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Abstract—This article investigates the problem of distributed
channel selection in opportunistic spectrum access (OSA) net-
works with partially overlapping channels (POC) using a game-
theoretic learning algorithm. Compared with traditional non-
overlapping channels (NOC), POC can increase the full-range
spectrum utilization, mitigate interference and improve the
network throughput. However, most existing POC approaches are
centralized, which are not suitable for distributed OSA networks.
We formulate the POC selection problem as an interference
mitigation game. We prove that the game has at least one pure
strategy NE point and the best pure strategy NE point minimizes
the aggregate interference in the network. We characterize the
achievable performance of the game by presenting an upper
bound for aggregate interference of all NE points. In addition,
we propose a simultaneous uncoupled learning algorithm with
heterogeneous exploration rates to achieve the pure strategy NE
points of the game. Simulation results show that the heteroge-
neous exploration rates lead to faster convergence speed and the
throughput improvement gain of the proposed POC approach
over traditional NOC approach is significant. Also, the proposed
uncoupled learning algorithm achieves satisfactory performance
when compared with existing coupled and uncoupled algorithms.

Index Terms—Opportunistic spectrum access, cognitive radio
networks, distributed channel selection, partially overlapping
channels, exact potential game, simultaneous uncoupled learning
algorithm.

I. INTRODUCTION

OPPORTUNISTIC spectrum access (OSA) is an efficient
solution to lessen the spectrum shortage problem facing

wireless communications today [1]–[3]. Generally, there are
multiple channels in OSA systems while each user can only
access a small part at a time [4]. Thus, careful design of
channel selection is key to improve the network throughput
since it can eliminate mutual interference among the users
[5]. Due to the nonideal shaping filter, the transmitted signal
in a channel always causes spectrum leak in its adjacent
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channels. Thus, two operational channels should keep enough
separation to avoid adjacent channel interference. These chan-
nels are called non-overlapping channels, which are also
called orthogonal channels. Existing work mainly focuses
on assigning non-overlapping channels to interfering nodes,
e.g., [6]–[10]. In these studies, two interfering nodes can
simultaneously transmit only if they are allocated with non-
overlapping channels. However, due to the limited number of
non-overlapping channels, e.g., there are total eleven channels
but only three non-overlapping channels in the IEEE 802.11b-
based OSA networks, interference can not be completely
eliminated, which results in severe throughput drop. Thus,
it is important to develop new channel usage mechanisms
to improve the network throughput with non-overlapping
channels.

We resort to utilizing partially overlapping channels, in
which the operational channels are not necessary to be or-
thogonal [11]. As a result, the number of operational channels
increases significantly. It has been shown that using partially
overlapping channels can increase the full-range spectrum
utilization and improve the network throughput [12]–[19]. In
most existing research, the partially overlapping channels are
allocated in a centralized manner, using e.g., graph coloring
[12], genetic algorithm [18], and other optimization tech-
nologies [15], [19]. These centralized approaches essentially
need a central controller and information exchange among
users. However, there is no central control in distributed OSA
networks, and information exchange is costly and even not
feasible in some scenarios. Therefore, the task of assigning
partially overlapping channels in distributed OSA networks
remains unsolved and is challenging.

We first analyze the relationship between the experienced
interference and the achieved throughput under the framework
of partially overlapping channels, and then formulate the
partially overlapping channel selection problem as an inter-
ference mitigation game. The reasons for using such a game
model are threefold: (i) the users make decisions distributively
and autonomously, (ii) their decisions are interactive, and
(iii) mitigating the interference leads to increased network
throughput. The formulated game belongs to graphical games
[8], in which the utility of a user is only affected by its
nearby neighbors. We prove that the proposed game is an
exact potential game which has at least one pure strategy Nash
equilibrium (NE); more importantly, the optimal pure strategy
Nash equilibria minimize the aggregate interference.

Although this result is promising, the task of achieving
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pure strategy Nash equilibria of the game is challenging. Most
existing algorithms in game theory are coupled, e.g., the best
response [17], fictitious play [20], spatial adaptive play [41]
and regret learning [5], since they need information about
other users. Notably, these coupled algorithms can not be
applied to the considered distributed OSA networks. Users in
OSA systems are characterized by being able to monitor the
environment, learn from past experiences, and make intelligent
decisions [21], [22]. Following this methodology, we propose
an uncoupled learning algorithm to achieve the Nash equilibria
of the formulated interference mitigation game. The main
contributions of this article are summarized as follows:

1) We formulate the partially overlapping channel selection
problem as an interference mitigation game, in which the
utility function of each user is defined as the negative
value of its experienced interference. We prove that the
game has at least one pure strategy NE point and the
best pure strategy NE point minimizes the aggregate
interference in the network. In addition, we characterize
the achievable performance of the game by presenting an
upper bound for aggregate interference of all NE points.

2) We propose a simultaneous uncoupled learning algo-
rithm to achieve the pure strategy NE points of the game.
The proposed algorithm is only relying on the individual
information of a user and does not need information
about other players and all the players simultaneously
perform learning. Also, heterogeneous exploration rates
are used by exploiting the feature of spatially located
players, which leads to faster convergence speed.

3) We present comprehensive simulation results to validate
the superiority of the proposed approach. It has been
shown that in both random and grid network topolo-
gies, the throughput improvement of partially overlap-
ping channels over non-overlapping channels is signif-
icant. Also, the proposed uncoupled learning algorithm
achieves satisfactory performance when compared with
existing coupled and uncoupled algorithm.

The rest of the article is organized as follows. In Section
II, we give a brief review of related work. In Section III,
we present the interference model and formulate the network
interference mitigation problem. In Section IV, we present the
interference mitigation game and investigate the properties of
its NE, and then propose an uncoupled learning algorithm
for achieving its Nash equilibria. In Section V, simulation
results are presented. Finally, we present discussion and draw
conclusion in Section VI.

II. RELATED WORK

The problem of channel selection in OSA systems has
been extensively investigated in the literature, using e.g.,
partially observable Markovian decision process [4], optimal
stopping theory [23], and multi-armed bandit problem [24].
These work mainly focused on characterizing the behavior of
single user in OSA systems. To capture the interactions among
the multiple users, different kinds of game-theoretic channel
selection approaches have been investigated [5]–[10]. The
above references, however, only considered non-overlapping
channels and did not exploit partially overlapping channels.

