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Abstract—This paper studies the problem of multiuser sequen-
tial channel sensing and access in dynamic cognitive radio net-
works, in which the active-user set is randomly changing from slot
to slot. Furthermore, each user only has its individual information
with no information exchange among users. The goal of the users
is to determine their channel sensing order. We first define a gen-
eralized interference metric to address the overlapping of channel
sensing order and establish two optimization objectives: minimiz-
ing the aggregate interference for each active-user set and mini-
mizing the expected aggregate interference for all potential users.
It is challenging to solve the two optimization problems, even
in a centralized manner, because the active-user set is randomly
changing, and the probability distributions of the active-user sets
are unknown to the users. We then propose two noncooperative
game models to solve the optimization problems: a state-based
one-shot game and a robust game. We prove that they are potential
games and that the best Nash equilibrium of the two games corre-
sponds to the optimal solutions of the two optimization problems,
respectively. To cope with the uncertain, dynamic, and incomplete
information constraints in the dynamic networks, we propose a
stochastic learning algorithm, which is analytically proven to con-
verge to Nash equilibria of the two formulated games in the pres-
ence of a changing active-player set. Finally, simulation results are
presented to validate the convergence and superior performance
of the proposed learning algorithm.

Index Terms—Cognitive radio (CR) networks, multiuser
stochastic learning, noncooperative game, potential game, sequen-
tial channel sensing and access.

I. INTRODUCTION

COGNITIVE radio (CR), which was first coined by Mitola
and Maguire in [1], has been regarded as a promising

approach to lessen the dilemma between spectrum shortage and
spectrum waste [2]–[7]. Due to hardware limitations, secondary
users (SUs) can only sense a part of the licensed channels
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(always one) at a time [8]. As a result, SUs sense the licensed
channels one by one according to a predefined order, which
is referred to as the sequential sensing strategy [9]. In this
setting, collision occurs if more than two SUs sense and access
an idle channel simultaneously, which implies that the sensing
orders should be carefully designed [10]–[13]. In this paper, we
focus on the problem of channel sensing order optimization in
multiuser CR networks.

In multiuser CR networks, some learning approaches are
needed to coordinate the behaviors of SUs [14]. Due to the
dynamic spectrum opportunities and limited information, it
generally takes multiple slots for the learning approaches to
converge to some stable solutions. The problem of the se-
quential channel sensing strategy for single-user CR systems
has been extensively studied [15]–[21], whereas for multiuser
CR networks, it has begun drawing attention [10]–[13]. In
most existing work for multiuser CR networks, the number of
active SUs is assumed fixed during the whole learning process.
However, in several practical scenarios, an SU does not perform
learning when it has no data to transmit. Thus, it is important
and timely to reinvestigate this problem in the presence of a
dynamic set of active users.

In this paper, we consider a distributed dynamic CR networks
in which each user only has its individual information, and
there is no information exchange among users. Furthermore,
each user is active with a certain probability in each slot, which
can be regarded as an abstraction of dynamic traffic. The goal
of the users is to determine its channel sensing order. We first
define a generalized interference metric to address the over-
lapping of multiple channel orders. Based on this, we define
two optimization objectives: minimizing the aggregate inter-
ference for each active-user set and minimizing the expected
aggregate interference for all potential users. Information is key
to decision-making problems [22], and the challenges related
to information arising in the considered dynamic network are
listed as follows.

• Uncertain: The occupancy states of the licensed channels
and the set of active users in each slot are random.

• Dynamic: The occupancy states of the licensed channels
change from slot to slot, and the set of active users also
changes from slot to slot.

• Incomplete: Each SU has no information of other SUs
and only has partial information about the environment.
Specifically, one SU does not know the active probabilities
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of all other users, and the licensed channel idle probabili-
ties are also unknown to the SUs.

For presentation, we denote the given features for decision-
making problems as uncertain, dynamic, and incomplete (UDI)
information constraints. It is impossible to solve the two inter-
ference minimization problems even in a centralized manner,
since the active-user set is randomly changing from slot to
slot, and the probability distributions of the active-user sets are
unknown to the users. In this paper, we will resort to distributed
learning approaches based on game theory, which is a powerful
tool for the multiuser decision-making problem.

We propose two noncooperative game models to solve the
given optimization problems. The first is a state-based one-
shot game, in which an inherent system state describes the
active-user set in each slot. Specifically, the set of active users
(players1) in each slot is randomly determined by the active
probabilities of the potential users. The second is a robust game
[23], in which the utility functions are defined as the expected
value over all system states. We prove that the best Nash
equilibrium (NE) of the two games corresponds to the optimal
solutions of the two optimization problems, respectively. How-
ever, due to the UDI information constraints, existing game-
theoretic algorithms cannot be applied into the considered
dynamic CR networks. We then propose a stochastic online
learning algorithm that converges to the best NE of the two
games under the UDI information constraints.

The main contributions of this paper are summarized as
follows.

1) For distributed multiuser decision-making problems with
UDI information constraints, we establish an efficient
game-theoretic framework. It can be applied to several
scenarios wtih other kinds of UDI information con-
straints, e.g., changing channel rate due to instantaneous
channel fading and user mobility.

2) To capture the interactions among multiple users, we
define a generalized interference metric for the channel
sensing order and establish two interference minimization
problems. We formulate the optimization problems as
two noncooperative games (a state-based one-shot game
and a robust game). We prove that the best NE of the
games corresponds to the best solutions for the original
optimization problems, respectively.

3) To deal with the UDI information constraints, which are
mainly caused by the randomly changing active-user set,
we propose a distributed stochastic learning algorithm
and prove its convergence. Moreover, it is analytically
proved that the proposed algorithm asymptotically con-
verges to the best solutions of the two interference mini-
mization problems.

The rest of this paper is organized as follows. In Section II,
we give a brief review of related work. In Section III, we
present the considered dynamic CR network model, define a
generalized interference metric, and establish two interference
mitigation problems. In Section IV, we formulate the state-
based one-shot game and a robust game and investigate the

1In the rest of this paper, we will use users and players interchangeably.

properties of their Nash equilibria. In Section V, we propose
a distributed stochastic learning algorithm for achieving Nash
equilibria of the games in the presence of a changing active-
user set. In Section VI, simulation results and discussion are
presented. Finally, we present discussions and draw conclusions
in Section VII.

