first construct a potential
function as follows:

Φ(an, a−n) = −1
2

∑
n∈N

∑
m∈{N\{n}}

pmpnw̄
an
mnf(am, an) (12)

which immediately yields the following equation:

Φ(an, a−n) = −1
2
U(an, a−n) (13)

where U(an, a−n) is the network utility specified by (6). De-
note the set of channel selection profile for all the players by
A = A1 × · · · × AN , we then have

aopt ∈ arg
a∈A

max Φ(a) (14)

where aopt, as specified by (8), is the optimal selection profile
that minimizes the expected weighted aggregate interference.
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For presentation, denote Sn(an) as the node set excluding n,
which also chooses an, i.e., Sn(an) = {m ∈ {N\{n}} : am =
an}. Then, we have

f(am, an) =

{
1, ∀m ∈ Sn(an)
0, ∀m �∈ Sn(an)

(15)

which can be directly derived from (4).
If an arbitrary player n unilaterally changes its selection from

an to ãn, the change in its utility function is given by

un(ãn, a−n)− un(an, a−n)

= −
∑

m∈{N\n}
pnpm

(
w̄ãn

mnf(am, ãn)− w̄an
mnf(am, an)

)

= −
∑

m∈Sn(ãn)

pmpnw̄
ãn
mn +

∑
m∈Sn(an)

pmpnw̄
an
mn. (16)

Then, the change in the potential function caused by the
unilateral change in n’s selection is given by

Φ(ãn, a−n)− Φ(an, a−n)

=
1
2

⎛
⎝−

∑
m∈Sn(ãn)

pmpnw̄
ãn
mn +

∑
m∈Sn(an)

pmpnw̄
an
mn

⎞
⎠

− 1
2

∑
m∈Sn(an)

(
pnpm

(
w̄ãn

nmf(ãn, am)−w̄an
nmf(an, am)

))

− 1
2

∑
m∈Sn(ãn)

(
pnpm

(
w̄ãn

nmf(ãn, am)−w̄an
nmf(an, am)

))

− 1
2

∑
m∈N0

(
pnpmw̄nm

(
w̄ãn

nmf(ãn, am)−w̄an
nmf(an, am)

)
(17)

where N0 = N\{Sn(an) ∪ Sn(ãn) ∪ {n}}. By applying (15)
into (17), we have

Φ(ãn, a−n)− Φ(an, a−n)

=
1
2

⎛
⎝−

∑
m∈Sn(ãn)

pmpnw̄
ãn
mn +

∑
m∈Sn(an)

pmpnw̄
an
mn

⎞
⎠

+
1
2

⎛
⎝−

∑
m∈Sn(ãn)

pmpnw̄
ãn
nm +

∑
m∈Sn(an)

pmpnw̄
an
nm

⎞
⎠ .

(18)

Now, applying w̄s
nm = w̄s

mn = (dmn)
−αε̄smn, ∀n, m ∈ N ,

∀s ∈ M, into (16) and (18), respectively, we have

Φ(ãn, a−n)− Φ(an, a−n) = un(ãn, a−n)− un(an, a−n)
(19)

which means that the change in the individual utility function
caused by any player’s unilateral deviation is the same as
the change in the potential function. Thus, according to the

definition given in [20], it is known that Gc is an exact potential
game with Φ serving as the potential function.

Exact potential game is a special kind of potential games,
which exhibits several attractive properties, and the following is
the most important one: any global or local maxima of the po-
tential function constitutes a pure strategy NE point of the game
[20]. Thus, according to the connection between the formulated
potential function and network utility specified by (13) and
(14), it is known that the optimal channel selection profile that
minimizes the expected weighted aggregate interference con-
stitutes a pure strategy NE point of Gc. Therefore, Theorem 1
is proved. �

Theorem 1 generally characterizes the relationship between
the formulated interference mitigation game Gc and the con-
sidered network utility. We first classify the network into three
scenarios [11]: 1) underloaded scenario, wherein the number
of nodes is less than the number of channels, i.e., N < M ;
2) equally loaded scenario, wherein the number of nodes is
equal to the number of channels, i.e., N = M ; and 3) over-
loaded scenario, wherein the number of nodes is greater than the
number of channels, i.e., N > M . The following propositions
show the properties for the three scenarios, respectively.

Proposition 1: In underloaded or equally loaded scenarios,
all pure strategy NE points of Gc lead to interference-free
channel selection profiles.