The pioneer idea of using partially overlapping channels
can be found in a series of studies [11], [12]. It has been
demonstrated that using partially overlapping channels can
improve the full-range channel usage, reduce the number of
interfering users, and enhance the network throughput. Since
the traditional interference models for non-overlapping chan-
nel are not suitable for overlapping channels, new interference
models are needed. In [11], [12], a simple interference factor is
defined as the amount of the spectral overlap of two channels.
This interference factor only considers the channel separation
but does not take into account the physical distance. In a recent
work [18], the channel separation and physical distance are
jointly considered and a binary interference model is defined
to indicate whether two users interfere with each other or not.
Based on this, a continuous interference model was proposed
in [19]. The interference model used in this article can be
regarded as a general version of that in [18].

Although partially overlapping channels have draw great
attention, most existing algorithms in the literature are cen-
tralized [12], [18], [19]. In addition, although a game-theoretic
approach for utilizing partially overlapping channel selection
in wireless mesh networks has also been reported in [17], it
needs cooperation and information exchange among users. In
this article, we propose a fully distributed learning algorithm,
which is suitable for distributed OSA networks.

Generally, most algorithms for game models in the literature
are coupled which need information about other users. Re-
cently, developing uncoupled learning algorithms has been an
active topic for both communication engineering community
and game community. Specifically, an algorithm with local
information exchange between neighboring users can be found
in our recent work [8] and a Q-learning based channel
selection algorithm for cognitive radio systems was reported
in [25]. In parallel, some uncoupled learning algorithms were
proposed in the pure research of game theory [26]–[28].

Note that there are some previous work which also used
potential games to study the non-overlapping channel selection
problem, e.g., [29]–[31]. The main differences in methodol-
ogy are: i) we formulated the overlapping channel selection
problem as a graphical game, and ii) the proposed learning
algorithm in our work is simultaneous and uncoupled.

III. NETWORK AND INTERFERENCE MODELS AND

PROBLEM FORMULATION

A. Network Model

We consider a wireless canonical network consisting of
K nodes. In canonical networks, each node represents a
collection of entities located in a relatively small region with
intra-node communications [32]–[34]. Examples of canonical
networks are an IEEE 802.11-based WLAN access point (AP)
together with its clients [34] and a cluster head together with
its members [33].

Due to the attractive features such as easy deployment and
increasing popularity, the IEEE 802.11b-based networks are
always utilized as the hardware platforms for OSA technolo-
gies [8]. In this article, we also take the IEEE 802.11b-based
network as a research instance. However, it should be pointed
out the investigations presented in this article are general and
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thereby can be extended to many other scenarios. In this
network, an AP together with its associated clients form a
basic service set (BSS). All clients belonging to the same BSS
operate on the same channel chosen by the AP, and share
that channel using the well-known distributed coordination
function. As a result, each AP in the network is a decision-
making agent responsible for choosing the operational channel
to eliminate mutual interference with other APs.

Suppose that there are M channels in the considered net-
work (M = 11 in the IEEE 802.11-based WLAN), which are
denoted as {c1, . . . , cM}. Each AP chooses one channel for
its intra-node communications. The objective is to maximize
the aggregate throughput of all APs. Clearly, the throughput of
each AP is jointly determined by its own transmitting power
and the interference caused by other APs. We assume that
each AP has the same transmitting power. As a result, we
will focus on the problem of channel selection in this article,
which determines mutual interference among the APs.

B. Binary interference with partially overlapping channels

There are total eleven channels available and each channel is
with 5MHz bandwidth. Recent reported measurement results
reveal that spectrum leak in IEEE 802.11-based WLAN is
quite severe [19]. Specifically, the transmit power mask of a
channel with center frequency Fc is given by [18]:

P (f) =

⎧⎨
⎩

0dB, |f − Fc| ≤ 11MHz
−30dB, 11MHz < |f − Fc| < 22MHz
−50dB, |f − Fc| > 22MHz

(1)

It is noted that if the separation of the center frequencies of
two channels is larger than 22MHz, there is nearly no mutual
interference. Therefore, there are called non-overlapping chan-
nels. In other words, the separation of two orthogonal channels
in terms of channel number, is at least 5. Thus, there are
at most three non-overlapping channels in the IEEE 802.11-
based networks.

Measurement results recently reported in [18] reveal that
interference in IEEE 802.11-based WLAN are jointly deter-
mined by the following two factors: (i) the channel separation,
and (ii) the physical distance. To describe clearly, we first
analyze the interference model for a simple scenario involving
only two nodes (APs) and then extend it to general scenar-
ios involving multiple nodes. To study the effect of mutual
interference on the throughput, the authors in [18] defined
a throughput loss metric η = s1+s2

s′1+s′2
, where s1 and s2 is

the throughput of node 1 and node 2 respectively when the
other node is inactive, and s′1 and s′2 is their throughput when
both nodes are active. This metric reflects the throughput
loss due to mutual interference. The relationship between η
and their physical distance is measured. It was reported in
[18] that it exhibits a binary property with respect to their
physical distance. Specifically, η changes sharply from severe
interference (around 0.5) to no interference (around 1) with a
slight increase in their physical distance.

Suppose that two nodes choose channels a1 and a2 respec-
tively, then the channel separation between them in terms of
channel number is given by:

δ = |a1 − a2|. (2)

TABLE I
THE INTERFERENCE RANGE FOR DIFFERENT TRANSMITTING RATES.

Channel Separation (δ) 0 1 2 3 4 5
Interference Range (2Mb/s) 2R 1.125R 0.75R 0.375R 0.125R 0

Interference Range (5.5Mb/s) 2R R 0.625R 0.375R 0.125R 0
Interference Range (11Mb/s) 2R R 0.5R 0.345R 0.125R 0

For example, if channels 1 and 4 are chosen, we have δ =
3. To capture the binary interference model, an interference
range RI(δ) in which η is around 0.5 can be defined for a
specific channel separation distance δ. Specifically, as long
as two nodes are located in the interference range of each
other, their throughput loss ratio is almost 0.5 regardless of
the change in physical distance; also, when they are located
beyond the interference range, their throughput loss ratio is
zero regardless of the change in physical distance.

Without loss of generality, denote the communication range
as R. For a specific data rate, the relationship between the
interference range RI(δ) and the channel separation δ are sum-
marized in Table I. Take the data rate 2Mb/s as an example:
(i) when δ = 0, i.e., the two nodes use the same channel,
the interference range is two times the communication range,
i.e., RI(0) = 2R, (ii) when δ = 5, i.e., they use orthogonal
channels, the interference range is zero which means that
there is no interference no matter what the distance is, and
(iii) when the channel separation δ increases from 0 to 5,
the interference range decreases monotonically. For other data
rates, e.g., 5.5Mb/s and 11Mb/s, the same trend also holds
with a slight difference in the values of interference ranges.