II. RELATED WORK

The problem of channel sensing and access is a current
research topic in CR networks. A large number of decision-
making approaches were proposed in the literature, e.g., par-
tially observable Markovian decision process [8], multiarmed
bandit problems [24], and game-theoretic multiagent learning
[25]–[29]. A common drawback of these approaches is that they
employ the parallel sensing strategy, which may fail to find
more spectrum opportunities. In the parallel sensing strategy,
the SUs sense a fixed number (always one) of licensed channels
at the beginning of each slot, access the idle channels, or
suspend their transmissions until the next slot if the channel
is detected as occupied. It is shown that the parallel sensing
strategy admits analytical tractability but leads to relatively
lower spectrum utilization [9]. Compared with the parallel
sensing strategy, the sequential sensing strategy provides more
efficient and adaptive spectrum opportunity discovery.

The sequential channel sensing and access has been exten-
sively investigated using the optimal stopping problem (OSP)
models for single-user CR systems [6], [15]–[21]. In addition,
some preliminary results based on OSP models for multiuser
CR systems were reported in the literature. Specifically, a
centralized solution for a two-user CR system was proposed in
[30], and a heuristic solution was proposed in [31].

Recently, the problem of channel sensing order optimization
for multiuser CR networks, which is exactly the research topic
in this paper, has begun drawing attention. In particular, an
adaptive persistent sensing order selection strategy was pro-
posed in [10], a dynamic-programming-based order selection
strategy in [11], and a reinforcement-learning-based order se-
lection algorithm in [12]. The main difference in our work is
that the active-user set in each slot is randomly changing, and all
the aforementioned algorithms do not converge in the presence
of a changing active-user set. Moreover, a modified p-persistent
access scheme for distributed multiuser sequential channel
sensing in multichannel CR networks was studied in [13].

The game model is a powerful tool in investigating the in-
teractions among multiple users and has been extensively used
in wireless communication networks, e.g., distributed interfer-
ence mitigation [32], power control [33], multiple user access
[34], spectrum allocation [25], routing [35], and heterogeneous
network selection [36]. In the methodology, almost all game
models in the literature are with a fixed active-user set, whereas
we consider a changing active-user set in this paper. In addition,
the proposed learning algorithm is carefully designed to deal
with a randomly changing active-user set in each slot. Recently,
it should be pointed out that some useful tutorials for robust
games with a changing player set can be found in [23].

The proposed stochastic learning algorithm is based on [49].
Due to its computational efficiency and simple implementation,
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this kind of stochastic learning algorithm has been exten-
sively used in wireless applications, e.g., rate adaptation for
IEEE 802.11 networks [37], discrete power control [38], and
dynamic spectrum access with quality of service and interfer-
ence temperature constraints [39]. Among the existing work,
the convergence for a two-user scenario was studied in [38], and
the convergence for a type of game in which the same received
payoffs for all the players was investigated in [39], respectively.
Compared with the existing work, the new technical contribu-
tions are as follows: 1) The formulated game involves multiple
users with different received payoffs, and 2) the set of active
players is time varying.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a distributed CR network consisting of N SUs and
M licensed channels. The licensed channels are owned by the
primary users (PUs) and can only be opportunistically used
by the SUs when they are not occupied by the PUs. Time is
divided into slots with equal length, and the activities of the PUs
are slotted. Denote xm as the occupancy state of channel m;
specifically, xm = 1 means that channel m is idle, and xm = 0
means that it is occupied by PUs. Assume that the states of all
channels remain unchanged in a slot and change randomly and
independently from slot to slot and from channel to channel.
Thus, we characterize the dynamic of spectrum opportunities
by the idle channel probabilities, which are denoted as θm,
0 ≤ θm ≤ 1 ∀m ∈ {1, 2, . . . ,M}. In this paper, we assume
that the number of the SUs is not greater than that of the
licensed channels,2 i.e., N ≤ M .

Denote the slot length as T and the time for sensing one
channel is Ts. The sensing performance is characterized by the
detection probability Pd(Ts), i.e., the probability of the event
that the channel is detected as occupied and it is truly occupied,
and the false alarm probability Pf (Ts), i.e., the probability of
the event that the channel is idle while it is detected as occupied.
Analytical investigations on the two probabilities can be found
in [40].

We consider a dynamic CR network, which is mainly char-
acterized by a variable number of active users. Specifically,
each SU performs channel sensing and access in each slot with
probability λn, 0 < λn ≤ 1. Note that such a dynamic model
captures a general kind of dynamics in CR networks, e.g., an
SU is active only when it has data to transmit and becomes
inactive when there is no transmission demand, a mobile user
joins or leaves the network dynamically. Moreover, it can be
regarded as an abstraction of the user traffic, i.e., the user
active probability corresponds to the probability of nonempty
buffer. In the considered dynamic network, the key decision of
the (active) SUs is to determine their channel sensing orders
distributively and autonomously.

2For the case of N > M , the SUs would choose a fixed number of channels
(always one) to sense and access in a slot rather than performing the sequential
channel sensing and access strategies. The inherent reason is that the resource
is limited in this case.

B. Problem Formulation

To capture the variable number of active users in the con-
sidered dynamic CR network, we define the underlying sys-
tem state as S = {s1, . . . , sN}, where sn = 1 indicates that
the nth SU is active, whereas sn = 0 indicates that it is
inactive. The probability of an underlying system state is
given by μ(s1, . . . , sN ) =

∏N
n=1 pn, where pn is determined as

follows:

pn =

{
λn, sn = 1
1 − λn, sn = 0.

(1)

However, it is emphasized that the state distribution prob-
abilities are unknown to the SUs since each SU does not
know the active probabilities of other SUs. Denote the potential
user set as N , i.e., N = {1, . . . , N}, and the active-user set
as B, i.e., B = {n ∈ N : sn = 1}. For presentation, denote
the set of all the active-user sets as Γ. Then, the probability
of an active-user set can be given by μ(B), which satisfies∑

B∈Γ μ(B) = 1.
Due to interactions among SUs, the channel sensing order

profile of all the SUs has a great impact on the achievable
network throughput. For example, suppose that there is a CR
system with five licensed channels and two active SUs whose
channel sensing orders are given by {1, 3, 2, 4, 5} and {3, 4, 2,
5, 1}, respectively. It is seen that the two SUs simultaneously
sense channel 2 at time 3τ , where τ is the sensing duration
on a channel. In this configuration, if channel 2 is detected as
idle by both users, they access the channel simultaneously and
cause collision.3 An illustrative diagram of the example system
is shown in Fig. 1.

