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Downlink Power Control in Two-Tier Cellular
OFDMA Networks Under Uncertainties:

A Robust Stackelberg Game
Kun Zhu, Ekram Hossain, Fellow, IEEE, and Alagan Anpalagan

Abstract—We consider the problem of robust downlink
power control in orthogonal frequency-division multiple access
(OFDMA)-based heterogeneous wireless networks (HetNets) com-
posed of macrocells and underlaying small cells. A non-cooperative
setting is assumed where the macro base stations (MBSs) and small
cell base stations (SBSs) compete with each other to maximize
their own capacities considering imperfect channel state informa-
tion. A robust Stackelberg game (RSG) is formulated to model
this hierarchical competition where the MBSs and SBSs act as the
leaders and the followers, respectively. The formulated RSG can be
expressed as an equilibrium program with equilibrium constraints
(EPEC). A comprehensive study of this RSG is provided consid-
ering various power constraints (e.g., total and spectral mask),
various interference constraints (e.g., individual and global), and
different uncertainty models (e.g., column-wise and ellipsoidal).
We show how the different constraints and uncertainty models
change the property of the game (e.g., Nash equilibrium problem
(NEP) or generalized Nash equilibrium problem (GNEP)) and
accordingly impact the choice of analysis method (e.g., game
theory or variational inequality (VI)), solution (e.g,. closed-form
or numerical), and the design of algorithms and their distributive
properties (e.g., totally distributed, semi-distributed, and central-
ized). A robust Stackelberg equilibrium (RSE) is considered to
be the solution and its existence and uniqueness are investigated.
Also, algorithms are proposed to arrive at the RSE. Numerical
results show the effectiveness of robust solutions in an imperfect
information environment.

Index Terms—Small cell networks, power control, uncertainty,
robust Stackelberg game, worst-case analysis, equilibrium pro-
gram with equilibrium constraints, generalized Nash equilibrium
problem, variational inequality.

I. INTRODUCTION

FUTURE wireless networks (e.g., 5G) are expected to
be highly heterogeneous composed of macrocells and a

large number of small cells with small coverage area and low
transmission power. For efficient frequency reuse and spectrum
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sharing, the co-channel deployment has been regarded as a
practical solution where both macrocells and small cells can
utilize all available spectrum (i.e., frequency reuse factor of
one). With such co-channel deployment, the spectrum-wide
cross-tier and co-tier interferences could severely limit the
system performance. Accordingly, interference mitigation is of
vital importance for which subchannel assignment and power
control-based resource allocation has been shown to be a
feasible solution for OFDMA-based heterogeneous wireless
networks (HetNets) [1]. In this paper, we address the power
control problem for downlink transmission in two-tier HetNets.

In HetNets, the base stations (BSs) could be deployed by
different parties (e.g., traditional service providers, emerging
secondary service providers, and individual users) with differ-
ent interests. Centralized resource allocation schemes requiring
coordination among all BSs may not be practical in HetNets
due to the large amount of small cell base stations (SBSs)
deployed, privacy protection by the owners, and security issues.
Accordingly, we consider a non-cooperative setting where each
BS is of self-interest and performs resource allocation indepen-
dently and distributively aiming to maximize its own capacity.
Also, a hierarchical structure of the competition among the
macrocell base stations (MBSs) and SBSs is considered where
the MBSs are assumed to have privileges over SBSs in making
decisions, and the mathematical modeling fits naturally into the
framework of a Stackelberg game.

Game theory-based power control has been widely studied
in the literature. Many existing works [2]–[7] have formulated
the non-cooperative power control problem in different wire-
less systems as Nash equilibrium problems (NEPs), and have
proposed various water-filling algorithms (e.g., iterative [2],
[3], simultaneous [4], and asynchronous [5]) to achieve the
Nash equilibrium (NE) in a distributed manner. Compared with
the centralized power allocation schemes, these game theory-
based distributed algorithms require less or even no information
exchange.