Proof: It can be straightforwardly shown that in the two
scenarios, all pure strategy NE points correspond to orthogonal
channel selection profiles, i.e., no more than one node chooses
a channel. This argument can be obtained by the fact that no
node has incentive to deviate, as it experiences zero interference
from other nodes. Thus, all pure strategy NE points are optimal
solutions of P1 and make the network interference-free. As a
result, Proposition 1 holds. �

Proposition 2: In an overloaded scenario, there exists at
least one pure strategy NE point that minimizes the expected
weighted aggregate interference.

Proof: There may exist multiple pure strategy NE points
in an overloaded scenario, but this number is hard to obtain.
However, according to Theorem 1, there must be at least
one pure strategy NE that minimizes the expected weighted
aggregate interference. In addition to the optimal one, other
pure strategy NE points only locally minimize the expected
weighted aggregate interference. �

The achievable expected aggregate interference at a pure
strategy NE a∗ = (a∗1, . . . , a

∗
N ) is denoted by

UNE=
∑
n∈N

pnE[In]=
∑
n∈N

∑
m∈{N\{n}}

pmpnw̄
a∗
n

mnf (a∗m, a∗n) .

(20)

Since optimality is not guaranteed in the overloaded scenario,
it is important to study the performance of NE solutions in
this scenario. Generally, price of anarchy (PoA) [45] is used to
characterize the performance ratio between the worst NE and
the social optimum. However, we note that it is hard to derive
PoA for the formulated game. Instead, we get an upper bound
for the NE solutions in the overloaded scenario, which is shown
in the following proposition.
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Proposition 3: If the values of expected random components
of all channels are the same, i.e., ε̄smn = ε̄0mn, ∀m, n ∈ N ,
then the expected aggregate interference of NE solutions in
an overloaded scenario is upper bounded by UNE ≤ U0/M ,
where M is the number of available channels, and

U0 =
∑
n∈N

∑
m∈{N\{n}}

pnpm(dmn)
−αε̄0mn

is the expected aggregate interference if all players choose the
same channel.

Proof: According to the definition of pure strategy NE,
the following equation always holds:

E
[
In

(
a∗n, a

∗
−n

)]
≤ E

[
In

(
an, a

∗
−n

)]
∀n ∈ N , ∀an ∈ An, an �= a∗n. (21)

Summarizing the right side of the given equation over An,
we have

ME
[
In

(
a∗n, a

∗
−n

)]
≤

∑
an∈An

E
[
In

(
an, a

∗
−n

)]
, ∀n ∈ N

(22)

where M is the number of available channels. Interestingly,∑
an∈An

E[In(an, a
∗
−n)] can be regarded as the experienced

interference of player n if all other players keep their channel
selections unchanged while player n would choose all channels
simultaneously, which implies the following equation:∑

an∈An

E
[
In

(
an, a

∗
−n

)]

=
∑

an∈An

⎛
⎝ ∑

m∈{N\{n}}
pm(dmn)

−αε̄an
mnf (a∗m, an)

⎞
⎠

=
∑

m∈{N\{n}}

( ∑
an∈An

pm(dmn)
−αε̄an

mnf (a∗m, an)

)

=
∑

m∈{N\{n}}

( ∑
an∈An

pm(dmn)
−αε̄0mnf (a∗m, an)

)

=
∑

m∈{N\{n}}
pm(dmn)

−αε̄0mn

( ∑
an∈An

f (a∗m, an)

)
.

(23)

The following equation can be easily verified:∑
an∈An

f (a∗m, an) = 1, ∀m ∈ {N\{n}} (24)

which means that (23) can be simplified as∑
an∈An

E
[
In

(
an, a

∗
−n

)]
=

∑
m∈{N\{n}}

pm(dmn)
−αε̄0mn. (25)

Applying (25) into (22) yields the following:

E
[
In

(
a∗n, a

∗
−n

)]
≤

∑
m∈{N\{n}}

pm(dmn)
−αε̄0mn

M
. (26)

Thus, the expected aggregate interference of any NE solution is
upper bounded by

UNE ≤

∑
n∈N

∑
m∈{N\{n}}

pnpm(dmn)
−αε̄0mn

M
. (27)

Mathematically,
∑

n∈N
∑

m∈{N\{n}} pnpm(dmn)
−αε̄0mn

can be regarded the expected aggregate interference when
all players choose the same channel since interference exists
between any two players. Therefore, Proposition 3 is proved.�

For an arbitrary channel selection profile, it is seen that
U0 is the worst-case expected aggregate interference of the
network. According to Proposition 3, an interesting result is that
increasing the number of channels, i.e., M , would decrease the
aggregate interference in the network.