Denote the permutation set of M as O. For presentation,
we denote the channel sensing order of the nth SU as an M -
dimensional order vector On = (on1, on2, . . . , onM ), which
corresponds to a permutation chosen from O. To character-
ize the interactions among the SUs, we define a generalized
interference metrics below. First, the generalized interference
between two active users n and m is defined as follows:

gnm = On �Om (2)

where � is the bitwise XNOR operation. In other words, it is
calculated by gnm =

∑M
k=1 δ(onk, omk), where δ(onk, omk) is

the following indicator function:

δ(onk, omk) =

{
1, onk = omk

0, onk �= omk.
(3)

Intuitively, gnm reflects the impact of overlapped channel
sensing orders on the achievable throughput of the two users.
Specifically, a larger value of gnm implies lower individual
achievable throughput of them, and vice versa. In particular, if
the interference level between n and m is zero, i.e., gnm = 0,
we say that they are orthogonal. Since there are multiple active

3The CR users can employ some resolution approaches, e.g., cognitive MAC
proposed in [41], to avoid collision. However, as will be shown later, the order
selection converging profile of the users is interference-profile, and they can
transmit whenever an idle channel is detected, which will save time and energy
overhead for collision resolution.
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Fig. 1. CR system with five licensed channels and two SUs. SU 1’s channel sensing order is {1, 3, 2, 4, 5}, and SU 2’s sensing order is {3, 4, 2, 5, 1}. When the
two users both detected channel 2 as idle in time 3τ , where τ is the sensing duration on a channel, they access this channel simultaneously and cause collision.

users in the system, we define the aggregate generalized level
experienced by an active user n in slot k as follows:

Gn(B) =
∑

m∈B,m �=n

gnm =
∑

m∈B,m �=n

On �Om. (4)

From the user side, a lower value of Gn(B) is desirable since
it is expected to achieve higher throughput. From the system
side, a lower value of the aggregate generalized interference
level of all the users in the system is also desirable. This
motivates us to define the aggregate generalized interference
level of an active-user set B(k) as follows:

I(B) =
∑
n∈B

∑
m∈B,m �=n

On �Om. (5)

If the aggregate generalized interference level of an active-
user set is zero, i.e., I(B) = 0, it means that there is no overlap
in the channel sensing orders of any two users. In other words,
the channel sensing order profile is interference free. Clearly, an
interference-free channel sensing order profile is desirable since
it would lead to high network throughput, as can be expected.
Mathematically, the optimization objective is to find the optimal
channel sensing order profile such that the following objectives
are maximized:

(P1 :) max−I(B) ∀B ∈ Γ (6)

or

(P2 :) max−EB [I(B)] =
∑
B∈Γ

μ(B)IB (7)

where EB[·] is the operation of taking expectation over all
possible active-user sets. It is seen that problem P1 is for every
possible active-user set in a slot, whereas problem P2 is in the
sense of expectation. Generally, the tasks of solving problems
P1 and P2 are challenging, since they are combinatorial opti-
mization problems. Inherently, the active-user set in each slot is
unknown to the users (a user only knows its state and does not
know the states of others), which furthermore adds difficulties
into solving problem P1. For problem P2, the distribution
probabilities μ(B) are unknown. In fact, due to the incomplete
information, P1 and P2 cannot be solved, even in a centralized

manner. In the following, we will propose a game-theoretic
learning framework for solving the two problems.

Remark 1: The optimality of the formulated optimization
objectives is discussed as follows. If all the channels are ho-
mogeneous, the optimality in interference is also the optimality
in throughput if the final results are interference free. On the
other side, this is not true if the channels are heterogeneous.
However, due to the extremely heavy complexity, it is hard
to achieve the optimal sum-rate maximization solution. For
example, for a system with five channels and five SUs, the
possible simulations are (5!)5, which is extremely huge. Thus,
we think that the formulated optimization objective is desirable
but not always optimal. In particular, if the final result is an
interference-free solution, the throughput would be satisfactory
as can be expected.

IV. CHANNEL SENSING ORDER SELECTION GAMES

The fact that the selections of channel sensing orders of
active users are interactive motivates us to formulate this prob-
lem as a noncooperative game. Here, we formulate two game
models to capture the interactions among active users. The
first game is a state-based order selection game, in which an
inherent system state describes the active-user set in each slot.
The second game is a robust order selection game, in which
the utility functions are defined as the expected value over
all system states. We analyze their properties including the
existence of Nash equilibria and their achievable performance.
More importantly, we quantitatively study some relationships
between the steady states of the two games and the solutions of
the original optimization problems P1 and P2, respectively.

A. State-Based Order Selection Game

1) Game Model: To address the changing active-user set,
a system state is added into the game model. Specifically, the
state-based one-shot game is denoted as G1 = {N ,B,
{An}n∈B, {U1n}n∈B}, where N is the potential player (SU)
set, i.e., N = {1, 2, . . . , N}, B is the underlying system state
that determines the current active-user set, An is the available
action (channel sensing and access order) set of active player n,
and U1n is the utility function of player n.



3598 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 8, AUGUST 2015

It is assumed that all the players’ action sets are the permu-
tation set of M , i.e., An = O, ∀n ∈ N . That is, each player
can arbitrarily determine its sensing and access order. Denote
On ∈ An as an action chosen by player n. Since the actions
of the players are interactive, the utility function is denoted as
U1n(On,O−n), where On ∈ An is the chosen action of player
n, and O−n is the action profile of all the active players except
player n. For an inactive player, the utility function is zero; for
an active player n ∈ B, the utility function is defined as follows:

U1n(B,On,O−n) = −
∑

m∈B,m �=n

On �Om. (8)

In noncooperative game models, each active player intends to
maximize its individual utility function [42], which means that
the state-based channel sensing order selection game can be
expressed as

G1 : maxU1n(B,On,O−n) ∀n ∈ B. (9)

With problem P1 now formulated as a noncooperative game,
two questions naturally arise: 1) What are the properties of the
game, e.g., the existence of Nash equilibria and their achievable
performance; and 2) what are the relationships between G1 and
the original optimization problem P1? We will answer the two
questions in the following.

2) Analysis of the NE: First, we present the definition of
NE in the state-based one-shot game, which can be regarded
as a generalization of NE in the traditional static games with
a fixed number of players. For an arbitrary system state B, a
channel sensing order profile of all the active players aNE =
{O∗

n,O
∗
−n} is a pure strategy NE of G1 if and only if no player

can improve its utility function by unilaterally deviating, i.e.,

U1n
(
B,O∗

n,O
∗
−n

)
≥ U1n

(
B,On,O

∗
−n

)
∀On ∈ O ∀n∈B. (10)

In addition, the aggregate interference level of all the active
players in a pure strategy NE of G1 is given by

IG1
= −

∑
n∈B

U1n
(
B,O∗

n,O
∗
−n

)
. (11)

The properties of the state-based channel sensing order selec-
tion game G1 is characterized by the following theorem.