The binary feature of mutual interference between two
nodes motivates us to propose a new metric to study the effect
of mutual interference on the throughput. Specifically, the
achieved normalized throughput of a node can be expressed
as T = 1

1+α , where α is the following interference indicator:

α =

{
1, d ≤ RI(δ)
0, d > RI(δ)

(3)

where d is the distance between the two nodes. The above
formulation can be explained as follows. On one hand, when
the nodes are located in the interference range, they can hear
each other even they are not using the same channel and hence
only one user can transmit at a time. Thus, each of them
achieves averagely one half throughput. On the other hand,
when their physical distance is greater than the interference
range, they can transmit simultaneously, which means that
there is no throughput loss. It is noted that this formulation
coincides well with the measured throughput [18].

We extend the binary interference model from two nodes to
the scenarios of multiple nodes. Denote the physical distance
between nodes k and n as dkn, and their channel separation
in terms of channel number as δkn. Then, the interference
indicator αkn between nodes k and n is given by:

αkn =

{
1, dkn ≤ RI(δkn)
0, dkn > RI(δkn)

(4)

Based on this, the achieved normalized throughput of node k
is determined by Tk = 1

1+Ik
, where Ik =

∑
n�=k αnk is the

aggregate interference experienced by node k.
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Fig. 1. An illustrative diagram of the defined five node sets.

The above analysis reveals the relationship between the
aggregate interference and the achieved normalized through-
put. Specifically, minimizing the aggregate interference can
maximize the throughput. Thus, in the rest of this article, we
will focus on the problem of channel selection for minimizing
the aggregate interference in the network. In other words, the
objective is to minimize the number of interfering nodes of
each node. Note that some previous work also considered
similar optimization objectives for orthogonal channel assign-
ment/selection problems, e.g., [8], [10], [35]. In particular, it
has been shown that the achievable rate is approximately linear
with the number of interfering users in some conditions (see
equation (4) in [35]).

C. Problem formulation for channel selection with partially
overlapping channels

Denote the node set as K, i.e., K = {1, 2, . . . ,K}. For a
specific node, say node k, the number of interfering nodes
is determined by the channel selection profiles of its nearby
nodes. For easy analysis, we define the node set of node
k in the interference range of channel separation δ = 4

as J (4)
k , i.e., J (4)

k = {j ∈ K : djk ≤ RI(4)}, where
RI(4) is given in Table I. Furthermore, we define the node
set of node k in the range of RI(3) but beyond the range
of RI(4) as J (3)

k = {j ∈ K : RI(4) < djk ≤ RI(3)}.
Similarly, J (2)

k = {j ∈ K : RI(3) < djk ≤ RI(2)},
J (1)
k = {j ∈ K : RI(2) < djk ≤ RI(1)} and J (0)

k =
{j ∈ K : RI(1) < djk ≤ RI(0)}. It is noted that
Jk = J (4)

k ∪ J (3)
k ∪ J (2)

k ∪ J (1)
k ∪ J (0)

k represents the node
set that potentially interferes with node k. The classification
of the five node sets is determined by the network topology
and is irrespective of the chosen channels of the nodes. An
illustrative diagram of the five node sets is shown in Fig. 1.

Denote the channel set as M, i.e., M = {1, 2, . . . ,M}.
Assume that node k chooses channel ak ∈ M for its intra-
communication. Denote the channel separation in terms of
channel number between nodes k and j as δ(ak, aj). Denote
s
(i)
k as the number of interfering nodes in the set J (i)

k ,

∀i = 0, 1, . . . , 4, which is calculated as:

s
(i)
k =

∑
j∈J (i)

k

σ
(i)
kj , (5)

where σ
(i)
kj is defined as:

σ
(i)
kj =

{
1, δ(ak, aj) ≤ i
0, otherwise

(6)

That is, if the channel separation between nodes k and j

is not greater than i, σ
(i)
kj takes one, and zero otherwise.

This is obtained by the binary interference model. Then,
under a channel selection profile (a1, . . . , aK), the achieved
normalized throughput of node k is given by:

Tk(a1, . . . , aK) =
1

1 + sk
, (7)

where sk is the total number of interfering nodes in Jk , i.e.,

sk =

4∑
i=0

∑
j∈J (i)

k

σ
(i)
kj =

4∑
i=0

s
(i)
k . (8)

Motivated by previous studies addressing the minimization
of the number of interfering nodes in wireless networks with
orthogonal channels, e.g., [8], [10], [35], we formulated a
partially overlapping channel selection problem for aggregate
interference minimization. Specifically, the objective is to
achieve the optimal channel selection profile such that the
aggregate interference in the network is minimized, i.e.,

P1: min
∑
k∈K

sk (9)

Remark 1: The used optimization objective, as given in
(9), can be regarded as the aggregate interference level in the
network. There are two reasons for using such an optimization
objective. From the user side, minimizing the number of in-
terfering nodes of node k, i.e., sk, is equivalent to maximizing
its achieved normalized throughput, as specified by (7). Also,
from the network side, minimizing the aggregate interference
would maximize the network throughput. However, we note
that a rigorous connection between the aggregate interference
and the network throughput can not be obtained since it is
topology-dependent.

IV. GRAPHICAL GAME MODEL AND UNCOUPLED

LEARNING ALGORITHM

A. Graphical game model

Since the players choose the channels distributively and
autonomously, we can formulate the channel selection problem
as a non-cooperative game. Specifically, the game is denoted
as G = {K,Ak,Jk, uk}, where K is the player (node) set, Ak

is the action space of player k, Jk characterizes the topology
with regard to the potential interfering players of player k,
and uk is the utility function of player k. The action space
of all the players is exactly the channel set, i.e., Ak ≡ M,
∀k ∈ K. Generally, the utility function in a game is denoted as
uk(ak, a−k), where ak is the action of player k and a−k is the
chosen action profile of all the players excluding player k. It
is noted that in the considered network, the utility function of
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any given player k is only affected by its action and the action
profile of the nodes in Jk. Thus, the utility function of player k
in the game can be expressed as uk(ak, aJk

), where aJk
is the

action profile of the players in Jk. This kind of game models
is called local interactive game [8] or graphical game [36],
which has began to draw attention in wireless communications
recently. In the proposed channel selection game, we define
the utility function as:

uk(ak, aJk
) = −sk, (10)

where sk is the number of interfering nodes of node k as
defined in (8). Then, the proposed channel selection game
with partially overlapping channels is expressed as:

G : maxuk(ak, aJk
), ∀k ∈ K (11)

B. Analysis of Nash equilibrium (NE) of the game

In this subsection, we present the concept of Nash equi-
librium (NE), which is the most well-known stable solu-
tion in game models, and analyze its properties in terms
of existence and performance. A channel selection profile
aNE = (a∗1, . . . , a∗N ) is a pure strategy NE if and only if no
player can improve its utility function be deviating unilaterally
[37], i.e.,

uk(a
∗
k, a

∗
Jk

) ≥ uk(ak, a
∗
Jk

), ∀k ∈ K, ∀ak ∈ Ak (12)

It is seen from (4) that the interference between two nodes
is symmetrical. Such a channel model lends a potential game
formulation for a globally interactive game, as shown in
[38]. However, we again emphasize that the formulated game
is a graphical game, which eventually requires some new
technologies to analyze its properties.