Remark 2: It is seen that different network scenarios exhibit
different properties. Specifically, all NE points in underloaded
or equally loaded scenarios are optimal solutions and make the
network interference-free. For an overloaded scenario, how-
ever, there may also exist some suboptimal NE points except
the optimal one; moreover, the expected weighted aggregate
interference for overloaded scenarios is greater than zero.

V. ACHIEVING NASH EQUILIBRIUM USING UNCOUPLED

STOCHASTIC LEARNING

According to the given analysis, if there exists a distributed
algorithm that achieves pure strategy NE points of the for-
mulated interference migration game, desirable solutions for
problem P1 can be obtained. Thus, we focus on developing
such an algorithm in the following.

It is known that potential game enjoys good convergence
property. Specifically, a large number of learning algorithms
in the literature can converge to pure strategy NE points of
potential games, e.g., best response dynamic [20], no-regret
learning [12], fictitious play [21], and spatial adaptive play
[22]. Although these algorithms are distributively implemented,
there are two strict constraints: 1) They are coupled, i.e., the
updating procedures are relying on information of other players
in terms of chosen actions and/or received payoffs, and 2) it
requires the environment to be static.

It is seen that the given learning algorithms are not suitable
for the considered network in our work, because 1) obtaining
information of other players is not feasible, and 2) the inter-
ference channel gains randomly vary from slot to slot. We
then propose a simple, completely distributed, and uncoupled
stochastic learning algorithm. With the proposed algorithm,
the nodes learn the desirable channel selections from their
individual action-payoff experiences and finally adjust their
behaviors toward a pure strategy NE point.

To characterize the stochastic learning algorithm, we extend
the game to a mixed strategy form. Let the mixed strategy for
player n at iteration k be denoted by probability distribution
qn(k) ∈ Δ(An), where Δ(An) denotes the set of probability
distributions over the available action set An. In the stochastic
learning algorithm, the game is played only once in a slot
according to the mixed strategies. After each play, each player
receives a random payoff; then, the players update their mixed
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Fig. 2. Diagram of the proposed uncoupled stochastic learning algorithm.

strategy based on the received payoffs. The update rule is
simple. Specifically, if an action is selected and a positive
payoff is received, then the probability of choosing this channel
in the next iteration increases. An illustrative diagram of the
proposed uncoupled stochastic learning algorithm is shown in
Fig. 2.1 We first describe the received payoff in each slot in the
following.

1) Received Random Payoff: Suppose that at the kth slot,
the channel selection profile is given by a(k) = {a1(k), . . . ,
aN (k)}. Then, player n receives the following random payoff:

rn(k)=D −
∑

m∈{N\{n}}
pmpn(dmn)

−αεan(k)
mn f (am(k), an(k))

(28)

where f(·) is the Kronecker delta function specified by (4), and
ε
an(k)
mn is the instantaneous channel gain, which are randomly

generated according to a specific fading model, e.g., Rayleigh
fading. Note that the above payoff is random but can be directly
measured by node n [9].

The purpose of the predefined positive constant D is to keep
the received payoff positive. Even so, the received payoff may
be negative due to the nature of random channel fading. Thus,
the following modified received payoff is used instead:

rn(k) = max {rn(k), 0} . (29)

2) Uncoupled Stochastic Learning Algorithm for Converg-
ing Toward NE: The proposed stochastic learning solution is
described in Algorithm 1, and the schematic can be described
in Fig. 3. It is seen that the proposed learning algorithm is
online, as the users learn the channel selections from their
action-payoff history. That is, the users simultaneously transmit
packets and learn desirable selections. Note that the stop crite-
rion can be one of the following [44]: 1) the maximum iteration

1We assume that the system is fixed, where the number of nodes stays
unchanged. Then, all nodes start to update their selections at the same time,
which means that all the nodes perform learning simultaneously. For a dynamic
system, the proposed learning algorithm in this work cannot be directly applied,
and new mechanisms, which address dynamic node joining or leaving, are
desirable.

number is reached, 2) the variation of the network utility during
a period is trivial, or 3) for each player n, ∀n ∈ N , there is
a component of the channel selection probability sufficiently
approaching 1, for example, 0.99.

