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On the Power Allocation Problem in the
Gaussian Interference Channel with
Proportional Rate Constraints

Kandasamy Illanko, Alagan Anpalagan, Ekram Hossain, and Dimitrios Androutsos

Abstract—This paper takes an analytical approach to solving
the optimization problem of finding the power allocation that
maximizes the sum-rate of the Gaussian interference channel
with any linear power (interference) constraint and proportional
rate constraints. It is proved that the sum-rate of the Gaussian
interference channel restricted to proportional rate constraints
does not have a critical point and the maximum sum-rate subject
to said constraints occurs at the boundary of the domain formed
by the plane representing the linear power constraint. This is
accomplished by using analytic geometry in higher dimensions
to show that the curve of intersection of the sum-rate and the
proportional rate constraints is always increasing, and intersects
the boundary plane representing the linear power constraint at
a unique point. A polynomial time (in the number of users)
centralized algorithm that finds this point of optimal power
allocation is proposed. This is a significant improvement over
existing algorithms for related power allocation problems which
have exponential time complexity in the number of users. Two
distributed algorithms with linear and constant complexities are
also presented. Simulation results supporting the analysis and
demonstrating the performances of the algorithms are presented.

Index Terms—Gaussian interference channel, sum-rate, power
allocation, optimization, fairness, proportional rate constraints,
analytic geometry.

I. INTRODUCTION

AUSSIAN interference channel (GIC) has been used

to model the uplinks of code-division multiple access
(CDMA) systems, digital subscriber line (DSL) systems, and
more recently, ad-hoc networks, and small cell networks such
as femtocell networks. Almost 50 years after the first inves-
tigation by Shannon [1], an exact description of the capacity
region of the interference channel that covers all values of the
channel parameters continues to elude us [1]-[4]. Researchers
concerned with power allocation that maximizes the system
capacity have sidestepped this difficulty by optimizing what
is called the sum-rate. This sum-rate is obtained by applying
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Shannon’s original formula for capacity to each user separately
while considering the interference from the other users as
noise. Even then, the problem of finding the power allocation
that maximizes the sum-rate has remained a difficult problem.

In fact, the early works in power allocation on GIC did
not consider maximizing the sum-rate. They focused on each
user achieving its target SINR and offered distributed solu-
tions based on fixed point algorithms [5], [6]. More recently,
strategic game theory has been used to find a competitive
equilibrium among users who attempt to maximize their
utility functions [7]-[10]. A user’s utility function typically
includes its transmission rate and a cost function. Game theory
approach also offers distributed solutions based on fixed point
algorithms or their variants. It is important to note that the sum
utility or the sum-rate is not maximized in the game theory
based solutions. Also, individual power constraints are used
instead of total power constraints.

The difficulty in determining the power allocation that
maximizes the sum-rate of the GIC arises due to the fact
that the convex structure of the sum-rate is unknown. The
only theoretical insight into this problem we have is that the
power allocation that maximizes the sum-rate under a total
power constraint occurs at the boundary plane formed by the
power constraint. This was first proved by Vucic et al. [11]. We
arrived at the same conclusion, independently, using a different
technique [12]. For the problem of maximizing the sum-rate
with any fairness or quality-of-service (QoS) constraints, no
study has been reported that exploits the structure of the
feasible set. However, many search algorithms have been
proposed to determine the optimal power allocation under
various constraints. Oh et al. [13] model the uplink of a
CDMA-based cellular system as a GIC and consider the sum-
rate maximization problem under the minimum individual
signal-to-interference-plus-noise ratio (SINR), total interfer-
ence, and individual power constraints. They, then, propose
a systematic search that finds the optimal power allocation in
O(t") computations, where N is the number of mobile users
and t is the resolution of the power levels. Abadpour et al.
[14] report that the technique proposed by Oh et al. often
produces a power allocation that is unfair to some users. To
rectify this Abadapour et al. introduce maximum individual
SINR constraints and propose another algorithm.

Dai et al. [15] consider the problem of maximizing the
minimum uplink rate of mobile users with individual power
constraints as well as minimum and maximum rate constraints.
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They use Majorization theory to reduce this optimization
problem into a search problem for a real number in a closed
interval. Gjendems;j et al. [16] propose a suboptimal solution
to the power allocation problem that maximizes the system
throughput with individual power constraints. This solution is
based on an extension of the solution of the two-user case.
Qian et al. [17] consider the problem of maximizing the
weighted sum-rate subject to individual minimum rate and
power constraints. They transform this problem into multi-
plicative linear fractional programming and propose an algo-
rithm that constructs a sequence of polyblocks of decreasing
size and searches their vertexes for the optimal solution. Julian
et al. [18] approximate the Shannon’s formula log,(1+SINR)
with log,(SINR) to transform the throughput maximization
problem into a geometric program.

The solutions proposed by the work above are sometimes of
limited use in the wireless communications systems because of
the following reasons. The SINR balancing and game theory
algorithms do not maximize the system throughput or sum-
rate. All the algorithms work with individual power constraints
and not with a total power constraint. Total power constraint is
important in practical wireless systems to limit the interference
to the neighboring systems. Dividing a total power constraint
into equal individual power constraints cannot be efficient.
None of the algorithms that maximize the sum-rate uses
any knowledge of the structure of the optimization problem.
Because of this they fall into the category of search algorithms
which are computationally expensive. The complexity of any
of these algorithms is equal to or higher than that of Oh et
al.’s algorithm [13], which, as has been mentioned earlier, is
exponential in the number of users (O(tV)).

This paper takes an analytical approach to obtain the
solution of the power allocation problem that maximizes
the sum-rate of the GIC under any linear power constraint
and proportional rate constraints. The goal is to produce an
algorithm with a complexity that is practical (polynomial).
Proportional rate constraints makes more sense than minimum
rate constraints from both the QoS provisioning and fairness
(among users) point of views. Proportional rate constraints
can be also mapped to proportional delay constraints (in
case of saturated traffic scenarios). Furthermore, since existing
(minimum rate constraint) algorithms have exponential com-
plexity, a polynomial time solution with a slightly different
QoS constraint can be useful. For example, suppose we have
a situation where we have to satisfy minimum rate demands
and the demands are feasible. The optimum solution using
the existing work takes exponential time. However, we can
take the ratios of the minimum rates and use our proportional
rate algorithm to obtain a near optimal solution in polynomial
time. This is worthwhile because the difference between the
exponential and polynomial time is extremely large.