Theorem 1. The channel selection game G is an exact
potential game which has at least one pure strategy NE point.

Proof: To prove this statement, we need to prove that
there exists a potential function such that the change in the
individual utility function caused by any player’s unilateral
deviation is the same as that in the potential function [39].
Specifically, the potential function is defined as:

Φ(a1, . . . , aK) = −1

2

∑
k∈K

sk, (13)

which is exactly the negative value of the half aggregate
interference, as shown in (9).

For easy analysis, we define the set of players that cause
interference to player k in J (i)

k as follows:

I(i)
k (ak, aJk

) = {j ∈ J (i)
k : σ

(i)
kj = 1}, i = 0, 1, . . . , 4, (16)

which immediately implies the following equation:

|I(i)
k (ak, aJk

)| = s
(i)
k , i = 0, 1, . . . , 4. (17)

That is, the total number of players in I(i)
k (ak, aJk

) is exactly
the interference experienced by player k in J (i)

k .
Now, suppose that player k unilaterally changes its action

from ak to a′k while all other players keep their actions
unchanged. Also, the set of player that cause interference
to player k after its unilateral action change is denoted as

I(i)
k (a′k, aJk

). Denote Ā as the complementary set of A. For
every i = 0, 1, . . . , 4, we define J (i)

k as the full set and
divide the players in J (i)

k into the following four sets: (i)
I(i)
k (ak, aJk

)∩Ī(i)
k (a′k, aJk

), (ii) Ī(i)
k (ak, aJk

)∩I(i)
k (a′k, aJk

),
(iii) I(i)

k (ak, aJk
) ∩ I(i)

k (a′k, aJk
), and (iv) Ī(i)

k (ak, aJk
) ∩

Ī(i)
k (a′k, aJk

). On explanation, the players in the first set only
interfere with player k before it unilaterally changes action.
The players in the second set only interfere with player k
after the unilateral action change. The players in the third
set interfere with player k both before and after the unilateral
action change, while the players in the fourth set interfere with
player k neither before nor after the unilateral action change.
It is noted that the four divided player sets are exclusive and
complementary.

Based on the above classification and analysis, the change
in the utility function of player k can be expressed by (14) and
the change in the potential function caused by the unilateral
action changing of player k is given by (15), which are
presented in the top of next page. In deducing (15), we use
the following results:

Xj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, ∀j ∈ I(i)
k (ak, aJk

) ∩ Ī(i)
k (a′k, aJk

)

−1, ∀j ∈ Ī(i)
k (ak, aJk

) ∩ I(i)
k (a′k, aJk

)

0, ∀j ∈ I(i)
k (ak, aJk

) ∩ I(i)
k (a′k, aJk

)

0, ∀j ∈ Ī(i)
k (ak, aJk

) ∩ Ī(i)
k (a′k, aJk

)

(18)

which is obtained from the definitions of the four player sets.
Equations (14) and (15) show that the change in the utility

function of player k is the same as that in the potential
function. Thus, according to the definition given in [39], it is
known that the proposed channel selection game is an exact
potential game with Φ serving as the potential function. Exact
potential game is a special kind of game models since it admits
several promising features, among which the most important
feather is that every exact potential game has at least one pure
strategy NE point. Thus, Theorem 1 is proved.

To characterize the achievable performance of the proposed
interference minimization game, the aggregate interference of
a pure strategy NE point aNE = {a∗1, . . . , a∗N} is given by:

U(aNE) =
∑
n∈K

sk(a
∗
k, a

∗
Jk

), (19)

where sk is calculated by (8).
The players in the game selfishly maximize their individual

utility functions, as specified by (11). This may lead to
inefficiency and dilemma, which is known as tragedy of
commons [40]. Although Theorem 1 states that this game has
at least one pure NE point, the total number of NE points of
the game is generally hard to obtain [37]. Furthermore, the
task of analyzing the achievable performance of NE points of
a general exact potential game is interesting but challenging.
By exploiting the inherent structure of the proposed game, we
characterize the achievable performance bounds of NE points
of the proposed game in the following.

Theorem 2. The global minimum of the aggregate interfer-
ence of the network constitutes a pure strategy NE point of
G.
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Δuk = uk(ak, aJk
)− uk(a

′
k, aJk

) =
4∑

i=0

(|I(i)
k (ak, aJk

) ∩ Ī(i)
k (a′k, aJk

)| − |Ī(i)
k (ak, aJk

) ∩ I(i)
k (a′k, aJk

)|) (14)

ΔΦ = Φ(ak, a−k)− Φ(āk, a−k)

= 1
2

4∑
i=0

(|I(i)
k (ak, aJk

) ∩ Ī(i)
k (a′k, aJk

)| − |Ī(i)
k (ak, aJk

) ∩ I(i)
k (a′k, aJk

)|)
+ 1

2

4∑
i=0

{∑
j∈I(i)

k
(ak,aJk

)∩Ī(i)

k
(a′

k
,aJk

)

( 4∑
n=0

|I(n)
j (aj , ak, aJj\k)| −

4∑
n=0

|I(n)
j (aj , a

′
k, aJj\k)|︸ ︷︷ ︸

Xj

)

+
∑

j∈Ī(i)

k
(ak,aJk

)∩I(i)

k
(a′

k
,aJk

)
Xj +

∑
j∈I(i)

k
(ak,aJk

)∩I(i)

k
(a′

k
,aJk

)
Xj +

∑
j∈Ī(i)

k
(ak,aJk

)∩Ī(i)

k
(a′

k
,aJk

)
Xj

}

=
4∑

i=0

(|I(i)
k (ak, aJk

) ∩ Ī(i)
k (a′k, aJk

)| − |Ī(i)
k (ak, aJk

) ∩ I(i)
k (a′k, aJk

)|)

(15)

Proof: Denote aopt as an optimal channel selection profile
that maximizes the potential function, i.e.,

aopt ∈ arg
a

max Φ(a1, . . . , aK). (20)

According to the relationship between the potential function
and the system optimization objective, as specified by (13), it
is known that aopt also minimizes the aggregate interference
in the network, i.e.,

aopt ∈ arg
a

min
∑
k∈K

sk (21)

For any exact potential game, a maximizer of the potential
function constitutes a pure strategy NE point [39]. Therefore,
aopt serves as the optimal pure strategy NE of the game.