Algorithm 1: the uncoupled stochastic learning algorithm

Initialization: set k = 0 and set the initial mixed strategy of
each node to qns(k) = 1/|An|, ∀n ∈ N , ∀s ∈ M.
Loop for k = 0, 1, 2, . . . ,

1. Selecting channels stochastically: In the kth slot,
node n stochastically selects channel an(k) accord-
ing to its current channel selection probability vector
qn(k).

2. Measuring received payoffs: The game is played
once with the channel selection profile being
{a1(k), . . . , aN (k)}, and then, the nodes measure
the received payoffs rn(k) using (29).

3. Updating mixed strategy: All the nodes update their
mixed strategies according to the following rules:

qns(k + 1) = qns(k) + br̃n(k) (1 − qns(k)) , s = an(k)

qns(k + 1) = qns(k)− br̃n(k)qns(k), s �= an(k)

(30)

where 0 < b < 1 is the learning step size, r̂n(k) is the
normalized received payoff defined as follows:

r̃n(k) = rn(k)/D. (31)

End loop

It is seen that the proposed stochastic learning algorithm
is suitable for the considered network, as it is simple and
completely distributed. Specifically, 1) the updating rule, as
specified by (30), is linear with the received payoff r̃n(k);
moreover, it does not require any prior information of the
system, e.g., the distance among nodes, the characteristics of
channels, and the number of nodes, and 2) it does not need
information exchange and central control.

The proposed algorithm is also called linear reward-inaction
(LR−I), which is a special case of linear learning automata
[30]. The updating rules for linear learning automata are gener-
ally expressed as follows:

qn(k + 1) = qn(k) + bF (qn(k), an(k), rn(k)) (32)

where F (·, ·, ·) is a learning function. In addition, other forms
of update schemes can be used, e.g., linear reward-penalty and
linear reward-ε-penalty [30]. The reason for using LR−I is that
it has analytical tractability when being incorporated with game
theory, which will be discussed below. Moreover, it is noted
from (32) that the proposed stochastic learning algorithm is
uncoupled, since the update procedure is only relying on the
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Fig. 3. Schematic of the stochastic-learning-automata-based channel selection algorithm.

individual trial-payoff history of a player; in fact, each user is
not even aware of other users.

Denote a(k) = {a1(k), . . . , aN (k)} as the channel selec-
tion profile of all the nodes at the kth slot, and Q(k) =
{q1(k), . . . , qN (k)} as a mixed strategy profile of Gc, where
qn(k) = (qn1(k), . . . , qns(k)), ∀n ∈ N , s ∈ An, represents
the channel selection probability of player n at the kth slot.
Moreover, let gnm(Q) denote the expected utility function of
player n if it employs pure strategy s (i.e., an = s) and other
users k, ∀k ∈ N , k �= n, employ mixed strategy Q−n. Formally

gnm(Q)=
∑

ak,k �=n

un(a1, . . . , an−1, s, an+1 . . . , aN )
∏
k �=n

qkak
.

(33)
According to the update rule of the proposed algorithm,

it is known that sequence Q(k) is a discrete Markov chain.
Furthermore, its behavior can be described by an ordinary
differential equation on the condition that the learning step size
b is sufficiently small [39]. The investigation on the conver-
gence of LR−I has been done well for single-player systems.
Recently, the convergence of LR−I for multiple-player systems
is receiving attention, and some results can be found in the lit-
erature [18], [43]. Specifically, the following theorem presents
a sufficient condition to achieve pure strategy NE points of a
game using LR−I .

Theorem 2: Suppose that there is a nonnegative function
G(Q) : Q → R for some positive constant C such that

G(s1, Q−n)−G(s2, Q−n)

= C [gns1(Q)− gns2(Q)] , ∀n, s1, s2, Q (34)

where G(s,Q−n) is the value of G on the condition that qn
is a unit vector with the sth component unity, and gns(Q) is
specified by (33). Then, the LR−I -based learning algorithm
converges to a pure strategy NE point of a game.

Proof: See Theorem 5 in our recent work [44]. �
Based on Theorem 5, the asymptotic convergence behavior

of the proposed stochastic learning algorithm is determined by
the following theorem.

Theorem 3: With a sufficiently small step size b, the pro-
posed uncoupled algorithm asymptotically converges to a pure
strategy NE point of Gc.