The optimization problem undertaken in this paper is chal-
lenging because of two reasons. The first is that the objective
function is not concave. This excludes many conventional
methods from convex analysis such as dual methods and
KKT conditions [19]. This difficulty is further exasperated
by the second reason that the proportional rate constraints
are non-linear. Because of this non-linearity, the maximum
sum-rate subject to the proportional rate and linear power

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 2, FEBRUARY 2014

xx100 yx 100

Fig. 1. The locus of f1: fo =1:1.
30
25
20
15
10
5
0 N
Curveof intersection of the
5 sumfunction and the ..
o >
proportional constraint
150
200 0
xx100 yx 100
Fig. 2. The curve C of intersection of f1 : fo =1 :1 and the sum.

constraints could occur at any point in the domain and not
necessarily on the power constraint plane (which is the case
with minimum rate constraints). Furthermore, in general, the
curve of intersection of the proportional rate constraints and
the sum could intersect the power constraint plane at more
than one point, as illustrated by the following example.
Example: Consider the sum f = f; + f2 of two functions
fi(z,y) =222 + 22y — 22+ 3/4 and fo(x,y) = % + 20y —
4y + 4. Suppose the proportional constraint we are interested
is 1:1 and the linear constraint is x 4y = 2. Figures 1-3 show
that the curve of intersection of the proportional constraint
fi i fo =1 :1 and the surface z = f; + fo of the sum
intersects the linear constraint plane x + y = 2 at two points.
Analytically, the equations f; = fo and x +y = 2 can be
simultaneously solved to obtain the (x, y) coordinates of these
two points. They turn out to be (1/2,3/2) and (3/2,1/2).

In our case however, we prove that the curve of intersection
of the proportional rate constraints and the sum-rate is always
increasing and intersects the power constraint plane at a unique
point. Therefore, this point is the maximum.

The contributions of this paper are as follows:

1) The proof that the power allocation that maximizes
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Fig. 4. The N-user Gaussian interference channel.

the sum-rate under the proportional rate and any linear
power constraints occurs at a unique point on the power
constraint plane.

2) A fast, simple, and stable centralized algorithm that
finds this point in polynomial time (specifically, the time
complexity of the algorithm is O(N?)).

3) A distributed algorithm that converges to this point
with linear time complexity, but does not require any
communication between the users, or a user and a central
controller.

4) A distributed algorithm with constant time complexity
that conforms to the Shared Memory model [20] in
distributed decision making.

The rest of the paper is organized as follows. Section
IT presents the system model and the problem formulation.
Analysis of the optimization problem and the summary of the
analysis can be found in Section III. A centralized algorithm
that solves the optimization problem is presented in Section
IV, and two distributed algorithms are developed in Section V.
Numerical results obtained through simulations are provided
in Section VI, followed by conclusion in Section VII. A brief
introduction to cross products in dimensions higher than three
is given in Appendix A.
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II. SYSTEM MODEL AND THE PROBLEM STATEMENT

Consider the N-user GIC shown in Fig. 4. User ¢ employs
transmitter ¢ to communicate with receiver 7 but receiver % ex-
periences interference from all other transmitters. h;; denotes
the channel gain between transmitter j and receiver ¢, and p;
denotes the power used by transmitter ¢. The channel gains
are assumed to remain constant in the time period in which
the power allocation algorithm is applied. The transmission
rate RR; of user ¢ is given by

hiipi
N+ >z hijp;

where R; stands for the additive white Gaussian noise. Letting
N@ = Nz/h” and Qi = hm/huv

Ry =logy, |1+ , €))

Di

Ri=log, |1+ ————— 2)
’ Ni+ 3 @i
The sum-rate R of the N-user GIC is
N
R=> R A3)
i=1

Our objective is to solve the optimization problem that
determines the power allocation that maximizes the sum-rate
R subject to two constraints. The first one is a linear constraint
in the transmit powers as follows:

N
Z gipi < P.
i=1

This constraint could arise, for example, as an interference
constraint in ad-hoc or sensor networks. g; is the channel
coefficient from transmitter ¢ to the interference measuring
point. P represents the acceptable interference threshold. If
all the g;’s are equal to 1, then this could represent a total
power constraint.

The second constraint deals with proportional transmission
rates

R1 :RQ :Rg:...RN:61 :62:ﬁ3:...ﬁN, (4)

where ;s are non-zero positive real numbers. Letting a; =
B:/B1 for i = 2,3,4, ..., N, the latter can be re-written as the
following N — 1 equations:

;R =R; fori=2,3,4,..,N. 5)

Often in practice, there may be a total power as well as
an interference constraint. This however, does not mean that
we have to formulate the optimization problem with both
constraints. Suppose the solution to the problem with total
power constraint is P* and the solution to the problem with the
interference constraint is P**. Then as we prove in Appendix
B, the solution to the problem with both constraints is the one
among these two points that is closest to the origin.

ITII. ANALYSIS OF THE OPTIMIZATION PROBLEM

In this section, we interpret the objective and the constraints
of our optimization problem as hyper surfaces in the N + 1-
dimensional Euclidean space and use analytic geometry in
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Fig. 5. An increasing space curve.

higher dimensions to prove that the solution to the optimiza-
tion problem exists, is unique, and it occurs on the hyper plane
formed by the linear power constraint.

A. Objective and Constraints as Hyper Surfaces

Consider first the two-user case and the 3-dimensional
Euclidean space with the Cartesian system of coordinates. We
can plot p; and po along the first two axes and the sum-rate
R(p1,p2) along the third axis. In this way, R = R(p1, p2) will
form a 2-dimensional surface in the 3-dimensional space. In
this case, there will be only one proportional rate constraint,
as Ry (p1,p2) — Ra(p1,p2) = 0, and it will also form a 2-
dimensional surface in the 3-dimensional space. Since the third
variable R is absent from the rate constraint equation, this
latter surface will rise parallel to the R axis and will intersect
the surface formed by the sum-rate R(p1,p2) in a space curve.
In summary, the intersection of two 2-dimensional surfaces in
the 3-dimensional space is forming a space curve.

In the case of three users, we need 4 dimensions. The sum-
rate R(p1,pa2,ps) will form a 3-dimensional hyper surface in
the 4-dimensional space. There will be two rate constraints,
each forming a 3-dimensional surface. The intersection of the
three 3-dimensional surfaces in the 4-dimensional space will
form a hyper space curve.

Consider now the N-user case and the N + 1 dimensional
space. We can plot the powers p;’s along the first N axes and
the sum-rate R(p1,po, ..., pn) along the last axis. In this way,
in the V+1 dimensional space, R will form an /NV-dimensional
hyper surface. Each of the /N — 1 proportional rate constraints
in (5) will form an N-dimensional surface. The intersection
of all of these surfaces - the sum-rate and the constraints - a
total of N, N-dimensional surfaces in the N -+ 1-dimensional
space will form a hyper space curve C.