The above theorem characterizes the best performance of
the proposed graphical game. However, as it may have some
pure strategy NE points that are not optimal, it is also
important to characterize the worst performance of the game.
Specifically, the following theorem characterizes the upper
bound of aggregate interference at any NE solution.

Theorem 3. For any network topology, the achieved aggregate
interference is upper bounded by U(aNE) <

∑
k∈K

(
(
∑4

i=0(2i+

1)|J (i)
k |)/M), where J (i)

k is the defined interfering user set
with channel separation i and M is the number of available
channels.

Proof: For a pure strategy NE aNE = {a∗1, . . . , a∗K}, the
following equation holds:

sk(a
∗
k, a

∗
Jk

) ≤ sk(ak, a
∗
Jk

), ∀ak ∈ Ak, ∀k ∈ K, (22)

which can be directly obtained by the definition of NE as
specified by (12). By summarizing the two-sides of (22) over
Ak, we have:

|Ak|sk(a∗k, a∗Jk
) ≤

∑
ak∈Ak

sk(ak, a
∗
Jk

), (23)

The right-hand side of this equation can be regarded as
the virtual aggregate interference experienced by player k if
it would transmit on all the channels simultaneously while

all other players keep their channel selections unchanged. To
calculate its value, we re-write it as follows:

∑
ak∈Ak

sk(ak, a
∗
Jk

) =
∑

ak∈Ak

4∑
i=0

s
(i)
k (ak, a

∗
Jk

)

=
4∑

i=0

∑
ak∈Ak

s
(i)
k (ak, a

∗
Jk

),

(24)

which can be calculated according to the following cases:

• All players in J (0)
k cause co-channel interference to

player k, which implies that

∑
ak∈Ak

s
(0)
k (ak, a

∗
Jk

) = |J (0)
k | (25)

• In J (i)
k , i = 1, 2, 3, 4, players surely cause co-channel

interference to player k; furthermore, they also cause
partially overlapping channel interference to player k.
According to the interference model defined in (6), we
have:∑

ak∈Ak

s
(i)
k (ak, a

∗
Jk

) < (2i+ 1)|J (i)
k |, i = 1, 2, 3, 4

(26)

Therefore, the following inequality holds:

∑
ak∈Ak

s(ak, a
∗
Jk

) <
∑4

i=0(2i+ 1)|J (i)
k |. (27)

Accordingly, it follows that:

U(aNE) =
∑
n∈K

sk(a
∗
k, a

∗
Jk

) <
∑
k∈K

(∑4

i=0
(2i+1)|J (i)

k
|

M

)
,

(28)
which proves Theorem 3.

Intuitively, Theorem 3 shows that increasing the total num-
ber of channels, i.e., M , can lower the aggregate interference
in the network, which enhances the network throughput. This
is exactly the inherent idea of using partially overlapping
channels. In addition, the upper bound presented in this
theorem is relatively loose since the network topology is
general. In fact, as shown later, the performance of the game
is quite good.
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C. Simultaneous log-linear learning algorithm with heteroge-
neous rates

There are a large number of learning algorithms for po-
tential games in the literature, e.g., the best response [17],
fictitious play [20], spatial adaptive play [8] and regret learning
[5]. However, these algorithms are not practical for distributed
wireless networks since they need to know the actions of
other players in past plays of the game. In other words,
these algorithms are coupled. To overcome the constraint of
requiring information about other players, some uncoupled
algorithms that are only relying on the individual information
of a user, e.g., Q-learning [25], stochastic learning automata
[21], [44] and MAX-logit algorithm [30], have begin to
draw attention recently in wireless communication community.
However, these algorithms may only converge to a suboptimal
solution or only one player is allowed to update its action at a
time. Thus, a simultaneous and uncoupled algorithm that can
achieve the optimal solution is desirable.

To coincide with the distributed nature of the considered
wireless network, we propose a simultaneous log-learning
algorithm in which the players simultaneously update their
actions based on the individual received payoffs after each
play. The proposed algorithm is described in Algorithm 1.
Specifically, an iteration of the algorithm consists of multiple
slots with equal length. In every slot, a perfect carrier sense
multiple access (CSMA) mechanism is applied at each player.
The dynamics of the proposed learning algorithm can be
explained as follows. The players explore new actions with
probability δk, as given in (29). After the exploration, they
update their selections according to the log-linear learning
strategy over the selections of the last two iterations, as shown
in (30). The proposed algorithm does not need information
about other players and is only relying on the individual
information of each player. In other words, this algorithm is
simultaneous, fully distributed and uncoupled.

1) Estimate the utility function in each iteration: In the
update rule specified by (30), the player needs to know its
received utility functions in the last two iterations. Suppose
that each iteration of the proposed algorithm consists of N
slots, and denote Nk(i) as the number of slots in which
player k successfully captures the channel in the ith iteration.
Then, the throughput of player k can be expressed as Tk =
Nk(i)
N = 1

1+sk(i)
, which implies that the aggregate interference

experienced by player k can be estimated as ŝk(i) = N
Nk(i)

−1.
Thus, the received utility in each iteration in the algorithm can
be estimated by:

ûk(i) = 1− N

Nk(i)
, (31)

The proposed simultaneous log-linear learning algorithm is
motivated by the spatial adaptive play (SAP) [8], [42], [43],
which is a coupled learning algorithm for game models. In
addition, there is an improved algorithm called binary SAP
[41] (also called B-logit in [30]), in which no information
exchange is needed. However, only one player is allowed
to perform learning in this algorithm, which means that
some coordination mechanisms are needed to schedule the
learning. In fact, the proposed algorithm can be regarded as
a simultaneous version of the binary SAP. It is shown that

Algorithm 1: simultaneous log-linear learning algorithm

Initialization: Set the iteration index i = 0, let each player
k, ∀k ∈ K, randomly select a channel ak(0) ∈ Ak, and set
the binary flag xk(0) = 0, ∀k ∈ K.
All players simultaneously execute the following procedure:
Loop for i = 1, . . . ,

Exploration:
If xk(i−1) = 0, player k updates its selection according

to the following rule:

Pr[ak(i) = a] =

{ δk
|Ak|−1 , a ∈ {Ak\ak(i − 1)}
1− δk, a = ak(i − 1),

(29)
where |Ak| represents the cardinality of the set Ak, i.e., the
number of available channels in the network, and δk can be
regarded as the exploration rate of player k. Furthermore,
set xk(i) = 1 if ak(i) 	= ak(i−1), and xk(i) = 0 otherwise.

