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Abstract—This article investigates the problem of distributed
channel selection for opportunistic spectrum access systems,
where multiple cognitive radio (CR) users are spatially located
and mutual interference only emerges between neighboring users.
In addition, there is no information exchange among CR users.
We first propose a MAC-layer interference minimization game, in
which the utility of a player is defined as a function of the number
of neighbors competing for the same channel. We prove that the
game is a potential game with the optimal Nash equilibrium
(NE) point minimizing the aggregate MAC-layer interference.
Although this result is promising, it is challenging to achieve a NE
point without information exchange, not to mention the optimal
one. The reason is that traditional algorithms belong to coupled
algorithms which need information of other users during the
convergence towards NE solutions. We propose two uncoupled
learning algorithms, with which the CR users intelligently learn
the desirable actions from their individual action-utility history.
Specifically, the first algorithm asymptotically minimizes the
aggregate MAC-layer interference and needs a common control
channel to assist learning scheduling, and the second one does
not need a control channel and averagely achieves suboptimal
solutions.

Index Terms—Opportunistic spectrum access, cognitive radio
networks, distributed channel selection, MAC-layer interference,
potential game, graphical game, uncoupled learning algorithms.

I. INTRODUCTION

COGNITIVE radio has been regarded as a promising
solution to address the spectrum shortage problem [1].

In cognitive radio networks (CRNs), opportunistic spectrum
access is key to improve the network throughput performance
[2]. It is a current active research topic to study the problem
of distributed channel selection for a kind of CRNs, where CR
users are spatially located and direct interaction only emerges
between neighboring users [3]–[8]. Note that a common
assumption in the existing studies is that they need information
exchange among neighboring users during the convergence
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towards a desirable solution. Such an assumption, however,
does not always hold in practice, e.g., in the presence of
deep channel fading or shadowing [9], and may lead to heavy
communication overhead. Thus, we focus on the problem of
distributed channel selection for the above-mentioned CRNs
without information exchange.

We investigate this problem from an interference min-
imization perspective. The commonly used model in the
literature is the PHY-layer interference model, in which it
cares more about the amount of experienced interference
[10]. However, it may not coincide with practical communi-
cations, especially when multiple access control mechanisms
are involved. Specifically, recently reported experiment [11]
shows that the traditional PHY-layer interference model does
not coincide with the measured results (see Section III for
detailed discussion and analysis). Therefore, it is important
and timely to design a new interference metric to capture
practical communications.

In this article, we consider a new interference metric, called
the MAC-layer interference, which is defined as the number
of neighboring users choosing the same channels. Unlike the
traditional PHY-layer interference model, the MAC-layer in-
terference in essence is used in determining whether two users
interfere with each other or not. Such a binary-abstraction
captures most multiple access control mechanisms well, e.g.,
CSMA and Aloha. In fact, MAC-layer interference model can
be regarded as a high-level abstraction of traditional PHY-layer
interference model and is more practical and useful.

We formulate a MAC-layer interference minimization game,
in which each user selfishly minimizes its experienced MAC-
layer interference. The reasons for formulating this game are
threefold: (i) the decisions of CR users are interactive, (ii)
minimizing the number of nearby competing users would
lead to high throughput for a user, (iii) the CR users behave
selfishly and distributively in essence.

However, the task of achieving Nash equilibrium (NE) so-
lutions of the formulated game is challenging, not to mention
achieving the optimal one. The reason is that most traditional
game-theoretic algorithms, e.g., spatial adaptive play [3], best
response [12], and fictitious play [13], are coupled, i.e., they
need information of other users in terms of chosen actions
and/or received payoffs during the convergence towards NE
points.

As a result, we propose two uncoupled [14] learning al-
gorithms for the considered CRNs. The key idea is that the
users observe the environment, estimate their received utilities,
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intelligently learn from their individual action-payoff history,
and then adjust their behaviors towards NE solutions. In fact,
such a procedure is a typical form of the well-known cognitive
cycle [1]. In comparing the two uncoupled learning algorithms,

• The first uncoupled learning algorithm (tagged as Al-
gorithm 1) needs a common control channel to assist
learning scheduling (but no exchange of information),
asymptotically achieves the optimal NE solution and
minimizes the aggregate MAC-layer interference.

• The second uncoupled learning algorithm (tagged as Al-
gorithm 2) does not need a common control channel, and
hence averagely converges to some suboptimal solutions
for network collision minimization problem.

The rest of the article is organized as follows. In Section
II, we give a brief review of the related work. In Section
III, we present the motivation and definition of MAC-layer
interference model. In Section IV, we present the system
model and formulate the optimization problem. In Section V,
we propose the MAC-layer interference minimization game
and investigate its properties. In Section VI, we develop two
learning algorithms that converge to pure strategy NE points
of the game. Simulation results are presented in Section VII
and conclusion are drawn in Section VIII.

II. RELATED WORK

In order to study the interactions among users in the prob-
lem of distributed channel selection for CRNs, game theory
has been widely applied and various versions of game models
can be found [15]–[21]. Most formulated game models in these
references are non-spatial, in which the CR users are located
closely and hence the transmission of a user interferes with
all other users. To overcome this problem, different versions
of local interaction games (also called graphical games in
[5], [6]) have been proposed [3]–[8]. Specifically, graphical
game formulation for distributed channel selection has been
established in [5], local minority game for this problem has
been studied in [6], global optimization using local interaction
games has been investigated in [3], spatial congestion game
formulation for spectrum sharing has been established in [7],
and local bargaining based spectrum allocation algorithms on
a conflict graph have been proposed in [8].

However, most existing game theoretic solutions, including
global and local interaction game models, mainly focus on
investigating the properties of the games, e.g., the existence
of NE and the convergence toward NE with explicit or implicit
information exchange among users, but little attention has
been paid to scenarios in the absence of information exchange.

There are some uncoupled learning solutions for CRNs,
which mainly include reinforcement learning and no-regret
learning. Specifically, reinforcement learning solutions for
interference control in wireless regional area networks [22]
and opportunistic bandwidth sharing [23] have been proposed
respectively. In parallel, multi-agent reinforcement learning
channel selection algorithms were proposed for CRNs [24]. In
addition, no-regret learning based channel selection algorithms
for CRNs have been investigated in [15], [19]. It is hard to
directly apply these learning algorithms to the MAC-layer
interference minimization game because the effects of the local

interaction on the convergence and performance are generally
hard to analyze. In addition, comprehensive and comparative
survey on decision-theoretic approaches for CRNs can be
found in [25].