Proof: Take G(Q) = E[Φ(Q)], where Φ is the potential
function specified by (12). Then, we have

G(s,Q−n)

=
∑

ak,k �=n

Φ(a1, . . . , an−1, s, an+1, . . . , aN )
∏
k �=n

qkak
. (35)

Combining (33) and (35) yields the following equation:

G(s1, Q−n)−G(s2, Q−n) = gns1(Q)− gns2(Q) (36)

where we apply Φ(ān, a−n)− Φ(an, a−n) = un(ān, a−n)−
un(an, a−n), which is specified by (19).

Thus, the convergence of the proposed algorithm toward a
pure strategy NE is validated by setting C = 1 in (34). �

Based on Theorem 3, the aggregate interference performance
of the proposed algorithm for different network scenarios is
characterized by the following propositions.

Proposition 4: In underloaded or equally loaded scenarios,
the proposed uncoupled algorithm asymptotically converges to
an optimal channel selection profile that makes the network
interference-free.

Proof: Combining Theorem 3 and Proposition 1 straight-
forwardly proves this proposition. �

Proposition 5: In an overloaded scenario, the proposed un-
coupled algorithm asymptotically converges to a pure strategy
channel selection profile and minimizes the expected weighted
aggregate interference globally or locally.

Proof: The convergence toward pure strategy NE points
follows from Theorem 3. In addition, according to Proposition 2,
among the converging channel selection profiles, there is at
least an optimal one, while others are suboptimal. Thus,
Proposition 5 is proved. �

It is important to study the achievable performance for differ-
ent fading characteristics, since there are various fading models
in practice, e.g., Rayleigh, Nakagami, and Lognormal.

Proposition 6: For a given distributed network, the achiev-
able performance of the proposed algorithm is determined by
the expected interference gain but not the specific fading model.

Proof: It is seen from (6) that expected weighted aggre-
gate interference is jointly determined by the network topology,
the transmitting power of the users, the converging chan-
nel selection profile, and the expected interference gain ε̄smn.
Thus, for a given network, the achievable performance is only
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determined by the expected interference gain but the specific
fading model. �

According to Proposition 6, two different fading models
with the same expected fading gain, for example, Rayleigh and
Nakagami, will lead to the same expected weighted aggregate
interference. Moreover, if a given fading model is with unit-
mean, then the resulting expected weighted aggregate inter-
ference would be equal to a no-fading scenario, where only
large-scale power loss is considered.

It is known that static environment is an extreme case of
time-varying case, which implies that the proposed stochastic
learning algorithm would also converge in static environment.
Specifically, the following proposition characterizes its conver-
gence in static environment.

Proposition 7: In a static system with symmetrical inter-
ference channels, the proposed uncoupled stochastic learning
algorithm also asymptotically converges to a pure strategy NE
point of the channel selection game.

Proof: In a static system, the experienced interference of
a user is degenerated as

În =
∑

m∈{N\{n}}
f(am, an)pmŵan

mn (37)

where ŵan
mn is the fixed interference gain from users m to n

on channel an, satisfying ŵan
mn = ŵan

nm. Then, the aggregate
weighted interference can be given by

Û =
∑
n∈N

pnÎn =
∑
n∈N

∑
m∈{N\{n}}

pmpnŵ
an
mnf(am, an). (38)

We define a static channel selection game Ĝc with the follow-
ing utility function:

ûn(an, a−n) = D − pnÎn. (39)

Now, applying similar lines of proof for Theorem 1, it can
be proved that the channel selection game in static environment
is also a potential game with −(1/2)Û serving as the potential
game. Based on this argument, using the same methodology in
Theorem 3 proves this proposition. �

Finally, it should be pointed out that there exists a speed-
accuracy conflict for the proposed algorithm. Denote the event
A={It converges to a pure strategy NE}. Based on Theorem 3,
it follows that Pr{A|(b,Q(0))} = 1, as b → 0. However,
smaller step size b implies slower convergence speed, whereas
larger step size leads to faster convergence speed and low
accuracy. More importantly, there is a probability that it con-
verges to pure strategies but not NE points when step size b
is not sufficiently small. Hence, the choice of step size b in
the proposed algorithm is application dependent, which should
be done by practical experiment or training [43]. We will later
study the impact of the parameters on the proposed learning
algorithm through simulation.

Remark 3: The achievable performance of the proposed
algorithm is summarized as follows: It achieves the optimal
channel selection profiles for underloaded or equally loaded
scenarios and can achieve optimal or suboptimal solutions

Fig. 4. Evolution of channel selection probabilities for three arbitrarily se-
lected nodes in Rayleigh fading environment (N = 5, M = 3, D = 0.005, and
b = 0.1).

for overloaded scenarios. This is promising as the proposed
algorithm is simple, completely distributed, and uncoupled.