B. Methodology of Analysis

We first wish to prove that this space curve C is always
increasing, and therefore, the maximum sum-rate restricted to
this curve can only occur on the boundary plane ), gip; = P.
We then prove that this curve C indeed intersects the boundary
hyper plane ) . g;p; = P, and that the point of intersection
is unique.

Fig. 6.
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A decreasing space curve.

A single-variable function f : R — R is said to be
increasing if f(a) > f(b) whenever a > b. We say a space
curve c(t) in N-dimensions defined by the parametric form
{z1(t), 22(t),...,xn(t)} is increasing if the single variable
function x,,(¢) is increasing. It immediately follows that a
space curve c(t) is increasing if the N-th dimensional compo-
nent x, (t) of its tangent vector ¢’ (t) is positive. Two examples
of space curves in 3-dimensions, one increasing and the other
decreasing are shown in Fig. 5 and Fig. 6, respectively.

The goal is to prove that the space curve C is increasing
by finding its tangent vector. Since C is the intersection of
N, N-dimensional surfaces, a tangent vector to C can be
found by crossing the N normal vectors of the surfaces. For
this purpose, we will use an extension of the familiar cross
product of two vectors in three dimensions. An outline of this
cross product in higher dimensions is given in Appendix A.
The orientation of the tangent vector obtained this way would
depend on the way we orient the N normal vectors, and the
order we cross or write them in the determinant. This is further
complicated by the fact that when we evaluate the determinant
we need to consider whether NV is odd or even. We circumvent
these difficulties by first concentrating on the magnitude of the
tangent vector and then establishing the orientation using an
indirect argument.

C. Normal Vectors of the Surfaces

We start by finding the normal vectors of the N surfaces,
namely, the sum-rate surface and the N — 1 surfaces from the
proportional rate constraints. This can be done by rewriting
the equations (3) and (5) as follows:

N
F=Y Ri—-R=0,
i=1

Hi:OéiRl—RiZO fori:2,3,4,...,N, (6)

and finding the gradients. Before proceeding, we introduce
the notation R;; for the partial derivative of user rate R; with

respect to power p;. That is, R;; = gg?. The normal vector
J
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01 02 N On+1
> R > Rz > i -1
a1 — Ro1 aaRi2 — Raa sy — Ran 0
T=1 a3R;1 — Rz a3Ria— Ras oazRin — Ran 0 : ©)
ayRi1 — Ryt anRia — Rye anyRiy — Rnn 0
> Ri > Rio > Rin
a1 — Ro1 aaRi2 — Raa ag Ry — Ran
tygr =+ | @Bu—Ra azRiz — Rao azllin — RN | = £|M|. (10)

ayRi1 — Ry

anyRi2 — Ryo

ayRiy — RynN

of the sum-rate surface is

V= (ZRH, S Ro. Y Ros Y By —1)

@)

The normal vectors of the N — 1 surfaces in (6) are
VH; =(ojR11 — Ri1, a;Ri2 — Ri2, ...,ac;Riny — Rin, 0),
for i = 2,3,4,...,N.
(3)

D. Tangent Vector to Curve C and its Last Component

Crossing the N vectors in (7) and (8), we obtain the tangent
vector T of the curve of intersection C of the sum-rate and the
rate constraints, shown in (9), where 61, 65,0s,...,0n,0N11
are the unit vectors along the NV + 1 coordinate directions.
The N + 1-dimensional component of T, which we denote by
tnN+1, 18 shown in (10). The determinant in (10) can be shown
to be row equivalent to the determinant below:

Ro1 Ry Ras .. Ron
R31 Rzz Rsz ...R3n (11)
Ry1 Ry2 Rns ...RnnN

From (2), the partial derivatives are calculated as

1
o ) pitl?
RU - {_ aijPi
(pit+1:)(1:)°

if j =1,
if j # 1,
where

Ii=N;+ > aip;. (12)
j#i

Substituting in (11), we obtain:

1 —ai2pi1 —ai3p1 —a1NP1
p1+11 I (p1+11) I (p1+11) I (p1+11)
—a21p2 1 —a23p2 —Ga2NP2

Iz (p2+12) p2+12 Iz (p2+12) I2(p2+12)
—asips3 —as2p3 1 —asNp3
I3(ps—+1I3) I3(p3+13) p3+1s I3(p3+13)

—aN1PN —AaN2PN —aN3pPN 1
IN(pn+IN) IN(pnv+IN)  In(pn+IN) pN+IN

At this point, we emphasize that none of the powers p;’s
can be zero, for if any of the p;’s is zero, then that user’s rate
would be zero, and that would violate our condition that none

of the (; is zero in (4). It can be then shown that the matrix of
the determinant above is equivalent to the matrix M below:

L —Q12p2  —a13p3 —Q1NPN
—a21p1 I, —a23P3 —G2NDPN
M= | —asip1 —azape I3 —a3NPN
—GN1P1  —GN2D2 —GN3D3 - In |
(13)
From (12), since I; = N; + > . aipj Li >
> i QigPy s Vi. This shows that the matrix M satisfies the
condition

|mii| > Z |mij|, Vi,
J#i
and therefore, is diagonally dominant. The determinant of
a diagonally dominant matrix cannot be zero [21]. Hence
det(M) # 0, and by extension, ty41 7# 0. Since tny1 is
clearly continuous in p;’s, by intermediate value theorem,
tn+1 must be either always positive or always negative.

E. Curve C is Increasing

We now consider the special case where 8; = 1 for all
¢ and the users all experience the same channel conditions.
That is, a;, = a3, for all 4, j, k. It is clear that in this case the
rate constraint (4) would imply that the powers are all equal.
Letting p; = p for all ¢ in (2),

dR; N; - 0

dp  (Ni+p32;40i)* +p(Ni+ 0352, ai) '
Hence, ”Cll—]; > 0. This shows that the tangent line to the curve
of intersection of the sum-rate and the rate constraint points
in the direction of increasing R. In other words, ty4+1 > 0,
in this special case. Combining this with the result that tx
is either always positive or always negative, we conclude that
tn+1 1s always positive.

The fact that ¢4 is always positive implies that the curve
of intersection of the sum-rate and the rate constraints is
always increasing and the maximum sum-rate restricted to this
curve C can only occur at the boundary plane Zfil gip; = P.