Note that, the considered system model in this article is
similar to that proposed in our previous work [3], [4]. In
this article, we re-consider this problem and formulate the
MAC-layer interference model, which has physical meaning
for practical communication systems. More importantly, the
algorithms in [3], [4] are coupled, whereas the algorithms
proposed in this article are uncoupled. In our recent work
[26], we also proposed a new interference metric which is
very similar to the MAC-layer interference model in this work.
The key difference is that partially overlapping channels were
considered in [26] while we consider orthogonal channels in
this article.

III. MOTIVATION, DEFINITION AND DISCUSSION OF

MAC-LAYER INTERFERENCE

A. Motivation and definition

In a multiuser wireless system, mutual interference among
users is unavoidable due to the open attribute of wireless
transmissions. The commonly used model in the literature
is the PHY-layer interference model, in which it cares about
the amount of experienced interference [10]. However, it is
noted that the PHY-layer interference models do not take into
account multiple access control mechanisms, which have been
commonly used in today’s wireless communication systems.
As a result, the PHY-layer interference models are more suit-
able for information-theoretic analysis and may not coincide
with practical communications.

Recently reported experimental results [11] reveal that
when multiple access control mechanisms are considered in
interference models, some distinct and interesting features
emerge. Following the same experiment setup therein, two
nodes (links) equipped with 802.11a/b/g cards are considered
to study the effect of mutual interference. Note that a node
(link) here consists of a transmitter and a receiver which are
located clearly [11]. We consider Log-normal model fading
model in this article, since it captures the medium-scale path-
loss well1. Specifically, the received signal strength (RSS) of
a link from the other link is expressed as:

S = Ptd
−βeX , (1)

where Pt is the transmitting power, d is the distance between
the two nodes, β is the path loss exponent and X is a Gaussian
variable with zero-mean and variance σ2. The Log-normal
fading is usually characterized in the dB-spread form which

1It is seen that we do not include small-scale fading in the formulation,
e.g., Rayleigh and Rician. The reasons are: 1) these kinds of fading are only
considered when the processing time is comparable with the symbol period.
In practice, these kinds of fading are generally eliminated with some PHY-
layer technologies, e.g., channel equalization, and 2) the proposed MAC-layer
interference model is a kind of MAC-layer scheduling, whose processing time
is much larger than the symbol period. In its time scale, generally only large-
scale or medium-scale path-loss are considered. However, it should be noted
that one would apply the approaches in this article to study the MAC-layer
interference when small-scale channel fading is eliminated in the PHY-layer.
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Fig. 1. The effect of mutual interference on the achievable throughput.

is related to σ by σ = 0.1 log(10)σdB. The dB-spread of Log-
normal fading typically ranges from 4 to 12 dB as indicated
by the empirical measurements [27].

The well-known CSMA is applied as the multiple access
control mechanism, since it has been commonly used in
practice. According to its principles, a link can hear the
transmission of the other link if the RSS is great than a
threshold Sth. In the experiment setup, the parameters are
set to Pt = 1W , β = 2, Sth = 8.1633 × 10−6W and
σdB = 6dB. Denote s1 and s2 as the throughput of link1 and
link2 respectively when the other link is inactive, and s′1 and
s′2 as the throughput of them when both links are active. The
relationship between the ratio γ =

s′1+s′2
s1+s2

and their distance
is measured to study the effect of mutual interference on the
throughput [11].

By simulating 106 independent trials, we illustratively
present the throughput ratio in Fig. 1. Similar to those shown
in [11], it is noted that there are also two interesting results:
(i) the measured normalized throughput changes sharply from
severe interference (around 0.5) to almost no interference
(around 1) with a slight increase in their physicaldistance. As
a result, there are three regions with respect to distance, i.e.,
interference region, transitional region and non-interference
region, as shown in the figure, and (ii) the normalized through-
put in both interference and non-interference regions remains
almost the same regardless of the change of distance, while it
increases linearly with the distance in the transitional region.

It is shown in Fig. 1 that the span of the transitional region,
i.e., d2 − d1, is relatively small. Thus, we use a simplified
interference model for the convenience of analysis. Specifi-
cally, if the throughput ratio is less than a threshold, e.g., 0.95,
mutual interfere exists, otherwise there is no interference. The
distance corresponding to the interference threshold is denoted
as d0, d1 < d0 < d2. Formally, it motivates us to define the
MAC-layer interference as follows:

α =

{
1, x ≤ d0
0, x > d0,

(2)

where x is the distance between the two links. Based on this
definition, the normalized throughput can be approximately
expressed as R = 1

1+α . It is noted that such a binary
interference model provides a good approximation for the

measured results. Thus, by sacrificing a little accuracy, we
are able to design efficient algorithms. However, it should be
pointed out other forms of MAC-layer interference can also
be defined to capture the effect of channel fading2.

Some issues related to channel fading are discussed below:
(i) in the interference region, the large-scale path loss com-
ponent, i.e., Ptx

−β , is strong enough, and one link can deter-
ministically hear the other link regardless of the realizations of
channel fading. Thus, only one link can transmit successfully
at a time. In this region, the impact of channel fading is
concealed by strong large-scale path loss component, (ii) in
the transitional region, the large-scale path loss component is
medium, and the RSS is fluctuating around the interference
detection threshold due to the randomness of channel fading
gain. Thus, one link can probabilistically hear the other link,
which is referred as probabilistic interference. However, we
simplify the probabilistic interference into a binary model by
ignoring the effect of channel fading. Such a simplification
sacrifices a little accuracy but leads to mathematical tractabil-
ity, and (iii) in the non-interference region, the large-scale path
loss component is weak, and one link never hear the other link
regardless of the realizations of channel fading. In other words,
the impact of channel fading is eliminated by the far distance.
In short, the impact of channel fading in the interference
and non-interference regions is concealed by the strong and
weak RSS respectively. In addition, channel fading indeed
has impact on the MAC-layer interference in the transitional
region but was ignored for mathematical tractability. We will
include simulation results for channel fading in Section VII.

B. Extension to multiuser systems

In a multiuser system, if user n can hear the transmissions
of other users, it means that mutual interference exists among
user n and multiple other users. According to the princi-
ples of multiple access control mechanisms, the normalized
throughput of user n can be approximated by 1

1+
∑

m αmn
,

where αmn is the MAC-layer interference between users n
and m with distance xmn. Then, following the same idea of
the relationship between the two-user MAC-layer interference
and normalized throughput, we can define the MAC-layer
interference experienced by user n in a multiuser system as:

In =
∑
m

αmn. (3)

2For instance, in order to address the transitional region, an improved
method is to extend the binary interference model to a real-valued one. In
particular, one may define the MAC-layer interference as follows:

α′ =

⎧⎨
⎩

1, x ≤ d1
x−d2
d1−d2

, d1 < x < d2
0, x ≥ d2

The above defined α′ is a continuous function ranging in [0, 1]. Specifically,
α′ = 1 and α′ = 0 correspond to the same meanings as those in (2), and the
value of 0 < α′ < 1 corresponds to probabilistic interference and addresses
the transitional region well. The normalized throughput of a link can also
be well expressed as R = 1

1+α′ . It is noted that this formulation fits the
measured throughput well.