End if
Update:
If xk(i−1) = 1, player k updates the selection according

to the following rule:

Pr[ak(i) = ak(i− 1)] =
exp{ûk(i − 1)β}

X

Pr[ak(i) = ak(i− 2)] =
exp{ûk(i − 2)β}

X
,

(30)

where β is the learning parameter, ûk(i− 1) and ûk(i− 2)
represent the received utility function of the player k in
iterations i− 1 and i− 2 respectively, as specified by (31),
and X = exp{ûk(i−1)β}+exp{ûk(i−2)β}. Furthermore,
set xk(i) = 0.

End if
End loop

the (binary) SAP converges to the set of the global maximizer
of the potential function with arbitrarily high probability [41].
Also, the proposed algorithm can be regarded as a variant of
the payoff-based learning algorithm given in [28]. The key
difference is that all players choose the same exploration rate
in [28] while heterogeneous exploration rates are used in the
proposed algorithm. The reason for setting heterogeneous rates
is to accelerate the learning speed by exploiting the feature
that the players are spatially located. The following theorem
characterizes the convergence and optimality of the proposed
simultaneous log-linear learning algorithm.

Theorem 4. If the exploration parameters are chosen as
δk = exp(−βmk), ∀k ∈ K, the proposed algorithm asymptot-
ically converges to the optimal channel selection profile that
minimizes the aggregate interference for sufficiently large mk.

Proof: Refer to Appendix A.
The proposed learning algorithm can be intuitively ex-

plained as follows. At the beginning phase, the players occa-



XU et al.: OPPORTUNISTIC SPECTRUM ACCESS USING PARTIALLY OVERLAPPING CHANNELS: GRAPHICAL GAME AND UNCOUPLED LEARNING 3913

sionally explore new selections with the expectation of finding
a better selection. After the exploration, a log-linear strategy is
applied to update its selection. The log-linear strategy is also
refereed as Boltzmann exploration strategy [45], where players
choose actions of higher utilities with greater probabilities than
those of lower utilities. Most importantly, it is known that
Boltzmann exploration strategy is an efficient way to escape
from local optimal points and finally achieves the global opti-
mum. To guarantee convergence, the probability of exploration
should decrease as the algorithm iterates. Eventually, when all
players stop exploration, the system evolves into a stable state.
Thus, the value of the learning parameter mk is advisable to
be set to small values at the beginning phase which keeps
increasing as the algorithm iterates. The simplest form of the
linear strategy is m(i) = m0 + iΔm, where m0 is the initial
value, Δm is the step size, and i is the iteration number.

2) Discussion on the heterogeneous learning rates: It is
noted that the payoff-based learning algorithm given in [28]
is designed for globally interactive games where an action
of a player affects all other players. However, we found
that exploiting the feature of the spatially locations of the
players would accelerate the learning speed, which motivates
us to set the heterogeneous exploration rates for the users.
The number of potentially interfering users of player k is
given by Dk = |Jk|, where Jk is defined in Section III.C.
Specifically, the players with less value of Dk are advisable
to have larger exploration rates while those with large value
of Dk are advisable to have smaller rates. The reason is as
follows: the actions of the players with large value of Dk have
more impact on the system, and their action changes will lead
to more perturbations which finally results in lower learning
speed. Thus, we set the heterogeneous exploration rates for
player k as mk(i) = max{D1,...,Dk}

Dk
m(i). It will be shown

later that the convergence speed of the proposed algorithm
with heterogeneous exploration rates is much faster than that
of the original algorithm with homogeneous rates.

V. SIMULATION RESULTS AND DISCUSSION

A. Scenario setup

In all simulations, the IEEE 802.11b with 2Mb/s data rate is
applied. All the nodes are located in a 1000m×1000m square
area, and the interference range of co-channel communications
is set to 200m [13], i.e., 2R = 200m. Thus, the interference
ranges of different channel separations are given by RI(1) =
112.5m, RI(2) = 75m, RI(3) = 37.5m and RI(4) = 12.5m,
which are determined by the ratios shown in Table I. In the
simulation study, we first present the convergence behaviors of
the proposed simultaneous log-linear learning algorithm, and
then investigate the throughput performance.

To make it more general, we consider two kinds of net-
works. The first is the random topology, in which the nodes
are randomly located in the square. The second is the grid
topology, in which the nodes are located in the junction points
of a grid. We investigate the impact of the node density on the
performance of the proposed approach. To achieve this, we
can increase the number of nodes arbitrarily in the random
topology. For the grid topology, we increase the number of
nodes in a square rule, i.e., the number of nodes is determined
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Fig. 2. An example of simulated random topology with 60 nodes. The small
solid circles represent the nodes while the large dashed circles represent the
interference regions of different channel separations.
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Fig. 3. An example of simulated grid topology with 64 nodes. The small
solid circles represent the nodes while the large dashed circles represent the
interference regions of different channel separations.

by K = l2, where l is a natural number. Examples of the
simulated random and grid topologies are given by Fig. 2 and
Fig. 3 respectively.

To evaluate the throughput improvement of partially
overlapping channels (POC) over non-overlapping channels
(NOC), we compare the throughput performance of the pro-
posed POC approach with that of an existing optimal NOC
approach which employed the spatial adaptive play (SAP) [8].
In that approach, the channel selection problem can also be
formulated as a potential game with the aggregate interference
serving as the potential function. In fact, the NOC selection
problem can be regarded as a simplified version of the POC
selection problem and potential-game theoretic analysis for
NOC can be found in the referred work.

In addition, since the formulated POC selection problem is
an exact potential game with its optimal NE points minimizing
the aggregate interference, as characterized by Theorems 1 and
2, some other coupled and uncoupled algorithms that converge
to the pure strategy NE points can also be used as referred
algorithms. For comparison, we also evaluate the performance
of the SAP algorithm [8], the MAX-logit algorithm [30], the
B-logit algorithm [41] and the multi-agent Q-learning algo-
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Fig. 4. The comparison results of the convergence speed of the proposed
learning algorithm with heterogeneous exploration rates and that with homo-
geneous rates.

rithm1 [25]. In classification, SAP is coupled and sequential
(only exactly one player performs learning at a time), both
MAX-logit and B-logit are uncoupled and sequential, and both
the proposed and Q-learning are uncoupled and simultaneous
(multiple players perform learning at a time).

B. Convergence behavior

In this subsection, we present the convergence behaviors of
the proposed simultaneous log-linear learning algorithm. The
parameters in the learning algorithm are set to β = −8 and
m = 0.1 + 0.0095i, where i is the iteration number. These
parameters have been optimized by experiments.