Stackelberg game has also been applied in several works
[8]–[10] to explicitly capture the hierarchical competition in
two-tier HetNets with different design purposes. Specifically,
in [9], [10], pricing-based single-leader multi-follower Stack-
elberg games are formulated, where the MBS as the single
leader prices the interference from the femtocell users and the
objective of the MBS is to maximize its monetary revenue.
A rate maximization Stackelberg game is formulated in [8].
However, all these works are based on a common assump-
tion of perfect information, where all the parameters involved
in the objective function and constraints of the individual
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optimization problem can be precisely obtained. Due to the dy-
namic and random nature of wireless environment and limited
amount of coordination in HetNets, information uncertainties
naturally appear and the assumption of perfect information may
not be practical. Accordingly, when applying perfect informa-
tion based resource allocation schemes in a practical system
with parameter uncertainties, possible performance degradation
could be experienced. For example, interference constraints
are usually imposed to protect high priority users. However,
these interference constraints could be violated due to the
uncertainty in channel state information (CSI) in a system using
a perfect information based scheme. Therefore, a robust design
of resource allocation is required which takes the imperfect
information into account.

To explicitly model the parameter uncertainty, the actual
value of the parameter is usually represented by the sum of an
estimated nominal value and a perturbation term which is also
regarded as the uncertainty part. Similar to that in optimization
theory, two approaches are used in game theory literature to
deal with the information uncertainties: a Bayesian approach
considering average payoff optimization which leads to the de-
velopment of Bayesian games, and a worst-case approach based
on robust optimization [11] for worst-case payoff optimization
which leads to the development of robust games [12].

The Bayesian approach considers the uncertainty term as
a random variable the probability distribution of which is
assumed to be known, and the performance is guaranteed on an
average basis. For the cases where the probability distribution
is not available, the distribution-free worst-case approach is
a better option which only requires information about the
bound of uncertain parameters. Specifically, with the worst-case
approach, the uncertainty term is assumed to be bounded within
an uncertainty region, and certain level of performance can be
guaranteed for every realization in the uncertainty set which can
prevent undesirable performance fluctuations.

In this work, we consider the uncertainty in CSI of interfering
channels and follow the worst-case approach. Several existing
works [13], [15], [16], [28] have also considered the worst-case
robust formulation of non-cooperative power control games in
different settings. Specifically, a robust non-cooperative power
control game is formulated in [13] for modeling the competitive
rate maximization considering bounded channel uncertainty in
a frequency-selective Gaussian channel. However, no interfer-
ence constraint is considered. Similarly, interference constraint
is not considered in the power control game of [28] which is an
example of the robust additively coupled games. Game formu-
lations for rate maximization in cognitive radio networks are
presented in [15], [16]. However, only individual interference
constraints are considered and there is no uncertainty in the
payoff function of [16].

More importantly, all these works only consider the simul-
taneous play formulations while the hierarchical competition
among the players is largely ignored. Attempts to obtain robust
solutions for Stackelberg games considering uncertain observa-
tions can be found in [17], [27], [28]. In this work, we consider
a comprehensive robust formulation of the Stackelberg game
for power control in two-tier OFDMA cellular networks, which
has not been investigated in the existing literature.

Specifically, we formulate the downlink power control
problem in a two-tier HetNet with imperfect CSI as a
distribution-free multi-leader multi-follower robust Stackelberg
game (RSG), where the MBSs are considered to be the leaders
while the SBSs are the followers. The RSG is composed of
a leader sub-game and a follower sub-game and accordingly
can be expressed as an equilibrium program with equilibrium
constraints (EPEC) for which we present a comprehensive
investigation by considering various power and interference
constraints, and different types of uncertainty models. We show
how the different considerations of the constraints and uncer-
tainty models change the property of the game, and accordingly
impact the choice of the analysis method, the form of solution,
and the design of algorithms and their distributive properties.