The above alternative MAC-layer interference model is more precise than
the binary model defined in (2); in particular, it addresses the randomness of
channel fading gain in the transitional region. However, the task of dealing
with the a real-valued interference leads to mathematical intractability. Thus,
we use the binary interference model in this article and will consider the
real-valued interference model in future.
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In the following, the above defined MAC-layer interference
will be used in the distributed channel selection problem. In
fact, as a binary-abstraction of PHY-layer interference model,
the MAC-layer interference captures most multiple access
control mechanisms well, e.g., CSMA and Aloha.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. Bilateral interference CRNs

Consider a CRN consisting of N CR users. Here, a CR user
represents a closely located pair of transmitter and receiver,
which means that the considered network belong to canonical
networks [3]. Generally, the CR users are spatially distributed
and interference only occurs among nearby users [5], [6].
To capture the spatial separation, we characterize the limited
range of interference by an un-directional graph G = (N , E),
where N = {1, . . . , N} is the vertex set and E ⊂ N × N is
the edge set. Each vertex corresponds to a CR user, and the
edges represent the mutual interference relationship among the
users when they transmit in the same channel. Specifically,
if the distance between two CR users m and n, denoted as
Dmn, is less than a threshold D0, it implies that they can
hear each other and hence interfere with each other when
simultaneously transmitting on the same channel; thus, m and
n are connected by an edge. In other words, there is an edge
emn = (m,n) ∈ E . We assume that the interference is bilateral
between any two users, i.e., user m is also interfered by user n
if it interferes with n. We call this kind of networks, bilateral
interference cognitive radio networks (BI-CRNs). An example
of a BI-CRN with four CR users and two primary users is
shown in Fig. 2.

Suppose that there are M orthogonal licensed channels,
which are owned by the primary users and can be opportunis-
tically used by the CR users when not occupied by the primary
users (PUs). Notice that the available spectrum opportunities
vary from user to user due to their different locations. We
characterize the heterogeneous spectrum opportunities by the
channel availability vector Cn, n ∈ N . Specifically, Cn =
{Cn1, Cn2, . . . , CnM}, where Cnm = 1 means that channel
m is available for player n, while Cnm = 0 means that it
is not available. For simplicity of analysis, we assume that
the spectrum sensing is perfect3; moreover, it is assumed that
the spectrum opportunities are quasi-static in time. Such an
assumption holds for some realistic CRNs with slow-varying
spectrum opportunities, e.g., IEEE 802.22 [28].

B. MAC-layer interference minimization

It is assumed that all the CR users can sense all channels,
but can transmit on only one channel due to hardware limita-
tion [29]. Let Jn denote the neighboring user set of user n,
i.e.,

Jn = {i ∈ N : (i, n) ∈ E}, (4)

and an denote a channel selection of user n. Specifically,
an ∈ {1, . . . ,M} if there is at least one channel available
for n; otherwise an = ∅ if there is no available channel.
We call user n as an active user for the former case, and

3However, the results obtained in this article can easily be extended to the
scenarios with imperfect spectrum sensing.

 

 

Fig. 2. An example of the considered BI-CRN with four licensed channels.
Note that CR users 2 and 3 will interfere with each other when transmitting
on the same channel, whereas user 1 will never interfere with user 3.

a silent user for the latter case. In the rest of this article,
we assume that all the users are active. For the considered
CRNs, efficient distributed approaches such as CSMA can be
applied to coordinate transmissions among neighboring and
interfering users. According to the principle of CSMA, the
individual throughput of user n under channel selection profile
a = {a1, . . . , aN} is given by:

rn(a1, . . . , aN ) =
f(cn + 1)Ran

cn + 1
, (5)

where f(k) is the throughput loss function on the condition
that k users are competing for a single channel [9], which
satisfies 0 < f(k) ≤ 1 and is decreasing over k, Ran is the
transmission rate of channel an, and

cn =
∑
j∈Jn

δ(an, aj) (6)

is the number of competing neighboring users of user n.
Specifically, δ(x, y) is the following MAC-layer interference
indicator function:

δ(x, y) =

{
1, x = y
0, x �= y.

(7)

Note that the individual throughput specified by (5) implies
that all mutually interfering users share the channel equally.
Consequently, the network throughput can be given by:

R(a1, . . . , aN ) =
∑
n∈N

rn. (8)

The problem of maximizing the above network throughput
is a combinatorial problem on a graph and is hence NP-
hard. Motivated by the previous work addressing the topic
of minimizing the aggregate PHY-layer interference [10], we
use the MAC-layer interference to study this problem. For
simplicity of analysis, we assume that all channels have the
same transmission rate4.

The MAC-layer interference experienced by user n in the
channel selection problem is defined as cn, i.e., the number
of neighboring users choosing the same channel. Note that
this definition coincides with that defined in (3) except that
channel selection is considered here. From the user-side,

4Although the channels may have different instantaneous transmission rates
due to different channel quality, they would have the same transmission rate in
a long-run time. The reason to make such an assumption is that by sacrificing
a little accuracy, we are able to design more efficient algorithms to minimize
the aggregate MAC-layer interference.
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lower value of cn is desirable, because minimizing cn is
equivalent to maximizing its throughput, as can be seen from
(5). Consequently, lower aggregate MAC-layer interference
is more preferable from the network-side. Based on this,
a quantitative characterization of the aggregate MAC-layer
interference experienced by all the users can be given by:

Ig(a1, . . . , aN) =
∑
n∈N

cn (9)

Then, the network-centric goal is to find an optimal channel
selection aopt that minimizes the network utility, i.e.,

P1 : aopt ∈ argmin Ig. (10)

The above problem is a variant of general graph coloring
problem for distributed channel selection [30]. However, due
to the higher-order of computational complexity, P1 is NP-
hard even in a centralized manner. Furthermore, lack of
knowledge about other users makes the task of finding a good
solution challenging, not to mention finding an optimal one.

V. MAC-LAYER INTERFERENCE MINIMIZATION GAME

Since there is no central controller, the channel selections
are self-determined by the CR users; moreover, their decisions
are interactive. This motivates us to formulate the problem
of channel selection in BI-CRNs as a non-cooperative game.
Different from most existing game models, the proposed game
belongs to local interaction games (also known as graphical
game) [3], in which the utility of a user only depends on the
action profile of its neighboring users rather than that of all
the other users.