Theorem 1: For any active-user set, i.e., ∀B ∈ Γ, the state-
based channel sensing order selection game G1 is an exact
potential game that has at least one pure strategy NE point.
Furthermore, any optimal solution of problem P1 constitutes
a pure strategy NE of the game.

Proof: To prove this theorem, we need to prove that there
exists a potential function such that the change in the utility
function of an active player by its unilaterally deviating is the
same as that in the potential function. Specifically, we define the
following state-based potential function Φ1 : On ×O−n → R
for the formulated game:

Φ1(B,On,O−n) = −1
2

∑
n∈B

∑
k∈B,k �=n

On �Om (12)

which is exactly the negative half value of the aggregate inter-
ference level of all the active users.

Now, suppose that an active player n unilaterally changes its
channel sensing order from On to O∗

n while all other active
players keep their sensing orders unchanged, then the change
in player n’s utility function is given by

ΔU = U1n (B,O∗
n,O−n)− U1n(B,On,O−n). (13)

To calculate the change in the potential function caused by
the unilateral action change of player n, we define two player
sets as follows:

Un =(m ∈ B : On �Om > 0)

U∗
n = (m ∈ B : O∗

n �Om > 0) . (14)

It is seen that Un represents the set of active players that have
overlapping sensing orders with player n when its action is
On, and U∗

n represents the set of players that have overlapping
sensing orders with player n when its action is changed to O∗

n.
Based on the classification, all players except player n can be
divided into the following exclusive four sets.

• J1 = Un ∩ (B − U∗
n): Active players in this set only have

overlapping sensing orders with player n before it unilat-
erally changes its action.

• J2 = (B − Un) ∩ U∗
n: Active players in this set only have

overlapping sensing orders with player n after it unilater-
ally changes its action.

• J3 = Un ∩ U∗
n: Active players in this set have overlapping

sensing orders with player n both before and after it
unilaterally changes its action.

• J4 = (B − Un) ∩ (B − U∗
n): Active players in this set

have overlapping sensing orders with player n neither
before nor after it unilaterally changes its action.

The change in the utility functions of players in the given
four sets can be calculated as follows:

ΔUm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

On �Om ∀m ∈ J1

−O∗
n �Om ∀m ∈ J2

On �Om −O∗
n �Om ∀m ∈ J3

0 ∀m ∈ J4.

(15)

Based on the given user set classification, the change in the
player n’s utility function, as specified by (13), can be also
expressed as follows:

ΔUn =Un (B,O∗
n,O−n)− Un(B,On,O−n)

=
∑
k∈J1

On �Ok −
∑
k∈J2

O∗
n �Ok

+
∑
k∈J3

(On �Ok −O∗
n �Ok) . (16)

Moreover, the change in the potential function caused by player
n’s unilateral action change is given by

ΔΦ =Φ(B,O∗
n,O−n)− Φ(B,On,O−n)
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=
1
2

(
ΔUn +

∑
m∈J1

ΔUm +
∑
m∈J2

ΔUm

+
∑
m∈J3

ΔUm +
∑
m∈J4

ΔUm

)
. (17)

Combining (15) and (17) yields the following equation:

ΔΦ =
∑
m∈J1

On �Om −
∑
m∈J2

O∗
n �Om

+
∑
m∈J3

(Sn � Sm − S∗
n � Sm) . (18)

Then, ∀n ∈ B and ∀On,O
∗
n ∈ An, the following equation

always holds:

U1n (B,O∗
n,O−n)− U1n(B,On,O−n)

= Φ1 (B,O∗
n,O−n)− Φ1(B,On,O−n) (19)

which can be directly obtained from (16) and (18). In other
words, the change in the utility function caused by any player’s
unilateral action change is the same with that in the poten-
tial function. According to the definition given in [43], it is
known that G1 is an exact potential game for every active-user
set B.

Based on the relationship between the aggregate interference
level and the potential function, as specified by (5) and (12),
respectively, it is seen that any optimal solution of problem P1
is a global maximizer of the potential function. Furthermore,
exact potential games have several promising attributes, and
the most important two are as follows: 1) Every exact potential
game has at least one pure strategy NE point, and 2) any global
or local maximizer of the potential function constitutes a pure
strategy NE of the game. Therefore, Theorem 1 follows. �

Theorem 1 characterizes the general relationship between
the original optimization problem P1 and the formulated state-
based one-shot game G1, which is suitable for all scenarios with
any active-user set. The following lemma further shows that
there always exists an interference-free order profile for any
active-user set B.

Lemma 1: For any active-user set, i.e., ∀B ∈ Γ, there exists
a channel sensing order profile that is interference free.

Proof: We prove this lemma by construction. Without loss
of generality, denote B1 = {b11, b12, . . . , b1M} as a channel
sensing order vector that is arbitrarily chosen from the per-
mutation set of M , i.e., B1 ∈ O. We construct B2 by a cyclic
shift of B1, i.e., B2 = {b12, b13, . . . , b1M , b11}. Iteratively, we
construct Bk by a cyclic shift of Bk−1, k = 3, 4, . . . ,M . We
write the set of Bk, k = 1, . . . ,M , in a matrix form, i.e.,

Bcs=

⎡
⎢⎢⎢⎢⎣

b11 b12 · · · b1(M−1) b1M
b12 b13 · · · b1M b11

...
...

...
...

...
b1(M−1) b1M · · · b1(M−3) b1(M−2)

b1M b11 · · · b1(M−2) b1(M−1)

⎤
⎥⎥⎥⎥⎦ . (20)

Fig. 2. For M = 6, there are six cyclic-shift matrices that correspond to
interference-free order selection profiles.

For presentation, Bcs is called the cyclic-shift matrix. It is noted
that the following equation always holds:

Bi �Bj = 0 ∀ i, j ∈ {1, 2, . . . ,M}, i �= j (21)

which further leads to the following equation:

M∑
i=1

M∑
j=1,j �=i

Bi �Bj = 0. (22)

Thus, {B1,B2, . . . ,BM} constitutes an interference-free pro-
file for the potential user set N . For an arbitrary active-user set
B, the active users can choose |B| distinct order vectors among
Bcs, which is also interference free. Therefore, Lemma 1 is
proved. �

It is noted that Bi, i = 2, 3, . . . ,M , are associated with B1.
Thus, the number of the given cyclic-shift matrices is equal to
the number of different B1. Considering that all the channel
sensing orders in an interference-free profile can be obtained
by a cyclic shift of each other, we can generate different B1 by
fixing one element while permuting all other elements. Thus,
the total number is given by the permutation number of M − 1,
i.e., (M − 1)!. For example, there are six cyclic-shift matrices
of such interference-free profiles for M = 4, which are shown
in Fig. 2.