Robust Stackelberg equilibrium (RSE) composed of a ro-
bust Nash equilibrium (RNE) for the follower sub-game and
a RNE for the leader sub-game is considered to be the so-
lution of the RSG, and the existence and uniqueness of the
solution are investigated. Closed-form exact solutions are ob-
tained for a single-leader multiple-follower formulation with
column-wise uncertainty model for both sparse and dense
BS deployment scenarios. When ellipsoidal uncertainty model
is considered, a closed-form solution for the follower sub-
game is possible, while a closed-form solution of the RSE
is not available. Instead, algorithms are proposed for reach-
ing the RSE. Numerical results show the effectiveness of the
RSE in terms of performance improvement in imperfect CSI
environments.

The rest of the paper is organized as follows. Section II
describes the system model, assumptions, and presents the
robust Stackelberg game framework. In Section III, given the
power allocation of MBSs, the follower sub-game is analyzed
considering different power and interference constraints. The
leader sub-game is then analyzed in Section IV considering
different formulations for the follower sub-game. Numerical
results are presented in Section V. Section VI concludes the
paper. Brief introductions to Stackelberg game, variational in-
equality, and robust optimization are provided in Appendices A,
B, and C, respectively.

II. SYSTEM MODEL, ASSUMPTIONS,
AND GAME FORMULATION

A. System Model and Assumptions

We consider downlink transmissions in an OFDMA-based
two-tier celluar network consisting of a set M = {1,2, . . . ,M}
of macrocells and a set K = {1,2, . . . ,K} of small cells sharing
the same set N = {1,2, . . . ,N} of orthogonal subchannels.
Also, we assume that only one user is served by each MBS/SBS
in each subchannel. Denote by glm(n) the co-tier channel power
gain between the MBS l and the user of MBS m on subchannel
n. The cross-tier channel power gain between the MBS m and
user of SBS k on subchannel n is denoted by hmk(n). Similarly,
we can define the co-tier channel power gain between SBSs as
g jk(n) and the cross-tier channel power gain between SBS k
and user of MBS m as hkm(n). We assume that the subchannels
experience slow and flat fading.
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Imperfect CSI is considered which brings uncertainty into
the system. Specifically, the actual value of the channel gain
is expressed as the sum of an estimated nominal value and an
uncertainty term as follows:

glm(n) = ḡlm(n)+�glm(n), (1)

where ḡlm(n) is the nominal value and �glm(n) is the uncer-
tainty term. Several models have been applied in the lietrature to
describe the parameter uncertainties (e.g., general polyhedron,
D-norm, ellipsoidal, and column-wise [18]) among which the
column-wise and ellipsoidal models are most widely used due
to their analytical tractability.

With column-wise model, the channel uncertainty is
modeled by

glm(n) = {ḡlm(n)+�glm(n) : |�glm(n)| ≤ εlm(n)} ,

where εlm(n) is the column-wise uncertainty bound. With ellip-
soidal model, the channel uncertainty is described by

glm(n)=
{

ḡlm(n)+�glm(n) :‖�glm(n)‖wlm(n)
≤εm(n)

}
,

where ‖·‖ denotes the Euclidean norm of a vector and wlm(n) is
a vector of positive weights. Similarly, the uncertainty models
for g jk(n), hmk(n), and hkm(n) can be obtained.

The transmit powers of MBS m and SBS k are denoted by
pm = [pm(1), . . . , pm(n), . . . , pM(N)] and pk = [pk(1), . . . , pk(n),
. . . , pK(N)], respectively, where pm(n) ≥ 0 and pk(n) ≥ 0 are
the transmit powers of MBS m and SBS k on subchannel n,
respectively. For each MBS and SBS, the total transmit power
is limited by

N

∑
n=1

pm(n)≤ Psum
m ,

N

∑
n=1

pk(n)≤ Psum
k , (2)

where Psum
m and Psum

k are the corresponding power budgets.
Besides the total power constraint, a spectral mask constraint
could also be imposed to limit the maximum transmit power
allocated to each subchannel as pm(n) ≤ Pmax

m (n) and pk(n) ≤
Pmax

k (n).
To protect macro users from excessive interference from

SBSs, two types of interference constraints can be imposed at
the SBS side: an individual interference constraint

pk(n)hkm(n)≤ Imax
km (n), ∀k,m,n, (3)

which limits the interference generated by each SBS and a
global interference constraint