A. Graphical game model

The proposed MAC-layer interference minimization game
is denoted as Gc = [N , {An}n∈N , {Jn}n∈N , {un}n∈N ],
where N = {1, . . . , N} is the set of players (CR users),
An = {m ∈ M : Cnm = 1} is the set of available
actions (channels) for player n, Jn is the neighboring user
set of player n, and un is the utility function of player
n. Generally, the utility function is defined as u(an, a−n),
where an ∈ An is the channel selection of player n and
a−n ∈ A1 ⊗ · · ·An−1 ⊗ An+1 · · · AN denotes the channel
selection profile of all the players except n. However, due to
limited interference in BI-CRNs, the achievable throughput of
a player is only dependent on its own action and the action
profile of its neighboring player set; then, the utility function
can be reduced to un(an, aJn), where aJn is the selection
profile of n’s neighboring player set. Notably, lower MAC-
layer interference is desirable for a CR user, which motivates
us to define the utility function as follows:

un(an, aJn) = Ln − cn(an, aJn), (11)

where cn(an, aJn) ≡ cn(a1, . . . , aN ) represents the MAC-
layer interference experienced by user n, as specified by
(6). Ln is a predefined positive constant for player n which
satisfies Ln > |Jn|, where |X | denotes the cardinality of set
X . Then, the proposed game can be expressed as:

G : max
an∈An

un(an, aJn), ∀n ∈ N (12)

That is, each user in the game selfishly maximizes its
individual utility. Thus, the questions remain to be answered
include: (i) does the game have some stable states in the local
interactive and competitive environment? (ii) if there exist
some stable states, what are the achievable performance and
how to achieve them in the absence of information exchange?

Remark 1: The reason for adding Ln in (11) is to keep
the utility function positive, which makes the received payoffs
compatible with the learning algorithms proposed later. More-
over, user n can choose Ln independently and autonomously,
as long as the condition is satisfied.

B. Analysis of Nash equilibrium (NE)

In this subsection, we first define the Nash equilibrium (NE)
of G, which are the most well-known stable states in game
models, and then investigate its properties.
Definition 1 (Nash equilibrium [31]):. A channel selection
profile aNE = (a∗1, . . . , a

∗
N ) is a pure strategy NE if and only

if no user can improve its utility by deviating unilaterally, i.e.,

un(a
∗
n, a

∗
Jn

) ≥ un(ān, a
∗
Jn

), ∀n ∈ N , ∀ān ∈ An, ān �= a∗n
(13)

Theorem 1. G is an exact potential game which has at least
one pure strategy NE point.

Proof: To prove this theorem, we need to prove that there
exists a potential function such that the change in individual
utility function caused by any player’s unilateral deviation is
the same as the change in the potential function. We construct
the potential function as follows:

Φ(an, a−n) = −1

2

∑
n∈N

cn(a1, . . . , aN ). (14)

Suppose that an arbitrary player n unilaterally changes its
channel selection from an to ān. Following the similar lines
given in [3], [4]5, it can be proved that the following equation
holds:

Φ(ān, a−n)− Φ(an, a−n) = un(ān, aJn)− un(an, aJn),
(15)

which shows that G is an exact potential game. According to
[12], exact potential game has at least one pure strategy NE
point. Thus, Theorem 1 follows.

The achieved aggregate MAC-layer interference of a pure
strategy NE point aNE = {a∗1, . . . , a∗N} is given by:

U(aNE) =
∑
n∈N

cn(a
∗
n, a

∗
Jn

) (16)

It is seen from (12) that the users in the game are selfish,
which may lead to the well-known tragedy of commons [32].
Generally, Gc may have multiple pure strategy NE points and
the number is hard to achieve [31]. The following theorems
characterize the achievable performance bounds of the game.

Theorem 2. For any network topology and spectrum opportu-
nities, the aggregate MAC-layer interference at any NE point
is bounded by U(aNE) ≤

∑N
n=1

|Jn|
|An| .

5For brevity, we omit the detailed proof in this article, which can be found
in our previous work [3], [4].
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Proof: For any pure strategy NE aNE = (a∗1, . . . , a
∗
N), the

following inequality holds for any user n, ∀n ∈ N :

cn(a
∗
n, a

∗
Jn

) ≤ cn(ān, a
∗
Jn

), ∀ān ∈ An, ān �= a∗n, (17)

which can be naturally obtained from the definition given in
(13). Summing the two-sides of (17) yields the following:

|An| × cn(a
∗
n, a

∗
Jn

) ≤ ∑
ān∈An

cn(ān, a
∗
Jn

), (18)

where |An| denotes the number of the available channels of
user n. We can re-write (18) as follows:

cn(a
∗
n, a

∗
Jn

) ≤
∑

ān∈An
cn(ān, a

∗
Jn

)

|An| . (19)

It is seen that
∑

ān∈An
cn(ān, a

∗
Jn

) represents the experi-
enced MAC-layer interference of user n as if it would transmit
on all available channels simultaneously while its neighbors
still only transmit on one channel. This immediately implies
the following equation:∑

ān∈An

cn(ān, a
∗
Jn

) = |Jn|, (20)

where |Jn| is the number of neighboring users of user n.
Accordingly, it follows that

UNE(a
∗) =

∑
n∈N

cn(a
∗
n, a

∗
Jn

) ≤
N∑

n=1

|Jn|
|An| , (21)

which proves Theorem 2.
Theorem 2 characterizes the upper bound of achieved per-

formance at any NE point. It is shown that in order to achieve
lower aggregate MAC-layer interference, larger number of
available channels (|An|) and smaller number of neighboring
users (|Jn|) are preferable. In particular, this bound can be
further refined in some special kinds of systems.

Proposition 1. In a network with all the channels being
available to each user, the aggregate MAC-layer interference
at any NE point is bounded by U(aNE) ≤ 2N

M .

Proof: All the channels being available to each user
implies |An| = M, ∀n ∈ N . Consequently, we have:

U(aNE) ≤
N∑

n=1

|Jn|
M

, (22)

which is obtained by applying Theorem 2 directly. Moreover,
it can be verified that

N∑
n=1

|Jn| = 2N (23)

is true for any network topology. Substituting (23) into (22)
proves this proposition.

According to the refined result characterized by Proposition
1, large number of licensed channels can lead to low aggregate
MAC-layer interference, as can be expected. The reason is that
as the number of channels increases, the users can choose
different channels to avoid mutual interference. The above
analysis gives lower bounds of the performance, while we
investigate its best achievable performance in the following.