F. Curve C Intersects the Power Constraint Plane at a Unique
Point

We now focus on showing that the curve C does indeed
intersect the plane Zi\;l gip; = P, and that the point of
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g1 g2 g3 gN 0
> R > Riz > Ris > iRy -1
a1 — Ror aaRi2 — Ros o3 — Ras agliy —Rony 0
Ton—=| @3Ri1—Rs1  azRia— Rz azRi3 — Ras asRiy — Rgy 0 (14)
0By — Ryy agRio — Ry oulRi3 — Rys oyRiy —Runy O
anRi1 — Ry1 anRia — Ry2 anyRi3 — B3 anRBiyn —Ryn 0
S22 — 2521 Sa3 — 73521 San — YnS21
S32 — 72531 S33 — 3531 S3N — YN S31
Tn=+¢g Si2 — 7251 S43 — 13511 San — YNSu (15)

Sn2 —v2Sn1 Snz — 135N

SNN — YNSN1

intersection is unique. This is accomplished by proving that C
never becomes parallel to sz\; gip; = P. Note that a normal
vector to Zfil gipi = P isn=(¢1,92,93,...9n,0). For C
to become parallel to Zf;l gip; = P, the dot product T'.n
must vanish.

Writing T.n explicitly, in (14), and expanding by the last
column and letting S;; = a; R1; — R;;, we obtain

g1 g2 gs gN
Sa1 Saa Saz San
S31 S32 Sz S3n
Tn==+| 6, S, S San
Snvi1 Sn2 Sns SN

Letting v; = g¢;/¢g1, taking away +y; times the first column
from column j, and expanding by the first row, we arrive
at (15). At this point we go back to (13) and observe that
M is a Z-matrix that is diagonally dominant. Therefore, M
must be positive definite [22]. By extension, the matrix Mg
in the determinant that defined ¢y 41 in (10) must be either
positive or negative definite. Using our earlier shorthand S;; =
a;R1; — R;;, matrix Mg can be re-written as

[ > R >, Ria X, Ris > Rin |

Sa1 S22 Sa3 Son

S31 S32 S33 San

Mo = Sa Sa2 Sas San
| St SN2 SN3 SNN |

This matrix can be shown to be equivalent to the matrix Mg
shown in (16). Note that My must also be either positive or
negative definite.

We now notice that the determinant in (15) is a principal
minor of the matrix My above. Since My, is either positive
or negative definite, any principal minor of My must be non-
zero. Hence, T.n # 0. This shows that C never becomes
parallel to Ei\]:l gipi = P. Note that C cannot intersect any
of the coordinate planes because such an intersection would
force one of the p;’s to be zero and that would violate our
condition that none of the (; is zero. This proves C must
intersect S~ | gip; = P.

Now suppose that C intersects Zi\;l gip; = P at two

points. Then, after the first intersection, C must turn back
towards Zf\]:l gip; = P at some point. At this turning
point, C must become parallel to Zfil gip; = P. This is
a contradiction.

We now summarize the result of our analysis in the theorem
below.

Theorem 1: The power allocation that maximizes the sum-
rate R of the GIC subject to the constraint Efil gipi < P
and the proportional rate constraints in (5) exists, unique, and
. N
lies at the hyper plane ) ", g;p; = P.

IV. CENTRALIZED ALGORITHM FOR POWER ALLOCATION

In the last section, we proved that the power allocation that
maximizes the sum-rate of the GIC subject to proportional
rate constraints and Ef\il gip; < P lies on a unique point in
the plane Ei\]:l gip; = P. In this section, we first develop
a polynomial time algorithm that finds this optimal point.
Then we compare the complexity of this algorithm to a typical
power allocation algorithm for GIC.

The straightforward way of determining the power levels at
the optimal point is to solve the N —1 equations corresponding
to the proportional rate constraints with the equation for power
constraint Zf\]:l gip; = P. The N — 1 equations for the
proportional rate constraints are non-linear. This means we
have to solve a system of non-linear equations. The most
popular method to solve a system of non-linear equations
is the multi-variable Newton-Raphson method. However, this
method is highly unstable. That is, it is extremely sensitive to
the initial guess for the solution, and depending on this initial
point, may not converge at all. Because of this, we abandon
this approach and investigate other ways to find the solution.
We propose the following method which is guaranteed to
converge to the globally optimal solution as well as faster
than the multi-variable Newton-Raphson method.

A. Algorithm

We decompose the task at hand into two problems, for each
of which there is a “mature technology” [19] available to solve
that problem. We first write the proportional rate equations in
terms of User-1’s rate R; to obtain a linear system in the
powers p;’s. We then substitute the “solution” of this system
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S22 — 2521 S23 — 73521 Son — YnSa1 Sa1
S32 — 72531 S33 — 73531 San — YN S31 S31
Sz — 7251 Sz — 3841 San — YNSu Sa
M, = ) . (16)
SN2 —7125Nn1 Sn3 —735N1 SNN — INSN1 Sn1
| >, Ri2—72> ;Ra 7> ;Riz—>,Ra Y iRin—w>;Ra >,Ra |

into the power constraint equation to form a single non-linear
equation in R;.
If we let

S; =2 —1 =20

3

(1) can be re-written as

hiipi — Sz Z hijpj = SlNZ for i = 1, 2, 3, ceey N.
J#i
Note that this is a linear system of N equations in the solution
variables p;. If we know the channel coefficients and the «;’s,
then the coefficient matrix A of this linear system can be
written in terms of R;. If q is the column vector with entries
S;N;, this linear system can be written as

A7)

Ap=q. (18)

Using Cramer’s Rule, we can write p;’s in terms of A and q.
In other words, the p;’s can be written in terms of R;. Suppose
A, is the matrix obtained by replacing the ith column of A
by the column vector q. Then Cramer’s Rule gives

. det(Al)

P G (19)

Substituting in the power constraint equation Zfil gipi =P

gives us
det(A;
E giie( ):P

det(A) (20)

Since the entries of A; and A can be explicitly written in
terms of R;, the above is a non-linear equation in R;. After
solving this equation for R;, we can go back to (19) or to
(18) and obtain the power values.

We now present our low-complexity algorithm that finds
the power allocation that maximizes the sum-rate of the GIC
subject to proportional rate constraints as well as a linear
constraint on the transmit powers.

Centralized Algorithm

1) Solve the non-linear equation (20) and obtain R;.
2) Solve the linear system (18) to obtain the power levels.

Note that the convergence of this algorithm to the global op-
timal point is guaranteed because of the following. Theorem 1
states that for a particular P and a particular set of proportional
rate constraints, there exists only a unique set of power levels
and those power levels actually globally maximize the sum-
rate. This unique set of power levels corresponds to a unique
Ry as given by (1). This shows that R; exists and is unique.
Therefore, the non-linear solver will find R, in Step 1 of the
algorithm. Because of the proportional rate constraints now the
algorithm knows the unique R;’s of all users. The unique set

of R;’s implies a unique set of proportional rate constraints.
This and a particular P give rise to only one set of power
levels by Theorem 1. Therefore, the linear system in Step 2
has a unique solution and the linear system solver will find it.