K

∑
k=1

pk(n)hkm(n)≤ Imax
m (n), ∀m,n, (4)

which limits the aggregate interference generated by all SBSs.
The MBSs and SBSs are considered to be of self-interest aim-

ing to maximize their own achievable rate through the alloca-
tion of transmit power over the N subchannels subject to certain
power and interference constraints. Given the power allocations
of all MBSs and SBSs, the interference plus noise experienced
by users of MBS m and SBS k on channel n can be expressed

as vm(n) = σ2
m(n)+∑m�=l glm(n)pl(n)+∑K

k=1 hkm(n)pk(n), and
vk(n) = σ2

k(n) + ∑M
m=1 hmk pm(n) + ∑ j �=k g jk(n)p j(n), respec-

tively. Accordingly, the maximum downlink transmission rate
for MBS m and SBS k can be obtained as follows:

Rm(pm,p−m,plow) =
N

∑
n=1

log(1+ pm(n)/vm(n)) ,

Rk(pk,p−k,pup) =
N

∑
n=1

log(1+ pk(n)/vk(n)) ,

where p−m and p−k represent the power allocations of all MBSs
expect the mth MBS and power allocations of all SBSs expect
the kth SBS, respectively, plow and pup represent the vectors of
power allocations of all SBSs and MBSs, respectively. Note that
the gains of the interfering channels are normalized to make all
direct channel gains to be one (i.e., gmm(n) = 1 and gkk(n) = 1).

B. Robust Stackelberg Game Formulation

A robust Stackelberg game is formulated to capture the
hierarchical competition among the MBSs and SBSs. Also, the
competitive interactions exist within the multiple leaders and
the multiple followers. In this case, a robust non-cooperative
leader sub-game for the leaders and a robust non-cooperative
follower sub-game for the followers are formulated. Both of
them together constitute the robust Stackelberg game. Specifi-
cally, the structure of the robust Stackelberg game is described
as follows:

• Players: The MBSs and SBSs are the players of the robust
Stackelberg game. Also, the MBSs are the players (as
the leaders) of the leader sub-game and the SBSs are the
players (as the followers) of the follower sub-game.

• Strategy: The strategy of each player (both the leaders and
the followers) is the selection of power allocation over the
N available subchannels.

• Strategy space: Denote by Pm and Pk the sets of admissible
power allocation of MBS m and SBS k, respectively. The
strategy spaces of the leaders and the followers are then
given by P up = ∏m∈M Pm and P low = ∏k∈K Pk, respec-
tively. The strategy space of the entire game is given by
the Cartesian product P up×P low. Note that Pm and Pk vary
with different considerations of the constraints.

• Uncertainty models: Both column-wise and ellipsoidal
uncertainty models are considered.

• Robustness: For robustness analysis, we consider the
worst-case.

• Payoff: The payoffs of the MBSs and SBSs are defined
as πm = Rm(pm,p−m,plow) and πk = Rk(pk,p−k,pup),
respectively.

Robust Stackelberg equilibrium (RSE) is considered to be
the solution of the game which is constituted by a robust Nash
equilibrium (RNE) of the leader sub-game pup∗ and a RNE of
the follower sub-game plow∗(pup∗), and is represented by the
tuple {pup∗,plow∗(pup∗)}.

In the following, the game is analyzed considering four types
of constraints. For each type of constraint, we further consider
two types of uncertainty models.
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III. ROBUST FOLLOWER SUB-GAME

Backward induction is commonly used to analyze a
Stackelberg game. Therefore, we start analyzing the robust
Stackelberg game by firstly investigating the robust follower
sub-game given the strategies of the leaders. Various power
and interference constraints and two uncertainty models are
considered.

A. With Only Total Power Constraint

We start analyzing the follower sub-game considering only a
total maximum transmit power constraint for each SBS. In this
case, the admissible strategy set of SBS k is

Pk =

{
pk ∈ R

N :
N

∑
n=1

pk(n)≤ Pk, pk(n)≥ 0

}
, ∀k ∈ K .