Theorem 3. The best pure strategy NE point of G is a global
minimum of problem P1.

Proof: The defined potential function and the aggregate
MAC-layer interference are connected by Φ(an, a−n) =
− 1

2Ig(an, a−n). According to (10), we then have:

aopt ∈ argmax Φ(an, a−n). (24)

That is, the optimal channel selection profile that minimizes
the aggregate MAC-layer interference also maximizes the
potential function. According to the properties of potential
game, it is known that any global or local maximizer of the
potential function constitutes a pure strategy NE point [12].
Thus, we can see that the best pure strategy NE point is a
global minimum of P1, which proves this theorem.

Theorem 3 shows that the best NE point of G lies in
the global minimum of the formulated MAC-layer interfer-
ence minimization problem P1. This result is interesting and
promising, since the global optimality emerges as the result
of distributed and selfish decisions.

VI. UNCOUPLED LEARNING ALGORITHMS FOR

ACHIEVING BEST NASH EQUILIBRIUM

With the distributed channel selection problem now formu-
lated as an exact potential game, there are large number of
learning algorithms available in the literature to achieve pure
strategy NE, e.g., best response dynamic [12], spatial adaptive
play [3], and fictitious play [13]. These existing algorithms,
however, belong to coupled algorithms which require to know
the information of choosing actions and/or utilities of other
users in each iteration. However, obtaining information of
other players consumes resources (time, power or bandwidth),
or it is not even feasible in some cases. In the following, we
propose two uncoupled learning algorithms for the MAC-layer
interference minimization problem.

Clearly, the only available information in the game is the
individual action-payoff history of each player, which implies
that utilizing this information to adjust the players’ behaviors
is the only approach6. Accordingly, the basic framework for
the proposed learning algorithms is structured as follows: (i)
all the users adhere to their channel selections in a certain
amount of time, which is referred to as a decision period,
and then estimate their individual utility function, (ii) based
on the individual action-utility information, the users update
their channel selections according to some learning rules.

A. Log-linear learning based uncoupled algorithm

The proposed log-linear learning based uncoupled algorithm
is described in Algorithm 1. The key idea is that a player is
randomly and autonomously selected to update its channel
selection in an iteration; furthermore, the selected player ran-
domly explores other channels, based on which it determines
its channel selection stochastically in the next iteration.

In the player selection step of Algorithm 1, the selection of
an autonomous player can be implemented through 802.11

6One would also apply some swarm intelligence inspired algorithms, which
have been shown to be the most promising approach in distributed wireless
networks [33].
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Algorithm 1: log-linear learning based uncoupled algorithm

Initialization: Set the iteration k = 0, and let each player i,
∀i ∈ N , randomly select a channel ai(1) ∈ Ai.
Loop for k = 0, 1, 2, . . . ,
1. Player selection: A player, say n, is randomly selected in an
autonomous fashion through a common control channel. Then,
all the users adhere to their selection in an estimation period
and the selected user estimates its received utility un(k).
2. Exploration: The selected player n randomly chooses a
channel m ∈ An with equal probability 1

|An| , where |An| is
the number of available channels. The users adhere to their
selections in an estimation period and the selected player
estimates its received utility in channel m, denoted as vm.
3. Updating channel selection: The selected player n updates
its channel selection according to the following rule:

Pr[an(k + 1) = m] =
exp{vmβ}

Y

Pr[an(k + 1) = an(k)] =
exp{un(k)β}

Y
,

(25)

where Y = exp{vmβ} + exp{ûn(k)β} and β is a learning
parameter. Meanwhile, all other players keep their selections
unchanged, i.e., a−n(k + 1) = a−n(k).
End loop

DCF like contention mechanisms over a common control
channel (CCC) [3], [19]. The stop criterion can be one of the
following: (i) the maximum iteration number is reached, (ii)
the variation of the network utility during a period is trivial.

Denote A as the set of available channel profiles of all
nodes, i.e., i.e., A = A1 ⊗ · · · ⊗ AN . The properties of
Algorithm 1 are determined by the following theorems.

Theorem 4. In the log-linear learning based uncoupled
algorithm, the unique stationary distribution μ(a) ∈ Δ(A)
of any channel selection profile a ∈ A, ∀β > 0, is given as:

μ(a) =
exp{βΦ(a)}∑
s∈A exp{βΦ(s)} , (26)

where Φ(·) is the potential function given in (14).

Proof: The following proof follows similar lines of proof
given in [3], [34]–[36].

Firstly, denote the channel selection state at the kth iteration
by s(k) = {s1(k), . . . , sN (k)}, where sn(k) is the action
selection of node n. It is seen that s(k) is only determined by
s(k − 1), which means that a(k) is a discrete time Markov
process. Furthermore, it has a unique stationary distribution
since it is irreducible and aperiodic [34].

Let us consider any two arbitrary network states at any
two successive iteration, which are denoted as a and b re-
spectively. Denote the transition probability from a to b by
Pab = Pr[s(k+1) = b|s(k) = a]. According to the procedure
of Algorithm 1, there is at most one element that can be
changed between a and b. Therefore, we only consider two
nontrivial cases: (i) a = b, or (ii) a and b differ by one element.

Second, we show that the unique distribution of Algorithm
1 must be (26) by verifying that the distribution (26) satisfies
the following balanced equations [35]:

μ(a)Pab = μ(b)Pba (27)

The above equation always holds for a = b. Then, we
focus on the case of a �= b. Specifically, suppose that a and
b differ by the nth element. Since an arbitrary node n has
probability 1/N of being chosen to update in any iteration
and any channel m has probability 1/|An| of being chosen to
transmit, it follows that:

μ(a)Pab =

[
exp{βΦ(a)}∑

s∈A exp{βΦ(s)}

]

×
[(

1
N |An|

)(
exp{un(b)β}

exp{un(a)β}+exp{un(b)β}

)]
,

(28)

where the iteration index k is omitted for presentation and
un(a) is the utility function of node n under the network
state a.

Setting

λ =
(1/N)(1/|An|)( ∑

s∈A
exp{βΦ(s)}

)(
exp{un(a)β} + exp{un(b)β

) ,
(29)

we obtain the following equation:

μ(a)Pab = λ exp{βΦ(a) + βun(b)} (30)

Due to symmetry, we also have

μ(b)Pba = λ exp{βΦ(b) + βun(a)}. (31)

Considering that Φ(a) − Φ(b) = un(a) − un(b), as spec-
ified by (15), equations (30) and (31) immediately yield the
balanced equation (27). Thus, we have∑

a∈A
μ(a)Pab =

∑
a∈A

μ(b)Pba = μ(b)
∑
a∈A

Pba = μ(b), (32)

which is exactly the balanced stationary equation of the
Markov process s(k) [34]. Then, its stationary distribution
is characterized by (26) since Algorithm 1 has a unique
stationary distribution and the distribution given by (26) sat-
isfies the balanced equations of its Markov process [34], [35].
Therefore, Theorem 4 is proved.