B. Complexity

The first step of the Centralized Algorithm consists of
solving a single non-linear equation that finds the rate of the
first user. The second step involves solving a system of N
by N linear equations that gives the powers, where N is the
number users. We know that the time it takes to solve a single
non-liner equation is negligible compared to the time it takes
to solve a linear system of equations. Therefore, as far as the
complexity is concerned we can ignore the first step of our
algorithm. More importantly, the time spent in the first step is
independent of the number of users N.

Solving linear systems is considered a matured technology,
meaning there are extremely reliable software packages that
can solve systems with a very large number of variables
very accurately within a very short time [19]. Since the time
complexity of solving an N by N system is O(N?) [19], the
complexity of our algorithm is O(N?3), where N is the number
of users.

Let us compare this to the best algorithm in the literature
that maximizes the sum-rate, that is Oh et al.’s algorithm
[13]. It is important to note here that the Oh algorithm works
with minimum rate constraints and our algorithm works with
proportional rate constraints. Therefore, a direct comparison
may not be fair, and one has to be careful. Oh algorithm has a
complexity of O(t"), where ¢ is the number of resolution lev-
els and NV is the number of users. Note that this is an algorithm
with exponential time complexity. The time it takes to find the
optimal solution not only increases at an exponential rate in the
number of users, but it also increases with the resolution levels.
One might argue that the minimum rate constraints are tougher
to satisfy and therefore the comparison is not fair. However,
the difference between polynomial and exponential time is so
huge that even after making an allowance for the minimum
rate constraints our algorithm will stand out. In order to obtain
a clear picture about the relative speed of the two algorithms
let us consider a concrete example.

Suppose we have 10 users and the power allocation levels
are 0 to 10 mW in 1 mW intervals. This means ¢ = 10. The
time taken by Oh algorithm is approximately 10'°, whereas
our’s takes only 103, which is an improvement by a factor
of 107. In Section VI we demonstrate the efficacy of our
algorithm in solving even the sum-rate maximization problem
with minimum rate constraints.
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V. DISTRIBUTED ALGORITHMS FOR POWER ALLOCATION

The Centralized Algorithm presented in the last section
requires a duplex control channel between each user and a cen-
tral controller. Each user must estimate its channel coefficient
and report it to the central controller via this channel and then
obtain the optimum power level from the central controller.
In this section, we provide two distributed algorithms, one of
which completely eliminates the need for this control channel
and the other eliminates the need for a central controller. It
should be noted that even though the structure and the design
of these algorithms seem fairly intuitive on their own, the
proof that these algorithms actually converge to the power
allocation that maximizes the sum-rate while maintaining the
proportional rate constraints depends on Theorem 1 of Section
III.

A. Distributed Algorithm-1

This algorithm assumes no communication between the
users, or between a user and a central controller. The only
requirement is that the users have access to synchronized
clocks and that each user is aware of the total interference
constraint P. The time period allocated to power control
during the control part of the frame is divided into time slots
and the power levels are updated on each time slot until
convergence.

The total power or the interference constraint places consid-
erable limitations on the possible distributed algorithms. Since
there is no way to check if this constraint is met in the middle
of the algorithm, the only choice is to start with a power
allocation that satisfies this constraint and then preserve this
during each iteration. Hence, the algorithm starts with User-¢
employing a power p; = P/(Ng;).

After this, all users update their powers at the aforemen-
tioned synchronized time slots. During each time slot only one
user increases its power by s/g;, while all the others decrease
their power by s/[g;(N —1)], where s is a predetermined step
size. Note that this keeps the sum interference at P. Which
user needs to increase its power is determined in the following
way. Suppose ; is the SINR of User-i. We define Fairness
Quotient F'Q; of User-i as follows:

FQi = (1 + )Y,

The proportional rate constraints in (5) can be now re-written
as
FQ,=K fori=1,2,3,...,N,

where K is a number that is independent of 7 and «; is defined
as unity. By Theorem 1, for a fixed interference constraint
P, there is only one power allocation and hence one K that
satisfies this equation. This implies that for a fixed interference
constraint P, there is only one K. To emphasize this one-
to-one relationship between K and P, we re-write the last
equation as

FQ;,=Kp fori=1,2,3,...,N.

Note that the above equation will be valid only at the
optimal power allocation. For an arbitrary power allocation
satisfying the interference constraint, such as at the beginning
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of the proposed distributed algorithm, some F'Q;’s will be
lower than Kp while the others greater than Kp. Note
also that while the value of Kp can be calculated using
the Centralized Algorithm when all users’ channel gains are
known, in the current distributed decision making scenario,
users have no way of determining K p. However, each user
can calculate its own current Fairness Quotient from its SINR.
The proposed distributed algorithm works by allowing the user
with the lowest F'(); value to increase its power in each time
slot. At the beginning of each time slot, each user starts a timer
that expires after cF'Q); time units, where c¢ is an appropriate
constant that was previously agreed upon. The user whose
timer expires first increases its power by s/g;. At this point,
other users will observe a reduction in their SINR. This is the
signal for these users to reduce their power by s/[g;(N —1)],
stop their timers, and wait for the beginning of the next time
slot.

At the beginning of the algorithm, a larger step size s will
be useful so that the gap in F'Q) values can be bridged sooner.
However, as can be seen from the proof of the Theorem 2
below, at the end of the algorithm, a larger value of s will
make the F'() values oscillate with a large amplitude. A step
size that decreases during the run of the algorithm would be
the best one; and for this reason, a function f(¢), which we call
the accelerating factor, is introduced, where ¢ is the number
of iterations. f(¢) must be an increasing function in ¢; but
exactly what function to choose is best decided by simulations.
The algorithm is terminated when the change in the SINR in
successive iterations becomes too small to be of any practical
value, that is, when it is smaller than a predetermined number

“Vstop-

Distributed Algorithm-1

1) p; := P/(Ng;), Vi.

2) Compute FQ; = (1+ ~;)'/* and at the beginning of
the next time slot set the timer to expire exactly after
cFQ; time units.

3) The User-i whose timer expires first increases its power
by s/g.

4) If any user’s SINR (y) decreases before its timer expires,
it decreases its power by s/[g;(N — 1)].

5) Go to step 2 with s := s/f(t) unless change in SINR
is smaller than ~gp.

The following Lemmas and definitions are necessary for the
proof that this distributed algorithm converges.

Lemma 1: For a given interference constraint P, there
cannot be any power distribution that makes F'Q); > Kp for
all 7.