The convergence behaviors for two learning algorithms with
homogeneous and heterogeneous exploration rates are shown
in Fig. 4. These results are obtained by taking the expected
value of 20 independent trials. It is noted that the proposed
learning algorithm converges in about 400 iterations while
the algorithm with homogeneous rates converges in about
600 iterations. Also, it is noted from the figure that, the
aggregate interference of both algorithms decreases gradually
as the they iterate. These results validate the convergence of
the proposed simultaneous learning algorithm and the fast
convergence speed caused by the heterogeneous exploration
rates.

C. Throughput performance

In this subsection, we evaluate the achieved performance
of the proposed uncoupled learning algorithm using POC. In
particular, we increase the node density by adding more nodes
in the square. Then, we compare the achieved throughput of
POC with that of NOC. Also, we compare the proposed un-
coupled learning algorithm with other coupled and uncoupled
algorithms.

1) Random topology: The comparison results of the ex-
pected network throughput of random topologies are shown
in and Fig. 5. The number of nodes increases from 40 to

1For the referred Q-learning algorithm, we found that it never converges
when the original algorithm presented in [25] is directly applied. To achieve its
convergence, we modify the original Q-learning algorithm slightly by setting
the learning parameter as γ = 1

5+0.045i
, where i is the iteration number.
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Fig. 5. The comparison results of the expected network throughput of random
topologies.
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Fig. 6. The comparison results of the expected network throughput of grid
topologies.

150. The results are obtained by independently simulating 500
topologies and then taking the expected values.

It is noted from Fig. 5 that the expected network throughput
of POC is significantly larger than that of NOC. The expected
network throughput of NOC is around 80Mb/s with slight
fluctuation. Specifically, it increases slightly when the number
of nodes increases from 40 to 60, while it decreases slightly
when the number of nodes increases from 60 to 160. On the
contrary, the expected throughput of POC increases signifi-
cantly and consistently as the number of nodes increase. The
results validate that the throughput improvement of POC over
NOC is significant.

Also, it is noted from the figure that the proposed algorithm
achieves satisfactory performance when compared with other
existing learning algorithms. In particular, for relatively sparse
networks, e.g., K ≤ 80, the proposed uncoupled algorithm
achieves almost the same performance with that of SAP.
As the node density becomes large, the performance of the
proposed uncoupled algorithm is slightly worse than that of
SAP. For existing uncoupled algorithms, it is noted that the
throughput performance of the proposed algorithm is close to
those of MAX-logit and B-logit, which are uncoupled with
single learning player at a time. Furthermore, it is noted that
the proposed algorithm achieves much higher throughput than
that of Q-learning, which is also uncoupled and synchronous.
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2) Grid topology: The comparison results of the expected
aggregate interference and the expected throughput of grid
topologies are shown in Fig. 6. The number of nodes increases
from 36 to 169. The results are obtained by independently
running 500 trials and then taking the expected values.

It is noted that the expected interference of POC is sig-
nificantly less than that of NOC and the expected network
throughput of POC is much higher than that of NOC, which
exhibits the same trend as that in random topologies. Specif-
ically, the expected network throughput of POC outperforms
NOC significantly, especially when the number of nodes
is large. For scenarios with small number of nodes, e.g.,
K = 36, 49, 64, 81, the throughput gap is trivial. The reason
is that the interference in the grid topologies is light when
the number of nodes is smaller due to the inherent structure.
Thus, the gap of the expected network throughput of POC and
NOC is small.

An interesting result in Fig. 6 is that the expected network
of NOC exhibits a singular trend. Specifically, it increases
when the number of nodes, i.e., K , increases from 36 to
64, decreases when K increases from 64 to 100, and again
increases when K increases from 100 to 144. This might be
caused by the grid network topologies. Since the nodes in the
grid networks are fixed, some scales of the networks may leads
to singular result. For small K , the interference in the network
is light and the non-overlapping channels is enough; thus, the
expected network throughput increases with K . However, in
some scales of networks, e.g., K = 100, the topologies lead
to some singular results and the exact reasons are hard to
analyze.

It is also noted that the proposed learning algorithm achieves
satisfactory performance when compared with existing cou-
pled or uncoupled algorithms. which exhibits the same trend
as that in random topologies

VI. CONCLUSION

We investigated the problem of distributed channel se-
lection in opportunistic spectrum access (OSA) networks
with partially overlapping channels (POC) using a game-
theoretic uncoupled learning algorithm. The motivation is that
compared with traditional non-overlapping channels (NOC),
POC can increase the full-range spectrum utilization, alleviate
interference and improve the network throughput. However,
most existing POC approaches are centralized, which are not
suitable for distributed OSA networks. We formulated the
POC selection problem as an interference mitigation game,
in which the utility function of each user is defined as the
negative value of its experienced interference. We proved that
the game has at least one pure strategy NE point and the best
pure strategy NE point minimizes the aggregate interference
in the network. We proposed a simultaneous and uncoupled
learning algorithm to achieve the pure strategy NE points of
the game. Simulation results show that the throughput im-
provement gain of the proposed POC approach over traditional
NOC approach is significant. Also, the proposed uncoupled
algorithm achieves satisfactory performance when compared
with existing coupled and uncoupled algorithms.

However, there is an important issue that is still open and
should be further investigated in future. Specifically, although

the binary interference model provides with a simple and well
approximated approach to study the mutual interference, it is
noted that only physical distance is considered. Thus, it would
be more precise and interesting to take into account the effect
of random channel fading on the interference model. This may
be solved by extending the binary model to a real-valued one.

APPENDIX A
PROOF OF THEOREM 4

Denote the system state at the ith iteration as z(i) = [a(i−
1), a(i), x(i)], where a(i) is the channel selection profile of all
the users at the ith iteration, i.e., a(i) = {a1(i), . . . , aK(i)},
and x(i) is the vector of the flag variables used in the
algorithm, i.e., x(i) = {x1(i), . . . , xK(i)}. According to the
procedure of the proposed algorithm, the sequence z(i) is a
Markovian process. Since the precise stationary distribution
of z(i) is hard to obtain, we study its stochastic stable state
using the theory of resistance trees [28], [46].

A. Brief summary of resistance trees

In this subsection, we present a brief summary of the
key theoretic results of resistance trees2. Denote P 0 as the
probability transition matrix of a finite state Markovian chain,
which is referred to as the “unperturbed” process. Consider
a “perturbed” process in which the size of perturbations can
be characterized by a scalar ε > 0, and denote the associated
transition probability matrix as P ε. We call the process P ε a
regular perturbed Markovian process if i) P ε is ergodic for
all sufficiently small value of ε and ii) P ε approaches P 0 at
an exponential rate. Mathematically, the above conditions for
two arbitrary states z1 and z2 can be expressed as:

lim
ε→0+

P ε
z1→z2 = P 0

z1→z2 , (A.1)

and

0 < lim
ε→0+

P ε
z1→z2

εR(z1→z2)
< ∞, (A.2)

for some nonnegative real number R(z1 → z2), which is
called the resistance of the transition from z1 to z2 [46].