The nominal formulation of the follower sub-game is described
as follows. Given the power allocations pup of the leaders,
each follower k aims to maximize its own achievable downlink
transmission rate as

max
pk

Rk(pk,p−k,pup)

s.t. pk ∈ Pk. (5)

The robust counterpart of the nominal game can be formu-
lated by considering uncertainties in the channel state informa-
tion. Specifically, each follower k aims to robustly maximize its
downlink rate subject to CSI uncertainty which is a max-min
problem described as follows:

max
pk

min
gk,hk

Rk(pk,p−k,pup) (6)

s.t. pk ∈ Pk, gk ∈ Gk, hk ∈ Hk, (7)

where gk = {g jk} j �=k, j∈K and hk = {hmk}m∈M . Gk and Hk are
the information uncertainty sets of player k. Note that since
there is only power constraint, the uncertainties appear only in
the payoff function.

1) With Column-Wise Uncertainty Model: In this case, the
uncertainty sets for follower k are modeled as

Gk =
{

ḡ jk(n)+�g jk(n),
∣∣�g jk(n)

∣∣≤ ε jk(n)
}

j �=k, j∈K ,

Hk =
{

h̄mk(n)+�hmk(n), |�hmk(n)| ≤ εmk(n)
}

m∈M .

With this uncertainty model, the worst-case analysis of the
problem in (6) becomes

max
pk∈Pk

N

∑
n=1

log(1+ pk(n)/ṽk(n)) (8)

where

ṽk(n) = σ2
k +

M

∑
m=1

(
h̄mk(n)+ εmk(n)

)
pm(n)

+ ∑
j �=k

(
ḡ jk(n)+ ε jk(n)

)
p j(n). (9)

In this case, the analysis of the robust game could immedi-
ately follow its nominal counterpart with the replacement of
g jk(n) and hmk(n) with ḡ jk(n) + ε jk(n) and h̄mk(n) + εmk(n),
respectively. When the strategies of all other followers p−k are
fixed, the optimization problem for each follower is convex
[29] and the solution is the water-filling solution which can be
obtained from the KKT condition as follows:

pk(n) =

{
µk − ṽk(n), µk > ṽk(n),

0, µk ≤ ṽk(n),
(10)

or simply pk(n) = WFk(p−k,pup) = [µk − ṽk(n)]+, where

[x]+
Δ
= max(x,0), 1

µk
is the positive Lagrange multiplier, and

µk is regarded as the water level. Note that the total power
constraint in (2) must be satisfied with equality for optimality.
Accordingly, the problem for each follower becomes finding a
water level such that the total power constraint is satisfied, i.e.,
∑N

n=1 pk(n) = ∑N
n=1[µk − ṽk(n)]+ = Psum

k .
Both exact and iterative algorithms can be used to find the

water level. A generalization of the algorithms for finding the
water level can be found in [19]. Note that in this formulation
the water level of a follower is the same for all subchannels.
For the other formulations, as we will see later in this paper,
these exist cases where variable water levels exist for different
subchannels.

The existence of RNE can be easily proved by showing
that the formulated follower sub-game is a concave game in
which the payoff of each player is continuous and concave
and the admissible strategies are compact and convex. While
the sufficient condition for the uniqueness of RNE can also be
obtained by following the uniqueness analysis of the nominal
counterpart. This has been well studied in [2], [4], [5], mostly
through the use of fixed point theory (the uniqueness of a fixed
point of the best response function can be guaranteed if the
best response function is a contraction in certain norm [7]), and
therefore, is omitted here.

To arrive at the equilibrium power allocations, the water-
filling algorithms in the literature (e.g., iterative, simultaneous,
and asynchronous) can be used. However, it is worth noting that
the introduction of uncertainty changes the distributive prop-
erty of the algorithms. Specifically, in the nominal game, the
interference from the MBSs and other SBSs can be measured
by each player without any information exchange. However,
in the algorithms based on the robust formulation, exchange
of information about the power allocation strategies of other
players is required.