Note that the stationary distribution of Algorithm 1, as
characterized by Theorem 4, is the same with that of an
existing coupled algorithm with explicit information exchange
between neighboring players [3]. This result is very interesting
since the latter has been proved to admit asymptotic optimality.

Theorem 5. With a sufficiently large β, Algorithm 1 asymp-
totically minimizes the aggregate MAC-layer interference Ig .

Proof: Based on Theorem 4 and the methodology pre-
sented in [3] (see Theorem 4 therein), it can be proved
that with a sufficiently large β, Algorithm 1 asymptotically
converges to an action profile that maximizes the potential
function of a potential game7. Now, applying again the prop-
erty Φ(a) = − 1

2Ig(a), Theorem 5 can be obtained.

7We only apply this statement in this article, but detailed proof can be
found in [3].
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Algorithm 2: learning-automata based uncoupled algorithm

Initialization: set k = 0 and the initial channel selection
probability vector to qnm(0) = 1/|An|, ∀n ∈ N , ∀m ∈ An.
Loop for k = 0, 1, 2, . . . ,
1. Selecting channels stochastically: Each CR player n
selects a channel an(k) according to its current channel
selection probability vector qn(k).
2. Estimating payoffs: All the CR players adhere to their
selections in a decision period. After that, they estimate the
current received payoff un(k).
3. Updating mixed strategy: All the CR users update their
mixed strategies according to the following rules:

qn(k + 1) = qn(k) + brn(k)
(
Ian(k) − qn(k)

)
, (33)

where Ian(k) a unit vector with the an(k)th component unity,
0 < b < 1 is the learning step size and rn(k) is the normalized
received payoff defined as follows:

rn(k) = un(k)/Ln. (34)

End loop

It is seen that Algorithm 1 is distributed and uncoupled,
since it is only relying on the individual action-utility history
of each user. However, the procedure of player selection needs
a CCC, which may not be available in some scenarios. This
motivates us to propose the second uncoupled algorithm which
is suboptimal but does not require a CCC.

B. Learning-automata based uncoupled algorithm

First, we extend G to a mixed strategy form [31]. Let the
mixed strategy for player n at iteration k be denoted by a
vector probability distribution qn(k) ∈ Δ(An), where Δ(An)
denotes the set of probability distributions over the available
action set An.

The mixed strategy is repeatedly played in every iteration.
Then, the users adopt a learning-automata rule [37], [38] to
update their mixed strategies based on the estimated received
payoffs. This process is repeated until the mixed strategies
converge or other stop criterion is met. Specifically, the
learning-automata based uncoupled algorithm is described in
Algorithm 2 and the stop criterion can be one of the following
[9]: (i) the maximum iteration number is reached, or (ii) for
each player n, ∀n ∈ N , there is a component of the channel
selection probability sufficiently approaching one, say 0.99.

Theorem 6. With a sufficiently small step size b, the learning-
automata based uncoupled algorithm converges to a pure
strategy NE point of G, and hence minimizes the aggregate
MAC-layer interference Ig globally or locally.

Proof: In our recent work [9], it was proved that the
learning-automata based algorithm converges to a pure strat-
egy NE point of any exact potential game as the step size b
goes sufficient small. Thus, although the analysis presented
in [9] is originally for a global interactive game, Algorithm 1
converges to a pure strategy NE point of G since it is an exact
potential game. Now, applying again the connection between

the MAC-layer aggregate interference minimization problem
P1 and the pure strategy NE points of G, Theorem 6 is proved.

It is seen that Algorithm 2 is also distributed and uncoupled,
since it is only relying on the individual action-utility history
of each user. However, it may converge to an optimal or sub-
optimal pure strategy NE point, which means that Algorithm
2 averagely achieves the suboptimal solution for the aggregate
MAC-layer interference minimization problem P1.

Although the convergence of Algorithm 2 seems straightfor-
wardly proved by applying the sufficient condition proposed
in [9], it is emphasized that this is due to the careful design of
utility function in this article. Specifically, traditional learning
automata requires positive payoff, while the received payoffs
in the MAC-layer interference minimization game Gc would
be negative if we do not add a constant Ln, as characterized
by (11). Furthermore, our previous work [9] mainly focused a
global interactive game in dynamic and unknown environment,
while the game investigated in this article is local interactive.

C. Distributed implementation and complexity analysis

For a better understanding of the proposed uncoupled learn-
ing algorithms, we discuss some issues related to distributed
implementation and analyze their complexity cost. Denote
the number of convergence iterations of the two algorithms
as Nit1 and Nit2 respectively. Table I shows the number of
channel switching, the storage size and the complexity.

For both Algorithms 1 and 2, the complexity of estimating
the number of interfering users can be expressed as O(C1),
where C1 is a constant determined by the duration of the
estimation period and the used estimation approaches. Since
an iteration of Algorithm 1 consists of two estimation period,
its complexity is given by O(2C1). The procedure of updating
channel selection in Algorithm 1 only involves the operations
of 2 exponents, 1 sum and 2 divisions. Thus, its complexity
can be expressed as O(C2), where C2 is a small constant.
In addition, the procedure of user selection has complexity
of O(C3), where C3 is also a small constant. Thus, the total
complexity of Algorithm 1 can be expressed as:

CAlgorithm1 = Nit1

(O(2C1) +O(C2) +O(C3)
)

(35)

In addition, since an iteration of Algorithm 1 consists of
two estimation periods, the number of channel switching of
Algorithm 1 is upper bounded by 2Nit1.

Since the procedure of updating the channel selection
vectors of Algorithm 2 involves the operations of 2 vector-
vector sums and 1 scalar-vector product, its complexity can be
expressed as O(2M +1), where M is the number of licensed
channels. Thus, the total complexity of Algorithm 2 can be
expressed as:

CAlgorithm2 = Nit2

(O(C1) +O(2M + 2)
)

(36)

It is shown that the complexity of Algorithm 2 scales with
2M . In addition, since an iteration of Algorithm 2 consists
of exactly one estimation period, the number of channel
switching of Algorithm 2 is upper bounded by Nit2.

It is noted that the complexities of both algorithms are
irrespective of N , i.e., the number of CR users. The reason is
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TABLE I
COMPLEXITY ANALYSIS OF THE TWO UNCOUPLED ALGORITHMS.