Suppose that the state space of the perturbed Markovian
chain is Z . We can construct a complete directed graph
with |Z| vertices with each state being a vertex, where |A|
represents the cardinality of set A. Furthermore, the weight
on the directed edge from i to j is characterized by ρij =
R(zi → zj). For an arbitrary state zj , a rooted tree can be
constructed such that there is a unique directed path from every
other state to zj . The resistance of a rooted tree is the sum
the resistances of every connected vertices, and the minimum
resistance over all trees rooted at state zj is defined as its
stochastic potential. The stochastically stable state of a regular
perturbed Markovian process is determined by the following
theorem (See Lemma 1 in [46]).

Theorem 5. For each ε > 0, let με be the unique stationary
distribution of a regular perturbed Markovian process P ε.
The limε→0 μ

ε exists and the limiting distribution μ0 is a sta-
tionary distribution of the associated unperturbed Markovian
process P 0. Furthermore, the stochastically stable states are
precisely those states with minimum stochastic potential.

2For detailed analysis and investigation on resistance trees, refer to [46].
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B. The asymptotical optimality of the proposed simultaneous
log-linear learning algorithm

We first characterize the resistance of the proposed simul-
taneous log-linear learning algorithm and then show that a
minimum resistance tree must be rooted at an action profile
that maximizes the potential function of the proposed channel
selection game. The following proof follows the lines of proof
given in [28].

Theorem 6. For the proposed simultaneous log-linear learn-
ing algorithm, the resistance of a transition from state z1 =
[a(i− 1), a(i), x(i)] to z2 = [a(i), a(i+ 1), x(i+ 1)] is given
by:

R(z1 → z2) =
∑
k

xk(i+ 1)mk

+
∑

k:xk(i)=1,ak(i+1)=ak(i−1)

(
Vk(i− 1, i)− uk(i − 1)

)
+

∑
k:xk(i)=1,ak(i+1)=ak(i)

(
Vk(i− 1, i)− uk(i)

)
,

(A.3)
where Vk(i − 1, i) = max{uk(i− 1), uk(i)}.

Proof: According to the action update of the proposed
learning algorithm, the state transitions for an arbitrary player
k are determined by:

xk(i) = 0 ⇒
{

xk(i + 1) = 0, ak(i + 1) = ak(i)
xk(i + 1) = 1, ak(i + 1) ∈ {Ak\ak(i)},

(A.4)
Note that the above two cases correspond to the Exploration
and Update process of the proposed algorithm respectively.

Denote ε = exp(−β), we then have δk = εmk . The
transition probability form z1 to z2 is given by:

P ε
z1→z2 =

( ∏
k:xk(i)=0,xk(i+1)=0

(1− εmk)

)

×
( ∏

k:xk(i)=0,xk(i+1)=1

εmk

|Ak|−1

)

×
( ∏

k:xk(i)=1,ak(i+1)=ak(i−1)

ε−uk(i−1)

ε−uk(i−1)+ε−uk(i)

)

×
( ∏

k:xk(i)=1,ak(i+1)=ak(i)

ε−uk(i)

ε−uk(i−1)+ε−uk(i)

)
,

(A.5)
where the first item is the aggregate probability of players that
do not explore, the second is that for players that explore, the
third is that for players that update with the old selection,
and the fourth is that for players that update with the new
selection.

Denote Vk(i − 1, i) = max{uk(i − 1), uk(i)}. Multiplying
the numerator and denominator of the third and the fourth
items in (A.5) of εVk(i−1,i), we obtain:

P ε
z1→z2 =

( ∏
k:xk(i)=0,xk(i+1)=0

(1− εmk )

)

×
( ∏

k:xk(i)=0,xk(i+1)=1

εmk

|Ak|−1

)

×
( ∏

k:xk(i)=1,ak(i+1)=ak(i−1)

εVk(i−1,i)−uk(i−1)

εVk(i−1,i)−uk(i−1)+εVk(i−1,i)−uk(i)

)

×
( ∏

k:xk(i)=1,ak(i+1)=ak(i)

εVk(i−1,i)−uk(i)

εVk(i−1,i)−uk(i−1)+εVk(i−1,i)−uk(i)

)
(A.6)

Accordingly, if we choose R(z1 → z2) as that shown in
(A.3), we have

lim
ε→0+

P ε
z1→z2

εR(z1→z2)
=
(|Ak| − 1

)−∑
k

xk(i+1)

=
(
M − 1)

−
∑
k

xk(i+1)

, (A.7)

where M is the number of channels. Clearly, the above
equation satisfies the following condition:

0 < lim
ε→0+

P ε
z1→z2

εR(z1→z2)
< ∞, (A.8)

which means that the resistance of transition from z1 to z2 is
exactly shown in (A.3).

With the resistance of arbitrary two states is now obtained,
we are ready to study the minimum resistance tree of the
perturbed Markovian process of the proposed learning algo-
rithm. An interesting result is that the above resistance is
very similar to that obtained in [28], where the assumption
of mk = m, ∀k ∈ K is used. Thus, following the similar lines
given in [28], the asymptotical optimality of the proposed
simultaneous log-linear learning algorithm can be obtained
accordingly. Specifically, it was pointed out in [28] that the a
minimum resistance tree must be rooted at an action profile
that maximizes the potential function (See Claim 6.4 therein),
which equally means that the all channel selection profiles that
maximize the potential function are stochastically stable.

Denote the set of potential maximizer as Aopt = {a ∈
A : Φ(a) = argmax Φ(a)}. We explain the stochastically
stable states with regard to the empirical distribution of
the proposed algorithm. It is noted that the channel selec-
tion profile also evolves as a discrete Markovian process
{a(0), a(1), . . . , a(i)}, where a(i) ∈ A, ∀i = {0, 1, 2, . . .}.
Let us define the empirical distribution of an action profile
a ∈ A as follows:

z(a;Y ) =
1

Y
#{i ≤ Y : a(i) = a}, (A.9)

where #{·} denotes the number of times the event inside the
bracket occurs and a(i) is the action profile at iteration i.
Notably, the stationary distribution of the joint action profiles
μ(a) ∈ Δ(A) is related to the empirical distribution by:

lim
Y→∞

z(a;Y ) = μ(a). (A.10)

Mathematically, the statement that the stochastically stable
states are the set of potential maximizers implies the following
equalization [8]:
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lim
Y→∞

∑
a∈Aopt

μ(a) = 1. (A.11)

Now, using again the relationship between the potential func-
tion and the aggregate interference as specified by (9) and
(13), Theorem 4 follows.
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