2) With Ellipsoidal Uncertainty Model: This model pro-
vides more flexibility than the column-wise uncertainty model.
The ellipsoidal uncertainty sets for follower k are modeled as

Gk =
{

ḡ jk(n)+�g jk(n),∥∥�g jk(n)
∥∥

w jk(n)
≤ ε2

k(n)
}

j �=k, j∈K
,

Hk =
{

h̄mk(n)+�hmk(n),

‖�hmk(n)‖wmk(n)
≤ ε2

k(n)
}

m∈M
.
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With the ellipsoidal uncertainty model, for worst-case analy-
sis, the problem in (6) can be transformed as

max
pk∈Pk

R̂k(pk,p−k,pup) (11)

where

R̂k(pk,p−k,pup) =
N

∑
n=1

log

(
1+

pk(n)
v̂k(n)

)
, (12)

and

v̂k(n) = σ2
k(n)+

M

∑
m=1

h̄mk(n)pm(n)+ ∑
j �=k

ḡ jk(n)p j(n)

+ εk(n)

√√√√∑
j �=k

∣∣p j(n)
∣∣2

w jk(n)
+ εk(n)

√
M

∑
m=1

|pm(n)|2

wmk(n)
. (13)

The derivation is omitted for brevity. Given the strategies of
the MBSs and all other SBSs, the optimization problem in (11)
is still convex. Applying KKT optimality conditions, a closed-
form solution for the robust power control can be obtained,
which is a water-filling like solution, given as

p∗
k = [µk − v̂k(n)]

+ . (14)

The existence of RNE for the formulation with ellipsoidal
model can be established in a way similar to that with column-
wise model. The sufficient condition for the uniqueness of RNE
can be obtained in a way similar to that in [13].

To arrive at the RNE of the lower sub-game, a robust version
of the water-filling algorithm can be used with the replacement
of the traditional water-filling solution with (14) which is also
shown in [13]. Also, the totally distributive property of the
water-filling algorithm for the nominal game cannot be pre-
served for the robust version. In the remaining analysis of the
follower sub-game, we will focus on the ellipsoidal uncertainty
model.

B. With Total Power and Spectral Mask Constraints

Besides the total power constraint, the spectral mask con-
straints (i.e., pk(n) ≤ Pmax

k (n),∀n) could also be introduced. In
this case, the admissible strategy set of each follower k is

Pk =

{
pk ∈ R

N :
N

∑
n=1

pk(n)≤Psum
k ,0≤ pk(n)≤Pmax

k (n)

}
.

Note that we assume Pmax
k (n) < Psum

k < ∑N
n=1 Pmax

k (n) to avoid
a trivial solution.

Adding the spectral mask constraints does not change the
convexity of the problem in (6). It is not difficult to obtain a

closed-form solution for follower k as p∗
k = [µk − v̂k(n)]

Pmax
k (n)

0 ,
where [x]ba is the Euclidean projection of x onto the interval
[a,b], and v̂k(n) is shown in (13).

It is worth noting that, the introduction of spectral mask
constraints in the follower sub-game does not change the anal-

ysis of the follower sub-game itself; however, it will impact
the analysis of the leader sub-game which will be shown in
Section IV.

C. With Total Power, Spectral Mask, and Individual
Interference Constraints

To limit the interference caused by the SBSs to macro users,
an individual interference constraint can be imposed to each
SBS. In this case, the admissible strategy set can be expressed
as Pk = P̄k

⋂
P̃k, where

P̄k =

{
pk ∈R

N :
N

∑
n=1

pk(n)≤ Pk,0 ≤ pk(n)≤ Pmax
k (n)

}
,

is the set of feasible power allocations satisfying the power
constraints and

P̃k =
{

pk ∈ R
N : pk(n)hkm(n)≤ Imax

km (n)
}
,

is the set of admissible power allocations satisfying the individ-
ual interference constraints.