Based on Lemma 1, we can study the achievable performance
of the formulated state-based one-shot game.

Proposition 1: For any active-user set, i.e., ∀B ∈ Γ, the best
pure strategy NE of G1 corresponds to an interference-free
sensing order profile.

Proof: For ∀B ∈ Γ, there always exists a channel sensing
order profile that is interference free. For example, one can
allocate different rows of a cyclic-shift matrix, as specified by
(20), to the active users. Clearly, an interference-free channel
sensing order profile is optimal to problem P1. Thus, according
to Theorem 1, Proposition 1 follows. �

The given theoretical analysis characterizes the underlying
relationships between the original optimization problem P1
and the formulated state-based one-shot order selection game
G1. The results are promising since the best pure strategy NE
of G1 corresponds to an optimal solution of P1, as shown by
Proposition 1. However, the state-based one-shot games cannot
be solved as the current active-user sets are random and un-
known to the players. More specifically, each player only knows
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its state (active or inactive) but does not know whether the other
players are active or not.

Note that the given game model is similar to the traditional
coloring game, in which the players selecting the same color
conflict with each other. However, there are two key differ-
ences: 1) In a coloring game, the interactive relationship is
binary, i.e., the color of a player is the same with that of another
player or they are different; in contrast, the sensing orders in the
formulated game may fully or partially overlap, which requires
new formulation and analysis; 2) the set of active users in our
work is time varying, whereas that in traditional coloring games
is fixed.

B. Robust Order Selection Game

Here, we formulate the robust order selection game, which
can be regarded as the expectation over all system states of
the given one-shot order selection game [23]. Formally, the
robust order selection game is denoted as G2 = {N , {An}n∈N ,
{U2n}n∈N }, where N is the player set, An is the action set,
and U2n is the utility function of player n. Note that the players
in G2 are all potential users. The utility function is defined as
follows:

U2n(On,O−n) =EB [U1n(B,On,O−n)]

=
∑
B∈Γ

μ(B)U1n(B,On,O−n) (23)

where EB is the operation of taking expectation over all system
states, and U1n(B,On,O−n) is the utility function of the state-
based one-shot game G1, as characterized by (8). Similarly,
the robust channel sensing order selection game can be ex-
pressed as

G2 : max U2n(On,O−n) ∀n ∈ N . (24)

The properties of the NE of the formulated robust order
selection game is characterized by the following theorem.

Theorem 2: The robust order selection game G2 is also an
exact potential game that has at least one pure strategy NE
point. More importantly, any optimal solution of problem P2
constitutes a pure strategy NE of G2.

Proof: We define the potential function as follows:

Φ2(On,O−n) = EB [Φ1(B,On,O−n)] (25)

where Φ1(B,On,O−n) is the potential function of the state-
based one-shot game G1. According to (12) and (25), it is noted
that Φ2(On,O−n) is exactly the negative value of the expected
aggregate interference level of all the potential users.

Now, suppose that an arbitrary player n unilaterally changes
its channel sensing order from On to O∗

n while all other active
players keep their sensing orders unchanged, then the change in
player n’s utility function is given by

U2n (O
∗
n,O−n)−U2n(On,O−n)

=
∑
B∈Γ

μ(B) [U1n (B,O∗
n,O−n)−U1n(B,On,O−n)] . (26)

Accordingly, the change in the potential function by the
action change of player n is given by

Φ2n (O
∗
n,O−n)− Φ2n(On,O−n)

=
∑
B∈Γ

μ(B) [Φ1 (B,O∗
n,O−n)− Φ1(B,On,O−n)] . (27)

Now, applying the result obtained in (19) into (26) and (27)
yields the following equations:

U2n (O
∗
n,O−n)− U2n(On,O−n)

= Φ2 (O∗
n,O−n)− Φ2(On,O−n) ∀n ∈ N . (28)

Therefore, the robust order selection game is also an exact
potential game that admits at least one pure strategy NE. In
addition, it is seen that the optimal solution of P2 is a global
maximizer of G2. Therefore, Theorem 2 is proved. �

Similarly, the following proposition characterizes the achiev-
able performance of the robust order selection game.

Proposition 2: The best pure strategy NE of G2 corresponds
to an interference-free sensing order profile.

Proof: Based on Lemma 1, similar lines for the proof of
Proposition 1 can be applied to prove this statement. �

The relationship between the robust order selection game G2

and the state-based one-shot game G1 is characterized by the
following theorem.

Theorem 3: A best pure strategy NE of the robust order
selection game G2 is also a best pure strategy NE of the state-
based one-shot game G1 for all system states, i.e., ∀B ∈ Γ.

Proof: According to the given analysis, it is known that
any best pure strategy NE of G2 is interference free, which
means that the channel sensing order vectors of any two poten-
tial users are orthogonal. For any active-user set B in the state-
based game G1, suppose that the active users employ actions
that are drawn from a best pure strategy NE of G2. As a result,
the channel sensing order vector profile of the active users is
also orthogonal. According to Proposition 1, the channel sens-
ing orders correspond to a pure strategy NE of G1 with arbitrary
active-user set B. Therefore, Theorem 3 is proved. �

As previously analyzed, it seems that finding the best pure
strategy NE of G1 using traditional approaches is impossible
since the inherent system state B is unknown and changing from
slot to slot. Moreover, finding the best pure strategy NE of G2

seems impossible since the distribution probabilities of active-
user sets are unknown, and there is no information exchange be-
tween users. In the following, we propose a distributed learning
approach that asymptotically converges to the best pure strategy
NE of G2, which also converges to the best strategy NE of G1

according to Theorem 3.

V. DISTRIBUTED LEARNING APPROACH WITH

RANDOM ACTIVE-USER SET

Generally, potential games enjoy good convergence prop-
erties. Specifically, there are some commonly used learning
algorithms in the literature, which converge to pure strategy
NE points of potential games, e.g., best (better) response [43],
spatial adaptive play [28], log-linear learning [44], [45], and
no-regret learning [25], [27]. However, these algorithms cannot
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be applied in the considered dynamic network since they are
originally designed for static game models and need informa-
tion exchange among the players. Recently, two learning algo-
rithms for the problems of channel selection in CR networks
with dynamic spectrum opportunities [46] and in canonical
networks with block-fading channels [32] were proposed. Al-
though the learning algorithms therein considered the dynamic
environment, they are for game models with a fixed number
of players and, hence, cannot be applied to the considered
dynamic CR networks with changing number of active players.