VI. SIMULATION RESULTS AND DISCUSSION

Following the similar simulation setting used in [9], the
nodes in the simulation study are randomly located in a
100 m × 100 m region. For presentation, we set the transmitting
power of all the users as pn = 0 dB, ∀n ∈ N , the path loss
exponent as α = 2, and the noise power as N0 = −130 dB.
For simplicity of analysis, the transmission distance for each
intracommunication is set to 1 m, i.e., dnn = 1, ∀n ∈ N ; in ad-
dition, the instantaneous random components of intracommuni-
cations are assumed to be unit-constant. The channels are with
equal bandwidth 1 MHz. The fading of interfering channels is
assumed to undergo block fading, i.e., they remain stationary
within a slot and randomly changes in the next slot. Three
fading models, e.g., Rayleigh, Nakagami, and Lognormal, are
considered.

A. Convergence Behavior

1) Convergence Behavior in Dynamic Environment: Here,
we consider dynamic environment. For presentation, we con-
sider a network involving three channels and five nodes, which
are randomly located. The channels are assumed to undergo
Rayleigh fading with unit mean. Moreover, the positive con-
stant used in (9) and (28) is set to D = 0.005, and the step size
of the proposed algorithm is set to b = 0.1. We will discuss the
impact of these parameters later.

The convergence behavior of three arbitrarily selected nodes
is shown in Fig. 4. Let us take node 1 as an illustrative exam-
ple. It chooses the channels randomly with equal probabilities
at the beginning (q11 = 0.33, q12 = 0.33, q13 = 0.33). As the
algorithm iterates, it finally chooses channel 3 (q11 = 1, q12 =
0, q13 = 0). It is seen that their channel selection probabilities
converge to pure strategy in about 100, 250, and 290 iterations,
respectively. Moreover, the evolution of the number of nodes on
the channels is shown in Fig. 5. It is noted that the number of
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Fig. 5. Evolution of the number of nodes choosing the channels in Rayleigh
fading environment (N = 5, M = 3, D = 0.005, and b = 0.1).

nodes selecting different channels becomes invariant in about
250 iterations, which again means that Algorithm 1 converges.
These results validate the convergence of the proposed stochas-
tic learning algorithm for the interference mitigation game.

2) Convergence Behavior in Static Environment: Here, we
consider static environment and compare with an existing static
algorithm. There is an existing channel selection algorithm
proposed by Babadi and Tarokh, which is called GADIA [9],
that has been shown to achieve good performance in static
distributed systems with symmetrical interference channels. As
illustrated by Proposition 7, the proposed algorithm in our
work also converges in static environment. The convergence
behaviors of an arbitrary network topology with 20 users and
five channels are shown in Fig. 6. It is noted that the proposed
algorithm converges in the static environment, as the existing
GADIA algorithm. However, it is also noted that GADIA
converges relatively rapidly and smoothly. The reasons are as
follows: 1) The GADIA algorithm measures the interference on
all channels before updating the channel selection of a user, and
the selection update is implemented in a deterministic manner,
whereas 2) the proposed learning algorithm only measures the
interference on the current channel, and the selection update is
implemented in a stochastic manner.

B. Performance Evaluation

1) Performance Comparison for Different Solutions: Here,
we evaluate the performance of the proposed stochastic learning
algorithm in terms of the expected weighted aggregate inter-
ference. We consider a network involving five channels and
the number of nodes increasing from 2 to 30. The learning
parameters in the algorithm are set as D = 0.005 and b =
0.08. For comparison, we additionally present the performance
evaluation for a random selection scheme, the worst NE, and the
best NE. In the random selection scheme, each node randomly
chooses a channel in each slot. Due to the restriction that the
channel gains randomly vary and that there is no information
exchange, random channel selection seems to be an instinctive

Fig. 6. Convergence behavior comparison in static environment (N = 20,
M = 5, D = 0.005, and b = 0.1).

Fig. 7. Performance evolution for a distributed network involving a Rayleigh
fading environment (D = 0.005, b = 0.08, and M = 5).

method. The best and worst NE solutions are obtained in a
quasi-centralized manner. Specifically, we assume that there
is an omnipotent genie, which perfectly knows the channel
characteristics and the distance among every pair of nodes. We
run the proposed learning algorithm 103 times and then choose
the best (worst) result, respectively. According to Theorem 1,
it is known that best NE also serves as global minimum for the
expected weighted aggregate interference.