Note that the channel state information is required to impose
the interference constraint. Accordingly, uncertainties could
also appear in the constraints of the robust rate maximiza-
tion problem. In this work, we consider the uncertainties in
both payoff function and constraints. Accordingly, besides the
uncertainty sets Gk and Hk, we also consider uncertainty in
the individual interference constraint which is deterministically
modeled as

Hkm =
{

h̄km(n)+�hkm(n),‖�hkm(n)‖wkm
≤ ε2

m(n)
}
.

And the robust rate maximization of each player becomes

max
pk

min
gk,hk

Rk(pk,p−k,pup)

s.t. max
hkm(n)

pk(n)hkm(n)≤ Imax
km (n), ∀m,n,

pk ∈ Pk, gk ∈ Gk, hk ∈ Hk, hkm(n) ∈ Hkm. (15)

Following the worst-case approach, the robust individual
interference constraint can be restated as

pk(n)
(

h̄km(n)+ εm(n)/
√

wkm(n)
)
≤ Imax

km (n).

Then it is straightforward to combine the spectral mask con-
straint and the robust individual interference constraint as
follows:

pk(n)≤ min

{
Pmax

k (n),
Imax
km (n)

h̄km(n)+ εm(n)/
√

wkm(n)

}
.

Accordingly, the following analysis is the same as the case with
only total power and spectral mask constraint, and therefore,
omitted here for brevity.

Remark: Note that these constraints cannot be simply com-
bined if average power and/or average interference constraints
are considered as shown in [6].
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D. With Total Power, Spectral Mask, and Aggregate
Interference Constraints

The individual interference constraint could be too conser-
vative which may limit the performance of the SBSs. To be
more flexible, a global aggregate interference constraint can be
imposed to limit the aggregate interference caused by all SBSs.
In this case, the admissible strategy set for each SBS can be
expressed as Pk = P̄k

⋂
P̂k, where

P̂k =

{
pk ∈ R

N :
K

∑
k=1

pk(n)h
n
km ≤ Imax

m (n)

}
(16)

is the set of feasible power allocations satisfying the global
interference constraint.

And the robust rate maximization for each follower becomes

max
pk

min
gk,hk

Rk(pk,p−k,pup)

s.t. max
hkm(n)

K

∑
k=1

pk(n)h
n
km ≤ Imax

m (n), ∀m,n,

pk ∈ Pk, gk ∈ Gk, hk ∈ Hk, hkm(n) ∈ Hkm. (17)

Different from the individual interference constraint, the
global interference constraint brings the coupling among the
admissible power allocations of all followers. That is, the ad-
missible strategy set of follower k is not independent and fixed
but depends on the strategies chosen by all other followers,
i.e., P̂k = P̂k(p−k). In this case, the previous Nash equilibrium
problems (in which the interactions of players only appear in
the payoff functions) become a generalized Nash equilibrium
problem (GNEP) [20] (in which the interactions of players
appear in both payoffs and admissible sets).

Remark: For the formulation with column-wise uncertainty
model, a water-filling like solution can be obtained by applying
the KKT conditions as follows (the derivation is omitted here
for brevity):

pk(n)=

[
1

µk+∑M
m=1 λm(n)

(
h̄km(n)+εkm(n)

) − ṽk(n)

]Pmax
k (n)

0

,

where ṽk(n) is defined in (9). However, the analysis of this
GNEP is still very difficult due to the coupled constraint of
admissible sets. For the formulation with ellipsoidal uncertainty
model, even a closed-form solution is not available.

In general, a GNEP problem is not tractable due to the
variability of the admissible sets. A common method to analyze
a GNEP is to reformulate it as an equivalent better known prob-
lem which could serve as the basis for theoretical analysis (e.g.,
existence and uniqueness) and algorithm design. Following this
method, we first show that the formulated follower sub-game
(17) as a GNEP is equivalent to a quasi-variational inequality
(QVI) problem [24] the definition of which is given as follows:

Definition 1: Given a closed and convex set X(x) and a map-
ping F : X(x) 
→ R

N , the quasi-variational inequality problem
QV I(X(x),F) is to find a vector x∗ such that

(x−x∗)TF(x∗)≥ 0, ∀x ∈ X(x∗).