Number of
Channel Switching Computation Operation Storage Size Complexity

Algorithm 1 ≤ 2Nit1

un(k), vm — — O(2C1)
Pr[an(k + 1) = m] and
Pr[an(k + 1) = an(k)]

2 exponents, 1 sum, 2 divisions 2 O(C2)

Algorithm 2 ≤ Nit2

un(k) — — O(C1)

qn
(a). 2 vector-vector sums

(b). 1 scalar-vector product
2M + 2 O(2M + 2)

that they are uncoupled, as emphasized before. In comparison,
Algorithm 2 has relatively heavy complexity since it evolves
vector operations, while Algorithm 1 leads to relatively large
number of channel switching since it has two estimation
periods in an iteration.

D. Comparison of the two uncoupled algorithms

The two distributed learning algorithms are uncoupled.
Specifically, the users observe the environment, learn from
history information and then adjust their behavior towards a
desirable solution (NE points in game models). This makes
them suitable for distributed networks and scalable for large
networks. Furthermore, the comparison results of the two
algorithms are summarized as follows:

• Algorithm 1 asymptotically minimizes the aggregate
MAC-layer interference, while Algorithm 2 averagely
achieves suboptimal solutions.

• Algorithm 1 needs a common control channel to assist
learning scheduling, while Algorithm 2 does not.

• Algorithm 1 is implemented in sequence, i.e., only a CR
user learns at a time, while Algorithm 2 is implemented
in parallel, i.e., all the CR players learn simultaneously.

Based on the above comparison, it is clear that the choice
of the algorithm should be scenario-dependent. Furthermore,
there exists speed-accuracy conflict for the two algorithms,
which implies that the choice of the learning parameters (β
in Algorithm 1 and b in Algorithm 2 ) should be application-
dependent and be chosen by practical experiment or training.

Remark 2: Besides the MAC-layer interference metric,
there are also many other optimization metrics designed for
distributed opportunistic spectrum access, for example, reduc-
ing PU disruptions, reducing number of channel switching and
maximizing expected idle time on a channel. These metrics
can lead to quite different behaviors and SU/PU performance.
In essence, the proposed uncoupled algorithms are suitable for
optimization problems which can be formulated as potential
games. Thus, the method of formulating these optimization
metrics as potential games and applying the proposed algo-
rithms is interesting and would be studied in future.

VII. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are presented to validate
the proposed game-theoretic channel selection algorithms. Al-
though the proposed algorithms are only theoretically analyzed
for scenarios with no fading, it is shown that they are not only
suitable for scenarios with no fading but also for scenarios
with fading.

A. Scenario setup

In the simulation study, the CR users are randomly located
in a region. We construct CRNs using MATLAB. It is assumed
that the licensed channels are independently occupied by
PUs with the same probability θ, 0 < θ < 1; and the
spectrum opportunities are randomly generated according to
the occupied probability. However, note that the spectrum
opportunities vary slowly in time, or are at least static during
the convergence of the algorithms. To capture this, we assume
that different channels support the same transmission rate
R = 1Mbps for the users.

It is assumed that the CR users use the perfect CSMA/CA to
share the idle channels. Specifically, time is divided into slots
with equal length and a user with the minimum backoff time
accesses an idle channel. The throughput of a user is calculated
by R

cn+1 , which is approximately obtained by setting the
throughput loss function as f(cn + 1) ≈ 1 in (5).

We propose the following method to estimate the MAC-
layer interference experienced by a user8. Specifically, suppose
that each estimation period consists of H slots and denote Tn

as the number of slots in which user n successfully access
the channel. According to the principle of perfect CSMA/CA,
the maximum likelihood estimation (MLE) of the MAC-layer
interference experienced by user n is given by:

ŝn =
H

Tn
− 1, (37)

which also means that MLE of the received utility in an
estimation period is given by:

ûn = Ln + 1− H

Tn
(38)

B. Scenario with no fading

In this subsection, we simulate scenarios with no fading,
where only the simplified binary-interference is considered.
The learning parameter in Algorithm 1 is set to β = 10+k/50,
where k is the iteration number. The step size in Algorithm 2
is set to b = 0.05, which has been optimized by experiment.
In all simulations, the estimation period is set to H = 100.

1) Convergence behavior: We study a small network in-
volving nine CR users and three licensed channels as shown
in Fig. 3. We consider a scenario with all channels being
available for the users. The reason for considering such a
scenario is that it provides with the same spectrum oppor-
tunities and thus we can investigate the expected convergence

8Other methods for estimating the number of competing users can also
be found in the literature, e.g., [39], [40]. We use this simple method since
we focus on uncoupled channel selection algorithms but not those estimation
algorithms
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Fig. 3. The simulated small CRN. (Each circle represents a CR link, and
the dashed lines represent the bilateral interferences between the CR users).
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Fig. 4. The expected convergence behaviors of the two algorithms for the
simulated CRN.

behavior of the algorithms by taking the average results of
several independent trials. In other simulation studies, the
occupancy of PUs is considered. For the simulated bilateral
interference CRNs, the expected convergence behaviors of
Algorithms 1 and 2 are shown in Fig. 4. The results are
obtained by simulating 1000 independent trials and then taking
the average. It is noted that Algorithm 1 converges in about
300 iterations, while Algorithm 2 converges in about 400
iterations. Furthermore, Algorithm 1 asymptotically minimizes
the aggregate MAC-layer interference while Algorithm 2 con-
verges to some suboptimal solutions. The results validate the
asymptotical optimality of Algorithm 1, and the convergence
of both Algorithms.

2) Throughput performance: In this subsection, we com-
pare the throughput performance of six methods, which are
throughput maximization using exhaustive search (TMax-
ES), random selection, interference minimization using the
proposed Algorithm 1 (Imin-Algorithm1), interference min-
imization using the proposed Algorithm 2 (Imin-Algorithm2),
interference minimization using spatial adaptive play (Imin-
SAP) [3] and interference minimization using best response
(Imin-BR) [12]. In the TMax-ES, the aggregate network
throughput specified by (8) is directly maximized using an
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Fig. 5. Companion results of six channel selection methods for the simulated
small network with no fading (For the learning algorithms, we set β = 10+
k/50 for Algorithm 1 and b = 0.05 for Algorithm 2).

exhaustive search in a centralized manner. In the random selec-
tion scheme, each CR user chooses a channel from its available
channel set with equal probability. SAP and BR are two
well-known coupled learning algorithms for potential games;
specifically, they need the information of actions chosen by
other users in each iteration. Moreover, SAP asymptotically
achieves the global maxima of the potential function while
BR achieves its global or local maxima.

i) Small networks The comparison results of expected
network throughput for the small network (see Fig. 3) are
shown in Fig. 5. It is noted that Algorithm 1 achieves
higher network throughput than Algorithm 2; moreover, both
algorithms always perform better than the random selection,
and the throughput gap increases as the licensed channel idle
probability θ increases. The reason is that it converges to a
pure strategy NE of the game, in which the users are spread
over different channels and hence it leads to less collision.
In other words, this is due to the fact that all pure strategy
NE points of the game minimize the aggregate MAC-layer
interference globally or locally as characterized by Theorems
1, 2 and 3.