Then, we compare the performance of the proposed learning
solution, the random selection, the worst NE, and the best NE
in Fig. 7. The presented results are obtained by simulating
103 independent trials and then taking the expected value. It
is noted that in the underloaded and equally loaded network
scenarios, i.e., N ≤ 5, the difference between the performance
of the learning solution and that of the best NE is trivial. The
reason is that the learning solution asymptotically achieves
the global optimum, as characterized by Proposition 4. On the
other hand, in the overloaded network scenarios, i.e., N > 5,
it is shown that the performance gap between the learning
solution and the best NE is small. The reason is that the learning
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Fig. 8. Comparison results of expected aggregate interference for different
Rayleigh fading parameters (D = 0.005, b = 0.08, and M = 5).

solution may converge to an optimal or a suboptimal channel
selection profile, as characterized by Proposition 5, and, hence,
on average, achieves near-optimal performance.

In addition, it is noted in Fig. 7 that even the worst NE
leads to less aggregate interference than the random selection
scheme. In the random selection scheme, there is a probability
that some channels are crowded, whereas others are unoccu-
pied. On the contrary, the nodes are spread over different chan-
nels in the pure strategy NE, which leads to less interference.
It is also noted in the figure that as the number of nodes
increases, the performance gap between the learning solution
and the best NE slightly increases, whereas that between the
random selection between the best NE significantly increases.
In addition, it is noted in the figure that as the number of nodes
increases, the aggregate interference increases accordingly, as
can be expected in any multiuser systems.

2) Performance Evaluation for Different Fading Parame-
ters: Here, we present the performance evaluation for different
fading parameters. Specifically, the comparison results of ex-
pected aggregate interference are shown in Fig. 8. The results
are obtained by simulating 20 independent topologies with 103

independent trials and then taking the average value. No-fading
means only large-scale power loss is considered. It is noted
that the performance gap between no-fading and Rayleigh with
0-dB mean is trivial. The reason is that 0-dB mean implies
unit-mean. Thus, according to Proposition 6, its performance
should coincide with that of the no-fading scenario. Moreover,
it is noted that as the mean value of Rayleigh fading increases,
e.g., varying from 1 to 3 dB, the expected weighted aggregate
interference increases, as can be expected in any interference
mitigation systems.

In addition, we present the comparison results of expected
normalized achievable throughput in Fig. 9. It is noted that
as the number of nodes increases, the expected normalized
achievable rate decreases. The reason is that large numbers of
nodes results in heavy mutual interference, as can be expected
in any multiuser system. Moreover, it is noted that as the mean
value of Rayleigh fading increases, e.g., varying from 1 to 3 dB,

Fig. 9. Comparison results of expected normalized achievable throughput for
different Rayleigh fading parameters (D = 0.005, b = 0.08, and M = 5).

the expected normalized achievable rate decreases, as can be
expected in any interference mitigation systems. An interesting
result shown in the figure is that No-fading achieves the lowest
throughput performance when the number of channels is small
(M < 15), whereas it achieves medium performance when the
number of channels increases. This is due to multiuser diversity.
Specifically, the fluctuation in the channel gains leads to higher
throughput.

3) Performance Evaluation for Different Fading Models:
Here, we present the performance evaluation for different
fading models. We consider the well-known models, includ-
ing Rayleigh, Nakagami, and Lognormal. Specifically, in the
Rayleigh model, the channel gains are exponentially distributed
with unit-mean. In the Nakagami model, the probability dis-
tribution function of the channel gains is given as f(x) =
(mmxm−1/Γ(m))e−mx, x ≥ 0. In the Lognormal model, the
channel gains can be modeled by a random variable eX ,
where X is a Gaussian variable with zero mean and variance
σ2. Lognormal fading is usually characterized in the decibel-
spread form, which is related to σ, by σ = 0.1 log(10)σdB. The
decibel-spread of Lognormal fading typically ranges from 4 to
12 dB, as indicated by the empirical measurements [49].

The comparison results of expected aggregate interference
for different fading models are shown in Fig. 10. The results
are obtained by simulating 20 independent topologies with 103

independent trials and then taking the average value. It is noted
that the performance gap is trivial. The reason is that all the
presented fading models are with unit-mean. Thus, according to
Proposition 6, the presented results hold. Moreover, since all the
presented fading models are with unit-mean, their performance
coincides with that of a system with no fading, as can be noted
in this figure.