Proof: Suppose there is such a power distribution. For
ease of explanation, let us consider the two-user case first.
Without loss of generality, we can assume there is a power
distribution such that F'Q); > FQs > Kp. By incrementally
reducing User-1’s power but increasing the power of User-
2, we can make F'Q1 = F(Qo > Kp, while satisfying the
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interference constraint P. This would imply that there are
two different power distributions both satisfying a particular
proportional rate and interference constraints. This contradicts
Theorem 1. The argument for the case with more than
two users follows the same path. The contrary assumption
implies that by a re-distribution of power levels we can make
FQ, =FQy = FQ3 = ... = FQN > Kp while satisfying
the interference constraint P. This contradicts Theorem 1.
|

Definition: Increases to within §.
A sequence {a;} is said to be increasing to within § if a; 1 >
a; — § for all i, where § is a fixed positive number whose
magnitude is small compared to any a;.

Note that Deccreases to within § can be defined in a similar
manner.

Definition: Converges to C' within § from below.
A sequence {a;} is said to converge to C within § from below
if there exists an M such that C — 6§ < a; < C for ¢ > M.

Converges to C within & from above is defined in a similar
way.

Lemma 2: A sequence that is bounded above (below) and
increases (decreases) to within § converges to its least upper
bound (greatest lower bound) within § from below (above).

Proof: Follows from the well-known theorem that a
sequence that is bounded above (below) and increases (de-
creases) converges to its least upper bound (greatest lower
bound). [ |

Theorem 2: Distributed Algorithm-1 converges to the

unique, optimum power levels mentioned in Theorem 1.

Proof: The behavior of the algorithm with a fixed step
size s is established first. In other words, assume f(t) = 1
for now. Consider two sequences of numbers selected from
the F'Q) values from successive iterations of the algorithm.
First one, which we call the Lower Sequence consists of the
smallest F'() value during each iteration. Suppose during the
first iteration User-3 has the lowest F'(Q value, during the
second iteration User-1 has the lowest F'Q) value and during
the third iteration User-5 has the lowest F'QQ value and so on.
With a slight abuse of notation, the lower sequence would then
look like F'Qs, FQ1, FQs,---.

At first it would appear that the Lower Sequence is always
increasing. This is because at any iteration, the user with the
lowest F'Q is allowed to increase its power and hence its F'Q).
However, a closer examination shows that this is true only
at the beginning. Sooner or later these increasing values will
cross over the F'QQ value of a user who is decreasing its power.
The new lowest F'(Q may not be necessarily higher than the
previous one. As can be seen from Fig. 7, the new F'QQ value
can be lower than the old F'() value.

When a user decreases its power its F'() value will decrease
accordingly. How much F'(Q decreases will depend on the
channel gains as well as the current power levels. Since
the changes in power levels are the same from iteration to
iteration, the magnitude of the change in F'Q) for a particular
User-¢ will remain approximately the same throughout the run
of the algorithm. However, it will be different from user to
user. Let AF'Q,s stand for the magnitude of the maximum
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number

Fig. 7. Worst-case crossing.

change in the F'Q over all users. That is, let

As illustrated in Fig. 7, the new F'Q value can be lower than
the old F'Q value by at most AF Q. This shows that the
Lower Sequence is increasing to within AF Q.

The Lower Sequence gets arbitrarily close to K but cannot
exceed K. It cannot exceed K because of the following reason.
Suppose at the end of an iteration the Lower Sequence exceeds
K. This would imply that the F'Q values at the end of this
iteration are all greater than K. This contradicts Lemma 1.
Thus K is the least upper bound of the Lower Sequence which
increases to within AFQ ;. By Lemma 2, it converges to K
within AFQ ), from below.

Now consider the Upper Sequence which consists of the
highest F'() values on successive iteration. It can be shown
that the upper sequence decreases to within AFQj; and gets
arbitrarily close to K but never goes below K. Hence, the
Upper Sequence converges to K, to within AFQ); from
above.

The sequence of F'Q); values of any User-i through the iter-
ations is trapped between the Lower and Upper sequences and
hence will eventually oscillate about K p to within 2AF'Q ;.

The accelerating factor f(¢) will make the effective step size
approach zero as the iteration number increases. This will have
the effect of making AF'Q s approach zero. Thus, the FQ;
values will all eventually approach Kp.

Earlier, we explained that Theorem 1 implied that the
power levels will satisfy F'QQ; = K p for all 7 only at the global
optimal point. Therefore, Distributed Algorithm-1 converges
to the global optimum power allocation. [ ]

B. Distributed Algorithm-2

An algorithm that conforms to the Shared Memory model in
the study of distributed algorithms [20] is presented here. The
proposed algorithm assumes that control channels are available
between each user and a shared memory location so that it can
write its rate and obtain the rates of others or the sum-rate.
Note that this memory can be provided by one of the users,
a leader.

This algorithm also starts with power levels that satisfy
the interference constraint. Unlike the last algorithm, all users
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simultaneously update their power levels during each time slot.
However, this is done in a way that the interference constraint
is met throughout the run of the algorithm. The change in
power level is based on the each user’s proportion of its rate
to the sum-rate of all IV users. This proportional rate is defined

as
R;
> Ri .
At the beginning of each time slot the sum-rate of the NV users
is obtained by each user from the shared memory. This enables
each user to calculate its proportional rate at each iteration of
the algorithm. Let r;; be the proportional rate of User-: at the
beginning of iteration number ¢ and r; be the proportional rate

requested by User-¢. During iteration number ¢, User-i would
change its power by

Ap; = (k/gi)(Tz‘ - Tit)a

where k is an appropriate constant. Note that this means
a user whose current proportional rate is lower than its
required proportional rate will end up increasing its power
while a user whose current proportional rate is higher than its
required proportional rate will end up decreasing its power.
The following Lemma proves that the proposed update in
power levels satisfies the interference constraint.

Lemma 3: Suppose the power levels of the users satisfy
the interference constraint » . g;p; = P at the beginning of
an iteration. The power levels after a change of power levels
given by Ap;, = (k/g;)(ri — i) will still satisfy the same
interference constraint.

Proof: Since r; and r; are ratios of user rates to the
sum-rate as defined in (21), we have

i i
The change in the sum g;p; is
A Z 9iPi = Z giApi
i i

= k(rip —rit), using (22)
= ]{;Z(T” — Tit)
=k <Z“ - Z“‘t> =k(1-1)=0.

ey

T, =

(22)

Distributed Algorithm-2

) pi = P/(Ngi), Vi.
2) pi:=pi+ Api =pi+ (k/g:)(ri — 7it), Vi.
3) Go to step 2 unless change in SINR is smaller than ~p.

The following theorem proves that Distributed Algorithm-2
converges as long as the proportionality constant k is not too
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large. It should be noted here that the condition on k is nothing
new. For example, the gradient decent algorithm, which finds
the location of the minimum of f, increments its independent
variables in step sizes of £V f, and will overshoot and oscillate
about the minimum point if % is too large.