It is noted that Algorithm 1 achieves the same performance
with that of Imin-SAP, while there is a slight gap between
Algorithm 2 and Imin-BR. These results are interesting since
SAP asymptotically maximizes the potential function [3],
i.e., minimizing the aggregate MAC-layer interference in our
game. These results validate the usefulness of the two pro-
posed uncoupled algorithms, especially considering the fact
that both of them do not need information exchange.

Although Algorithm 1 asymptotically minimizes the aggre-
gate MAC-layer interference, it is noted from Fig. 5 that there
is a throughput gap between Imin-Algorithm1 and TMax-
ES. The reason is that although a lower aggregate MAC-
layer interference would lead to higher network throughput
as can be expected, there lacks a quantitative characterization
between minimizing the MAC-layer interference and maxi-
mizing the network throughput. In fact, such a characteriza-
tion is dependent on network topology as well as spectrum
opportunities and hence hard to obtain. Even so, it is shown
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Fig. 6. The simulated large CRN.
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Fig. 7. Companion results of five methods for the simulated large network
with no fading.

that the proposed two algorithms are desirable for realistic
applications, as they both achieve higher network throughput.

ii) Large networks We consider a relatively large network
consisting 20 CR users and three licensed channels as shown
in Fig. 6. The comparison results of expected network through-
put are shown in Fig. 7. Note that the TMax-ES method can
not be applied due to intolerable complexity. It is noted that
Algorithm 1 achieves nearly the same throughput performance
with Imin-SAP, while the throughput gap between Algorithm
2 and both Imin-SAP and Imin-BR is small. These results
validate that the proposed algorithms are not only suitable for
small networks but also for large networks.

C. Scenario with fading

The above simulation results validate the proposed game-
theoretic channel selection algorithms for scenarios without
fading. However, every practical wireless channel has fading,
which motivates us to consider the performance results for
scenarios with fading. In this part, we consider the networks
as shown in Fig. 3 and Fig. 6 for small and large networks
respectively. As stated before, we consider Log-normal model
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Fig. 8. Companion results for the simulated small network with Log-normal
fading ( Pt = 1W , β = 2 and σdB = 6dB).
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Fig. 9. Companion results for the simulated large network with Log-normal
fading ( Pt = 1W , β = 2 and σdB = 6dB).

fading in the simulation. Specifically, the transmitting power
of all nodes is set to Pt = 1W , the path loss exponent is
set to β = 2 and the dB-spread of Log-normal fading is set
to 6dB. Moreover, the detection threshold of CSMA is set to
8.1633×10−6W . It is shown that the proposed two algorithms
also converge for practical channels with fading. Since their
convergence behaviors are similar to those shown in Fig. 4,
we do not present them here due to space limitation.

The comparison results for the achievable throughput of
the small and large networks are shown in Fig. 8 and Fig.
9 respectively. It is noted that the same trends observed in
Fig. 5 and Fig. 7 also holds in the scenarios with fading.
Specifically, Algorithm 1 achieves higher throughput than
Algorithm 2 and both Algorithms 1 and 2 outperform the
random selection scheme. Moreover, Algorithm 1 achieves the
same performance with that of Imin-SAP, while there is a
slight gap between Algorithm 2 and Imin-BR. These results
validate that although the presented mathematical analysis is
just for scenarios with no fading, the proposed algorithms are
suitable for scenarios with fading as well.
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D. Discussion and extension to unilateral interference CRNs

As stated before, the learning parameters involve an
accuracy-speed conflict. We also evaluated the effect of the
learning parameters on the convergence and performance
of the learning algorithms by simulation results, which are
not presented here. The simulation results reveal that larger
learning parameters lead to faster convergence speed, while
resulting in higher aggregate MAC-layer interference, as can
be expected in any learning algorithm.

In addition, we would like to point out that there are some
scenarios involving unilateral interference relationships among
the users, e.g., cognitive ad hoc networks. For those networks,
the mutual interference relationships can be characterized by
a directional graph rather than an undirected graph. We call
this kind of networks, unilateral interference cognitive radio
networks (UI-CRNs). Following the same methodology used
for BI-CRNs, similar definitions for UI-CRNs can also be
given. Then, a similar aggregate MAC-layer interference mini-
mization game can be established accordingly. We also carried
out simulation study for UI-CRNs. Simulation results show
that the proposed two uncoupled algorithms also converge to
pure strategy profile and achieve higher network throughput
for UI-CRNs. Therefore, we point out that the proposed
uncoupled algorithms are not only suitable for BI-CRNs, but
also are suitable for UI-CRNs.

VIII. CONCLUSION

We investigated the problem of distributed channel selection
for opportunistic spectrum access with spatial reuse, where
multiple cognitive radio (CR) users are spatially located and
mutual interference only emerges between neighboring users.
Considering that the MAC-layer interference model is more
desirable and useful for practical communications, we first
proposed a MAC-layer interference minimization game. We
proved that the proposed game is a potential game with the
optimal Nash equilibrium (NE) point minimizing the aggregate
MAC-layer interference. Although this result is promising,
it is challenging to achieve a NE point without information
exchange, not to mention the optimal one. We proposed two
uncoupled learning algorithms, with which the CR users intel-
ligently learn the desirable actions from their individual action-
utility history. Specifically, the first algorithm asymptotically
minimizes the aggregate MAC-layer interference and needs
a common control channel to assist learning scheduling. The
second one does not need a control channel and averagely
achieves suboptimal solutions. The convergence and perfor-
mance of the algorithms were analytically proved.

However, there are some issues that are still open and
would be further investigated in future. First, although the pro-
posed uncoupled algorithms do not need information exchange
among CR users, they implicitly requires some mechanisms to
assist learning scheduling, e.g., the update of player selection
in Algorithm 1 and the notification of updating for all the
players after every estimation period in Algorithm 2. Thus,
fully distributed and asynchronous learning algorithms should
be investigated. Second, analytical investigation on the real-
valued MAC-layer interference model by taking into account
the randomness of channel fading should be considered.
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