In addition, we present the comparison results of expected
normalized achievable throughput for different fading models
in Fig. 11. It is noted that as the number of nodes increases,
the expected normalized achievable rate decreases, as can be
expected. It is interesting to see that Rayleigh fading outper-
forms Nakagami fading and Lognormal fading. In addition,
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Fig. 10. Comparison results of expected aggregate interference for different
fading models (D = 0.005, M = 5, and b = 0.08).

Fig. 11. Comparison results of expected normalized achievable throughput
for different fading models (D = 0.005, M = 5, and b = 0.08).

the performance of Lognormal fading is almost the same as
that of No-fading. The reasons can be as follows: 1) Multiuser
diversity for Rayleigh fading is stronger than those for other
fading models, and 2) the multiuser diversity of Lognormal
fading is weak.

C. Impact of Parameter Selection

Here, we study the impact of the learning parameters on the
convergence and performance of the proposed stochastic learn-
ing algorithm. We study the case of the Rayleigh fading model.
All the results presented below are obtained by simulating 5000
independent trials and then taking the expected value.

First of all, the impact of the learning step size b is shown
in Fig. 12. It is noted that larger b, e.g., b = 0.2, leads to
faster convergence speed, while resulting in relatively higher
aggregate interference. The reason is that larger b makes the
proposed algorithm rapidly converge toward a pure strategy but
not necessarily to an NE point. In other words, this decreases

Fig. 12. Impact of learning step size b on the learning algorithm in Rayleigh
fading environment (N = 20, M = 5, and D = 0.005).

Fig. 13. Impact of positive constant D on the learning algorithm in Rayleigh
fading environment (N = 20, M = 5, and b = 0.1).

the exploration opportunities for the proposed algorithm and,
hence, increases the probability of converging to local opti-
mum. Therefore, the result presented in Fig. 12 follows.

Second, the impact of the predefined positive constant D
is shown in Fig. 13. It is noted that larger D, e.g., D = 0.01,
leads to faster convergence speed, while resulting in relatively
higher aggregate interference. On the other hand, smaller D,
e.g., D = 0.001, leads to slower convergence speed (since its
expected convergence iteration is greater than 800, we do not
completely plot its convergence behavior in Fig. 13), while
resulting in relatively lower aggregate interference. The reason
is that smaller D increases the probability of receiving a zero
payoff, as characterized by (29). A player with zero received
payoff will keep its mixed strategy unchanged, as can be seen
from (30), which eventually implies that the mixed strategy re-
mains unchanged. Thus, the result presented in Fig. 13 follows.

To summarize, the most appealing feature of the proposed
algorithm is that it converges in time-varying environment, and
it is simple, completely distributed, and uncoupled. Such a
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feature makes it suitable for a large number of wireless dis-
tributed optimization problems, particularly the one involving
time-varying environment, e.g., distributed discrete power con-
trol and distributed rate adaptation. Furthermore, it should be
noted that the choice of the parameters has great impact on the
algorithm in terms of both convergence speed and performance.
Thus, the choice is application dependent, which should be
done by practical experiment or training.

VII. CONCLUSION

We have investigated the problem of distributed channel
selection for interference mitigation in time-varying radio en-
vironment without information exchange. First, we formulated
this problem as a noncooperative game in which the utility of
each player is defined as a function of its experienced expected
weighted interference. We proved that the formulated game is
an exact potential game with the considered network utility,
i.e., the expected weighted aggregate interference, serving as
the potential function. Then, we proposed a simple, completely
distributed, and uncoupled stochastic learning algorithm, with-
out needing information exchange among users and requiring
prior information of the network. Using the proposed algorithm,
the users learn the desirable channel selections from their trial-
payoff history. It was analytically shown that the proposed
learning algorithm converges to pure strategy NE in the fading
environment and averagely achieves near-optimal performance.
The results provide with a desirable solution for distributed
wireless optimization problems, particularly the one involving
time-varying channels.

However, it is seen that the convergence speed of the pro-
posed stochastic learning algorithm is still relatively slower,
particularly when the number of users becomes large. Thus, we
attempt to investigate algorithms with fast convergence speed
in future work. In addition, although the proposed learning
algorithm copes with the time-varying channels well, it does
not take into account a time-varying network topology, i.e., a
user becoming in-active, or vice versa, or a user joining in or
leaving the network dynamically. Considering such a variation
is more realistic and would be studied in the future.
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