Theorem 3: Distributed Algorithm-2 converges to the
unique optimal point mentioned in Theorem 1 where the
proportional rate and the interference constraints are satisfied.

Proof: Consider User-i on iteration number ¢. Without
loosing generality we may assume that its proportional rate
;¢ at this point is lower than what it requested. This means it
will increase its power. Since everyone whose proportional rate
is smaller than their requested proportional rate would have
increased their powers while the others lowered their powers,
the new proportional rate of User-i would be higher. As long
as k is not too large, it will still be smaller than the requested
proportional rate r;. This shows that the proportional rates r;;s
will form an increasing sequence whose least upper bound is
r;. Hence, it will converge to r;. This shows that the users’
rates will converge to the proportional rates requested.

Lemma 3 showed that during every iteration of the algo-
rithm the power levels remain on the interference constraint
plane. Therefore, the point of convergence is on this plane.
By Theorem 1, there is only one point on this plane that
satisfies the proportional rate constraints. Hence, this point of
convergence is the unique optimal point. [ ]

C. Complexity

Let Ap; be the difference between the initial and final power
level of User-: during the execution of Distributed Algorithm-
1. In the worst case, this user may have to decrease its power
throughout the run of the algorithm. In each iteration, it will
decrease the power by s/[(N — 1)g;], or approximately by
s/[(Ng;], where s is the step size. If s is the average step size
during the run of the algorithm, then it would take Ap; Ng;/s
iterations.

Each iteration consists of one time slot of fixed duration in
which all users update their powers, even though they have
to wait until their timers expire before they can increase the
power or notice a decrease in their SINR and reduce the
power. The important question is whether the length of the
time slot should depend on the number of users. The time
slot should be long enough to allow each user to estimate its
SINR and calculate F'Q; = (1 + SINR;)'/®. It should also
be long enough to accommodate a length of time equal to
C[FQ;]max- But [FQ;]max does not depend on how many users
are there and ¢ can be chosen appropriately to fit [F'Q;]max into
an appropriate time interval in which users can estimate their
SINR and set the timers. This shows the length of the time
slot does not depend on the number of users. If we denote
the length of each time slot by 7 and A1 = {Ap;gi fmaxs
then the complexity order of Distributed Algorithm-1 would
be TA1N/s.

A similar calculation shows that the time complexity order
of Distributed Algorithm-2 is 7A2/s, where Az is a constant.
Its run time is independent of the number of users.
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Fig. 9. Transmission rates and power levels for Scenario-1.

VI. NUMERICAL RESULTS

Numerical results obtained using simulations for three dif-
ferent scenarios are presented here. In each scenario there are
6 users. A path-loss coefficient of 4 is used to calculate the
channel coefficients from the distances. The performance of
the Centralized Algorithm is demonstrated first followed by
that of the distributed algorithms.

A. Centralized Algorithm

The first scenario is about power allocation in GIC under a
total power constraint. The details are shown in Fig. 8, where
we deliberately place the 2nd and 5th users in unenviable
positions: their transmitter to receiver distances are a bit
greater than the other users. The power allocation by the
Centralized Algorithm with the total power constraint of 80
micro Watts is illustrated in Fig. 9. Not surprisingly, all the
runs of the Centralized Algorithm produce transmission rates
that are exactly at the proportional rates requested: 1.0000,
1.2000, 1.4000, 1.6000, 1.8000 and 2.000. We use bar charts
to illustrate the patterns in power allocation that is required to
produce this rate ratios. Note that in Fig. 9, the power levels
of User-2 and User-5 are higher than what should be expected
(the inclined line) for their rate demands. This should be
anticipated because, by our design, their transmitter to receiver
distances are greater than the others.
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Fig. 11. Transmission rates and power levels for Scenario-2.

The second and third scenarios deal with power allocation
in GIC under an interference constraint. Details of Scenario-2
are shown in Fig. 10, where the 6 users from the previous
scenario now become transmitting users, and an interference
measuring point, indicated by PR, is added. An interference
tolerance level of P = 1 pico Watts is used. The power levels
prescribed by our algorithm are shown in Fig. 11. We notice
that the rates of users for Scenario-2 are smaller compared to
those for Scenario-1. This is because an interference tolerance
level of 1 pico Watt and the assumed distances between the
transmitter and interference measuring points in Scenario-2
put a more stringent condition on the power levels than a
total power constraint of 80 micro Watts in Scenario-1.

The third scenario is identical to the second one except that
the value of s5 is fixed at 70 meters, which is lower than
the other s;’s. We put User-5 in a tough position by placing
it closer to the interference measuring point than the others.
The power allocation for this Scenario is shown in Fig. 12.
We notice that the rates of all users are smaller compared
to those in Scenario-2. User-5’s proximity to the interference
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Fig. 12. Transmission rates and power levels for Scenario-3.

measuring point pushes its power down, which in turn has the
effect of lowering the powers of all the other users through
the proportional rate constraint.

The Oh algorithm [13] mentioned before works with min-
imum rate constraints but our algorithm works with propor-
tional rate constraints. Therefore, it is not possible to compare
our algorithm to Oh algorithm directly. However, we demon-
strate the performance of our algorithm in solving the problem
for which Oh algorithm was designed. For this, we consider
the sum-rate maximization problem with minimum individual
rate constraints and a total power constraint. We calculate
the proportional rates using the minimum rate demands and
use those in our algorithm. If the minimum rates are feasible
then our algorithm should produce a result that satisfies the
minimum rate demands. Note that our algorithm will not
provide optimal sum-rate. This is because it uses that exact
proportional rates whereas minimum rates give more leeway
in the feasible set. But we expect our algorithm to be much
faster than Oh algorithm. The channel gains are obtained from
Scenario-1, but we restrict the number of users to 3 because
of the long execution time for Oh algorithm.

Table I shows that our algorithm satisfies the minimum rate
demands and achieves above 90% of the sum-rate achieved
by Oh algorithm but it is faster by a factor of about 100. This
is with three users and according to the complexity analysis
in the paper, this should increase rapidly with more users.
For example, with 10 users, our algorithm should be 100 x
(3%/10%)/[(10)3/(10)1°] times, or 107 times faster.

B. Distributed Algorithms

The second scenario in the previous subsection with the
same interference tolerance level of P = 1 pico Watt is used to
evaluate the distributed algorithms. Fig. 13 shows the behavior
of the Distributed Algorithm-1 with an accelerating factor of
f(t) = /3%, To show that the algorithm behaves exactly as
predicted in the convergence proof, we plot the F'Q) values of
the users during the execution of the algorithm. In the proof of
convergence, it was mentioned that a particular F'Q) curve will
jump in the opposite direction when it crosses another curve.
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Fig. 14. Distributed Algorithm-1: Convergence of the proportional rates.