In this paper, we propose a stochastic learning algorithm for
game models with changing number of active-user sets in each
slot. For presentation, the slot index is added into the game
models: sn(k) represents the state of player n in slot k, B(k)
is the active-user set in slot k, and rn(k) is the received binary
feedback of player n in slot k. According to the transmission
strategies of the users, the binary feedback is determined as fol-
lows: 1) rn(k) = 1: the transmission of player n is successful;
and 2) rn(k) = 0: player n experiences a collision or does find
idle channels. We assume that there is a coordination mecha-
nism between the players such that they use a common cyclic-
shift matrix as their action space,4 i.e., An = Bcs, ∀n ∈ N .

To begin with, the players employ mixed strategies in
each slot. Specifically, Q(k) = (q1(k), . . . ,qn(k)) denotes the
mixed-strategy profile in slot k, in which qn(k) = (qn1(k), . . . ,
qnM (k)) is the probability vector of player n choosing each
channel sensing order. The underlying ideas of the proposed
stochastic learning algorithm can be summarized as follows:
1) In the first slot, player n being active, it chooses the
channel sensing orders with equal probabilities qn(k0) =
((1/M), . . . , (1/M)); 2) for an active player n ∈ B(k) in slot
k, it receives binary feedback rn(k) at the end of the slot and
employs a rule to update its mixed strategy. For an inactive
user, it gets zero and keeps its mixed strategy unchanged. The
proposed stochastic learning algorithm is formally described in
Algorithm 1.

Algorithm 1: Stochastic learning algorithm with randomly
changing active-user set

Loop for k = 0, 1, 2, . . .,
1. Selecting channel sensing orders stochastically: At the

beginning of slot k, each active player n ∈ B(k) selects a
channel sensing order an(k) ∈ An according to its mixed
strategy qn(k).

2. Accessing and receiving binary feedback: All the active
players perform sequential channel sensing and access.
Specifically, they sense the licensed channels one by one
according to its chosen order and transmit data in the first
idle channel. At the end of slot k, each player receives a
binary feedback rn(k), which is jointly determined by the

4The reason for making this assumption is that the action space is huge,
e.g., the size of the action space for M = 5, 6 are 120 and 720, respectively.
Thus, an approach for reducing the action space size is needed to accelerate the
convergence speed. However, it should be pointed that the proposed learning
stochastic algorithm is also suitable for the nonreducing action space.

activities of PUs and the channel sensing orders of other
active users.

3. Updating mixed strategy: All the active users update
their mixed strategies according to the following rule:

qn(k + 1) = qn(k) + brn(k)
(
Ian(k) − qn(k)

)
(29)

where 0 < b < 1 is the learning parameter, Ian(k) is a
unit vector with the an(k)th component being one. The
inactive users keep their mixed strategies unchanged.

End loop

The convergence of the proposed stochastic learning in the
presence of a changing active-user set is characterized by the
following theorem.

Theorem 4: When all the players use a common cyclic-shift
matrix as the action space, the proposed stochastic learning
algorithm asymptotically converges to the best pure strategy
NE points of both G1 and G2 if the learning parameter goes
sufficiently small, i.e., b → 0.

Proof: The proof of Theorem 4 is organized as follows.
First, using the results of replicator dynamic [49], we show
that the long-term behavior of the sequence Q(k) can be
approximately characterized by an ordinary differential equa-
tion (ODE). Second, by investigating the convergence of the
potential function with regard to the mixed-strategy profile, i.e.,
Φ(Q(k)), it is shown that the proposed stochastic learning algo-
rithm asymptotically converges to the Nash strategy of the ro-
bust game G2. Thus, we have (30)–(33), shown at the bottom of
the next page.

1) Associated ODE: It is seen that the update rule shown in
(29) is for active players. We first extend the update rule for all
the potential players as follows:

qn(k + 1) = qn(k) + brn(k)sn(k)
(
Ian(k) − qn(k)

)
(34)

where sn(k) indicates the event that player n is active (sn(k) =
1) or inactive (sn(k) = 0) in slot k. To investigate the evolution
of the mixed-strategy profile of all potential players, we rewrite
the given update rule as follows:

Q(k + 1) = Q(k) + bG (Q(k), a(k), r(k), s(k)) (35)

where G(·, ·, ·, ·) is the update rule specified by (34). For pre-
sentation, we denote the conditional expected value of function
G as follows:

F (Q) = E [G (Q(k), a(k), r(k), s(k)) |Q(k)] . (36)

Following the idea of stochastic approximation [47], the
long-term behavior of the mixed-strategy profiles Q(k) is char-
acterized by the following lemmas.

Lemma 2: When the learning parameter goes sufficiently
small, i.e., b → 0, the sequence of the mixed-strategy profile
Q(k) converges to the solution of the following ODE with
initial value Q(0):

dQ

dt
= F (Q). (37)

Proof: By the method of interpolation, similar lines given
in [48] can be applied to prove this lemma. �
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Lemma 3: If the learning parameter b is sufficiently small,
the following are true for the proposed stochastic learning
algorithm.

1) All Nash equilibria of the game are stationary points
of (37).

2) All stationary points of (37) that are not stable are not
Nash equilibria.

Proof: See [48]. �
According to the given analysis, we can conclude that the

proposed stochastic learning algorithm would converge to Nash
equilibria if the sequence Q(k) converges to the stationary
points of (37). In the following, we analyze the asymptoti-
cal convergence behavior of the proposed stochastic learning
algorithm.