This can be clearly seen in Fig. 13. The proportional rates
produced by this algorithm, shown in Fig. 13, are satisfactory.

For the purpose of comparison, we use the Centralized
Algorithm to calculate the Kp value and it turns out to be
4.1223. The convergence proof of the Distributed Algorithm-
1 claims that the F'Q) values should converge to K p. In Fig.
13, we see the F'() values converging to a number just above
4. A separate plot in Fig. 14 shows how the proportional rates
converge to the required ratios.

The behavior of the Distributed Algorithm-2 for the same
simulation scenario is shown in Fig. 15. We see a much faster
convergence to the required proportional rates. It should be
noted that this performance gain is obtained at the cost of
a communication channel between each user and a shared
memory.

VII. CONCLUSION

We have presented a deterministic solution to the optimiza-
tion problem of finding the power allocation that maximizes
the sum-rate of the Gaussian interference channel subject to
any linear power constraint and proportional rate constraints.
This has been accomplished using analytic geometry in higher
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TABLE 1
CENTRALIZED ALGORITHM COMPARED WITH OH ALGORITHM

Minimum rate Sum-rate | User-1 rate | User-2 rate | User-3 rate | Time

demand (bits/s/Hz) (bits/s/Hz) | (bits/s/Hz) | (bits/s/Hz) | (bits/s/Hz) | (Sec.)

4,4, 4 Oh 14.31 5.06 4.39 4.86 14.88

Ours 14.29 4.76 4.76 4.76 0.14

6,3,3 Oh 13.68 6.00 3.65 4.03 14.69

Ours 12.72 6.36 3.18 3.18 0.14

6,4,3 Oh 13.44 6.01 4.04 3.39 14.72

Ours 13.19 6.09 4.06 3.04 0.16

3,3,6 Oh 13.01 3.85 3.16 6.01 14.76

Ours 12.34 3.08 3.08 6.17 0.14

3,53 Oh 14.11 4.51 5.00 4.60 14.86

Ours 12.72 3.47 5.78 3.47 0.15

2,6,2 Oh 11.35 2.76 6.01 2.57 14.73

Ours 10.23 2.05 6.14 2.05 0.13
05 Consider the X and Y axes. Z axis is perpendicular to both X
and Y, but so is W. In fact, every direction in the ZW -plane
2p is perpendicular to both X and Y directions. Similarly, in
18l 5-dimensions, the vectors perpendicular to given two vectors
will form a 3-dimensional subspace. In light of this, math-
g 16} ematicians have defined various advanced “products” of two
g al vectors in higher spaces such as Wedge product and Clifford

£ product.
§1.zf M While Wedge product and Clifford product have found
numerous important applications in Physics and Engineering,
1! it turns out that for our present work, we could use the
o'g/ Proportional rates: ] familiar cross product after all. There is a way to extend the
1.0000 1.2002 1.4002° 1.6002 & 1.8003 : 2.0003 r - ; . . X
cross product into higher dimensions [23]. In 4-dimensions,
2 4 6 . Ié 10 12 14 the idea is to use 3 linearly independent vectors to define a
ime slots

Fig. 15. Distributed Algorithm-2: Convergence of the proportional rates.

dimensions to show that the curve of intersection of the sum-
rate and the proportional rate constraints is always increasing
and the maximum sum-rate occurs at the unique point where
this curve intersects the boundary plane formed by the linear
power constraint. A polynomial time centralized algorithm as
well as two distributed algorithms that find the optimal power
allocation have been proposed. Simulation results supporting
the analysis and demonstrating the performances of the algo-
rithms have been presented.

APPENDIX A
CROSS PRODUCT IN HIGHER DIMENSIONS

In 3-dimensions, two non-parallel vectors can be used to
define a unique direction that is perpendicular to both vectors,
using the familiar cross product. In higher dimensions, the
idea of a cross product of two vectors falls apart because
of the following reason. In 4-dimensions, given two non-
parallel vectors, there is an infinite number of vectors that are
perpendicular to both these vectors. In fact, these vectors will
form a plane that is perpendicular to the given two vectors.
Suppose we use X, Y, Z, W to label the axes in 4-dimensions.

unique direction perpendicular to these three. For example,
W axis is the only direction perpendicular to X, Y, and Z in
4-dimensions. Moreover, this new direction can be found by
using the familiar determinant style formulation.

Let us consider two illustrative examples from the 4-
dimensional space. Suppose we use 61, 03, 03, and 04 to denote
the unit vectors in the 4 coordinate directions. Let us cross
(1,0,0,0), (0,1,0,0), and (0,0, 1,0) together. Note that these
are the unit vectors in the coordinate directions X, Y and Z.
We expect the result to be the unit vector in the W direction.
Please note that in the following, the result is obtained simply
by calculating the determinant.

01 602 63 064
1 0 0 O
0 1 0 0 - (050703 1)7
0O 0 1 0

as expected. As a second example, consider the cross product
of vi =(1,1,0,0),v2 = (0,1,1,0) and vg = (0,0,1,1).

01 0y 63 04
1 1 0 0
0 1 1 0 =(1,-1,1,-1)=wv.
0O 0 1 1

We can easily verify that the result v is perpendicular to each
of the v;’s by taking the dot product. That is, v.vi = 0 for



1114

Constraint -1

/

Constraint -2

\/

Fig. 16. Solution with two linear constraints.

1=1,2,3.

In general, in the N-dimensional space, we can use N —
1 linearly independent vectors to define a unique direction
that is perpendicular to all N — 1 vectors, using the same
determinant formulation of the extension of the 3-dimensional
cross product.

APPENDIX B
TwO LINEAR CONSTRAINTS ON THE POWERS

Proposition: Suppose the solution to the optimization prob-
lem with total power constraint is P* and the solution with
the interference constraint is P**. Then the solution with both
constraints is the one among these two points that is closest
to the origin.

Proof: Note that the feasible set with both constraints is
the intersection of the feasible sets with each of the constraints
alone. Therefore, both points P* and P** are upper bounds
for the new feasible set. By the proof of Theorem 1, both lie
on the intersections of curve C with the respective constraint
planes (Fig. 16). When we travel along curve C starting from
the origin, we will encounter one of these points first. This
point is the only one among the two points that is guaranteed
to lie on the intersection of the two original feasible sets. This
point will be the solution to the new optimization problem,
because an upper bound that lies on the feasible set is the
maximum. Note that this point has the shortest distance from
the origin measured along curve C.

Distance along the curve C from the origin can be replaced
with distance from the origin unless curve C “turns too much,”
or more precisely, unless curve C becomes parallel to one of
the planes. The proof of Theorem 1 established that this is
not the case. u
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