2) Asymptotical Convergence Behavior: For presentation,
we denote the active-player set excluding player n as Bn =
{k ∈ {N \ n} : sk = 1} and all the possible profiles of Bn as
Γn. We define hn(m,Q−n) as the expected payoff of player n
if it chooses a pure strategy m, i.e., an = Bm, while all other
active players employ mixed strategies Q−n. Mathematically,
the analytical expression of hn(m,Q−n) is given in (30). Sim-
ilarly, the expected value of the potential function H(Q) over
mixed-strategy profile Q and the expected value Hn(m,Q−n)
when player n chooses a pure strategy m while all other active
players employ mixed strategies Q−n is given by (31) and
(32), respectively. Since H(Q) =

∑
m qnmHn(m,Q−n), the

variation of H(Q) can be expressed as follows:

∂H(Q)

∂qnm
= Hn(m,Q−n). (38)

We can rewrite the ODE specified by (37) as follows:

dqnm
dt

= Fnm(Q) ∀n ∈ N . (39)

According to (39) and (30), the given equation can be further
rewritten as follows:

dqnm
dt

=λn

(
qnm(1 − qnm)EBn,Q−n

[rn|(Bn,m,Q−n)]

+
∑
k �=m

qnk(−qnm)EBn,Q−n
[rn|(Bn, k,Q−n)]

)

=λnqnm

(
hn(m,Q−n)−

∑
k

qnkhn(k,Q−n)

)

=λnqnm
∑
k

qnk (hn(m,Q−n)− hn(k,Q−n)) . (40)

Based on the given analysis, we study the long-term behavior
of the potential function H(Q). Specifically, the derivative of
H(Q) is given by (33). According to the properties of the
potential games, the following equation always holds:

Hn(m,Q−n)−Hn(k,Q−n)

= hn(m,Q−n)− hn(k,Q−n) ∀n,m, k. (41)

Therefore, (33) can be further expressed as follows:

dH(Q)

dt
=

1
2

∑
n,m,k

λnqnmqnk

× (hn(m,Q−n)−hn(k,Q−n))
2≥0. (42)

The given equation shows that H(Q) increases as the algo-
rithm iterates. Furthermore, it is known that H(Q) is bounded
by H(Q) ≤ 0. Therefore, H(Q) will eventually converge to

hn(m,Q−n) =EBn,Q−n
[rn|(Bn,m,Q−n)]=

∑
Bn∈Γn

∏
k∈Bn

λk

⎛
⎝ ∑

ak∈Ak,k∈Bn

rn(a1, . . . , an−1,Bm, an+1, . . . , aN )
∏
k∈Bn

qkak

⎞
⎠ (30)

H(Q) =EBn,Q [Φ|(Bn,qn,Q−n)]=
∑
B∈Γ

∏
k∈B

λk

⎛
⎝ ∑

ak∈Ak,k∈Bn

Φ(a1, . . . , an−1, an, an+1, . . . , aN )
∏
k∈B

qkak

⎞
⎠ (31)

Hn(m,Q−n) =EBn,Q−n
[Φ|(Bn,m,Q−n)]=

∑
Bn∈Γn

∏
k∈Bn

λk

⎛
⎝ ∑

ak∈Ak,k∈Bn

Φ(a1, . . . , an−1,Bm, an+1, . . . , aN )
∏
k∈Bn

qkak

⎞
⎠ (32)

dH(Q)

dt
=

∑
n,m

∂H(Q)

qnm

dqnm
dt

=
∑
n,m

Hn(m,Q−n)λnqnm
∑
k

qnk (hn(m,Q−n)− hn(k,Q−n))

=
∑
n,m,k

λnqnmqnkHn(m,Q−n) (hn(m,Q−n)− hn(k,Q−n))

=
∑
n,m,k

λnqnmqnkHn(k,Q−n) (hn(k,Q−n)− hn(m,Q−n))

=
1
2

∑
n,m,k

λnqnmqnk (Hn(m,Q−n)−Hn(k,Q−n)) (hn(m,Q−n)− hn(k,Q−n)) (33)
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some maximum points, when (dH(Q))/dt = 0. Finally, we
have the following relationships:

dH(Q)

dt
= 0

⇒ hn(m,Q−n)− hn(k,Q−n) = 0 ∀n,m, k

⇒ dqnm
dt

= 0 ∀n,m

⇒ dQ

dt
= 0

⇒ Q converges to the stationary point of (37). (43)

Therefore, according to Lemmas 2 and 3, it is proved that
the proposed stochastic learning algorithm converges to Nash
equilibria of the games. Moreover, it is noted that all the players
use a common cyclic-shift matrix as the action set; therefore,
according to Propositions 1 and 2 and Theorem 3, we conclude
that the proposed stochastic learning algorithm converges to the
best NE of G1 and G2. Therefore, Theorem 4 is proved. �

The proposed stochastic learning algorithm is promising
since it asymptotically converges to the best NE of G1 and
G2. It is fully distributed and autonomous. More importantly, it
captures the changing number of active players and the dynamic
spectrum opportunities well. Based on the given analysis, it
is seen that it also achieves the best solutions of the original
problems P1 and P2, respectively.

Remark 2: It is emphasized that the proposed learning
stochastic algorithm is online. Specifically, the active users
perform sequential channel sensing and access, receive binary
feedbacks, and then adjust their mixed strategies. Therefore,
they transmit data before and after the learning algorithm
converges.

Remark 3: The complexity of the proposed learning algo-
rithm is very low. In particular, an active user only needs to
record its current mixed strategy, the current chosen order,
and the received payoffs; furthermore, the update rule is lin-
ear. In addition, the inactive users keep their mixed strategies
unchanged.

VI. SIMULATION RESULTS AND DISCUSSION

In the simulation study, we denote the sensing time fraction
in a slot as τ=Ts/T . As a result, the normalized achievable
throughput of an active player, which successfully accesses an
idle channel in a slot, is given by R=1−nτ . Following the
similar setting in [40], the slot length is set to T =100 ms,
and the sensing duration is set to Ts = 5 ms. It is assumed
that energy detection is employed by each SU, then the spec-
trum sensing performance is characterized by Pd(Ts)=0.9 and
Pf (Ts)=0.1, which is determined by the detection threshold
[40]. Furthermore, for convenience of discussion, we assume
that the idle probabilities of all licensed channels are the same,
i.e., θm=θ, ∀m ∈ {1, 2, . . . ,M}, and the active probabilities
of each user are also the same, i.e., λn=λ, ∀n∈{1, 2, . . . , N}.

A. Convergence Behavior

Here, we study the convergence behaviors of the proposed
stochastic learning algorithm in the presence of dynamic active

Fig. 3. Evolution of the order selection probabilities of arbitrarily chosen
users (M = 5, N = 5, θ = 0.6, λ = 0.5).

Fig. 4. Evolution of the aggregate interference level (the number of license
channels is M = 5, the number of SUs is N = 5, the idle probabilities of the
licensed channel are set to θn = 0.6, and the active probabilities of the SUs in
each slot are set to λ = 0.5).

users. For presentation, it is assumed that there are five licensed
channels and five potential users, i.e., M = 5 and N = 5.
The licensed channel idle probabilities are set to θ = 0.6, and
the user active probabilities are set to λ = 0.5. The learning
parameter is set to b = 0.05, which has been optimized by
experiment.

For an arbitrarily chosen user, the evolution of order selection
probabilities is shown in Fig. 3. It is noted in the figure that the
order selection probabilities remain unchanged in successive
multiple slots (for example, from slot 200 to slot 215), which
corresponds to the event that the player is inactive in these
slots. It is seen that it finally converges to a pure strategy
(q = {0, 0, 1, 0, 0}) in about 400 iterations (slots). After slot
400, although the active-user set is randomly changing, the
player employs the converging stable solution when it is active.
The results shown in the figure validate the convergence of the
proposed learning algorithm in the presence of the changing
active-user set.

The evolution of the aggregate interference level is shown
in Fig. 4. It is noted that the aggregate collision level finally
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Fig. 5. Expected convergence time (No. of iterations) with different numbers
of SUs and different active probabilities of the SUs in each slot (the number
of licensed channels is M = 10, and the channel idle probabilities are set to
θn = 0.8).

decreases to zero in about 500 iterations, which implies the
convergence behaviors of all the potential users. More impor-
tantly, it is noted that the converging order selection profile is
interference free for every changing active-user set.

It is seen that the proposed learning approach takes several
slots to converge to stable solutions. Therefore, it is interesting
to study its convergence time. We define the expected con-
vergence time as the number of iterations where there exists
a component of the mixed strategy of each player, which is
sufficiently approaching one, e.g., larger than 0.95. The ex-
pected convergence time for a dynamic system consisting of ten
licensed channels with different numbers of SUs and different
active probabilities are shown in Fig. 5. It is noted in the figure
that for a given number of SUs, e.g., N = 5, the expected con-
vergence time increases as the user active probability decreases.
The reason is that an SU with lower active probability per-
forms learning occasionally, whereas an SU with higher active
probability performs learning more frequently. Moreover, for
scenarios with large active probabilities, e.g., λ = 0.5, 0.8, 1,
the expected convergence time increases when the number of
SUs is small, e.g., N < 6, and decreases when the number of
SUs becomes large, e.g., N ≥ 6. The reasons are as follows:
1) When the number of SUs is small, the resources are relatively
abundant, and the users spend more time in finding the desirable
sensing orders; and 2) when the number of SUs is large, the
collision frequency becomes large.

B. Throughput Performance

Here, we evaluate the throughput performance of the pro-
posed learning approach in different scenarios. We compare
the throughput performance of the proposed learning approach
with the random selection approach. In the random selection
approach, each active player chooses the sensing and access or-
der randomly and autonomously. In the considered distributed
CRs with changing active-user set and time-varying spectrum
opportunities, the random selection approach is an intuitive
approach.

Fig. 6. Comparison results versus the active probabilities of the SUs in each
slot (the number of licensed channels is M = 10, and the number of SUs is
N = 10).

The simulated systems are with ten licensed channels. To
study the effect of PU dynamics on the achievable system
throughput, we consider the following four scenarios with
different licensed idle probabilities.

1) (Scenario 1) Homogeneous licensed channels: All the idle
probabilities are set to 0.8.

2) (Scenario 2) Slight heterogeneity of the licensed chan-
nels: The licensed channel idle probabilities are set to
{0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9}.

3) (Scenario 3) Moderate heterogeneity of the licensed chan-
nels: The licensed channel idle probabilities are set to
{0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9}.

4) (Scenario 4) Heavy heterogeneity of the licensed chan-
nels: The licensed channel idle probabilities are set to
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 0.9}.

The comparison results versus the active probabilities of the
SUs are shown in Fig. 6. There are ten SUs, and all of them
have the same active probability in each slot. The results are
obtained by simulating 100 000 successive slots and then taking
the expected value. It is seen that the normalized expected
system throughput of both approaches increases as the active
probabilities of SUs increase. In addition, the proposed learning
approach outperforms the random selection approach for four
considered scenarios. In particular, as the active probabilities
increase, the throughput gap becomes significant. These results
validate the proposed learning approach both for homogeneous
and heterogeneous scenarios.

The comparison results versus the number of SUs are shown
in Fig. 7. The active probability of all SUs in each slot is set
to λ = 0.7. The results are obtained by simulating 100 000 suc-
cessive slots and then taking the expected value. It is seen that
the normalized expected system throughput of both approaches
increases as the number of potential users increases. In addi-
tion, the proposed learning approach outperforms the random
selection approach for four considered scenarios. In particular,
as the number of potential users increases, the throughput gap
becomes significant. These results again validate the proposed
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Fig. 7. Comparison results versus the number of SUs (the number of licensed
channels is M = 10, and the active probability of each SU in each slot is
λ = 0.7).

Fig. 8. Comparison results versus the idle probabilities of licensed channels
(M = 5, N = 5, λ = 0.8).

learning approach both for homogeneous and heterogeneous
scenarios.

The comparison results versus the idle probabilities of li-
censed channels are shown in Fig. 8. There are ten SUs; further-
more, all the idle probabilities of the licensed channels are set
the same. The results are obtained by simulating 100 000 suc-
cessive slots and then taking the expected value. It is seen that
the normalized expected system throughput of both approaches
increases as the idle probabilities of licensed channels increase.
When the active probability of the SUs is small, e.g., λ =
0.2, the difference between the throughput performance of the
proposed learning approach and that of the random approach
is trivial. However, for larger active probabilities, e.g., λ = 0.5,
0.8, 1, the throughput gap is significant. Moreover, for a given
active probability of the SUs, the throughput gap becomes sig-
nificant as the idle probabilities of licensed channels increase.

To summarize, the simulation results validate the conver-
gence of the proposed learning approach in dynamic CR net-
works with the changing set of active SUs and unknown system
parameters. Moreover, it is shown that it achieves satisfactory

throughput performance in both homogeneous and heteroge-
neous environments.

VII. CONCLUSION

We have studied the problem of multiuser sequential channel
sensing and access in dynamic CR networks, in which the
active-user set is randomly changing from slot to slot. Fur-
thermore, each user only has its individual information, and
information exchange among users is not available. The goal
of the users is to determine channel order for sensing and
access. We defined a generalized interference metric to address
the overlapping of multiple channel orders and established two
optimization objectives: minimizing the aggregate interference
for each active-user set and minimizing the expected aggregate
interference for all potential users. We proposed a state-based
one-shot game and a robust game to solve the optimization
problems. We proved that the best NE of the two games
corresponds to the optimal solutions of the two optimization
problems, respectively. To cope with the UDI information con-
straints in the distributed and dynamic networks, we proposed
a stochastic learning algorithm, which was analytically proved
to converge to Nash equilibria of the two formulated games in
the presence of a changing active-player set. The convergence
and superior performance of the proposed learning algorithm
were validated by simulation results. In the future, we plan to
consider dynamic CR networks with user mobility.
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