With the definition of a QVI problem, the equivalence of the
formulated GNEP and QVI is shown in the following lemma.

Lemma 3.1: The robust follower sub-game with global
robust interference constraint is equivalent to QV I(X(plow),
F(plow)), where

X(plow)
Δ
=

K

∏
k=1

P̄k

⋂
P̂k(p−k), and

F(plow)
Δ
=
(
−∇pk R̂k(pk,p−k,pup)

)K

k=1
,

in which R̂ k(pk,p−k,pup) is defined in (12).
Proof: See Appendix D. �

The equivalence is established in the sense that a power
allocation vector plow∗ is a generalized Nash equilibrium of the
follower sub-game if and only if it is a solution of the above
QVI problem.

The analysis of the above QV I(X(plow),F(plow)) is still chal-
lenging due to the lack of developed theory for QVI problems.
Fortunately, for a special class of GNEP (i.e., jointly convex
GNEP [20]), the equivalent QVI formulation can be reduced
to a variational inequality (VI) problem which has been well
studied.

Let us consider a GNEP in which the strategy space of each
player k is defined as xk ∈ Xk(x−k). Then the GNEP is a jointly
convex GNEP if there exists a closed convex set X such that for
all players, the condition Xk(x−k) = {xk : (xk,x−k) ∈ X} holds.

In our case, the jointly convex condition requires that the
coupled constraint is common to all players. It can be noticed
that the follower sub-game fits into the category of jointly
convex GNEP since the coupled constraint P̂k is the same for
all k ∈ K which can therefore be termed as P̂ . In this case,
the QV I(X(plow),F(plow)) can be simplified as a variational
inequality problem as V I(X,F(plow)), where F(plow) is the

same as that in the QVI formulation, and X Δ
= P̂

⋂
∏K

k=1 P̄k.
Then finding an equilibrium of the game becomes solving the
V I problem which is to find a plow∗ ∈ X such that

(plow −plow∗)
T

F(plow∗)≥ 0, ∀plow ∈ X. (18)

That is, we reformulate the robust follower sub-game as a VI
problem. Similar VI reformulations of nominal games can be
found in [7], [21].

In the following, based on the finite dimensional variational
inequality theory [22], we analyze the existence and uniqueness
of the RNE of the follower sub-game, and introduce a central-
ized algorithm for reaching the RNE. Specifically, the existence
of a RNE is shown in the following theorem.

Theorem 3.2: The RNE exists for the follower sub-game
with global interference constraint.

Proof: See Appendix E. �
The analysis of the uniqueness of the solution is more in-

volved (when compared to that of the existence of the solution)
which requires further analysis of the mapping F(plow). To this
end, we first give the definition of strong monotonicity of a
mapping.
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Definition 2: Given a convex set X, a vector mapping F is
strongly monotone on X if there exists a constant σ > 0 such
that (F(x)−F(y))T(x− y) ≥ σ‖x− y‖2 is satisfied for all x,
y ∈ X.

With the definition of strong monotonicity, we can have
the following lemma for the uniqueness of the solution of a
variational inequality problem.

Lemma 3.3: The V I(X,F) admits a unique solution if F is
strongly monotone [22].

Basically, the strict monotonicity indicates that the impact
of a player’s strategy on her own objective function is larger
than that from other players’ strategies. To investigate the
uniqueness of the RNE of the follower game, we extend the
analysis for nominal formulations [7], [21] and define a matrix
ϒ as follows:

[ϒ]k j
Δ
=

{
1, if k = j,
− max

1≤n≤N

{
ḡ jk(n)

c
d

}
, if k �= j, (19)

where

c =σ2
j +

M

∑
m=1

h̄m j(n)pm(n)+ ∑
j′ �= j

ḡ j′ j(n)pmax
j′ (n)

+ ε j(n)

√√√√√∑
j′ �= j

∣∣∣pmax
j′ (n)

∣∣∣2
w j′ j(n)

+ ε j(n)

√
M

∑
m=1

|pm(n)|2

wm j(n)
,

d =σ2
k +

M

∑
m=1

h̄mk(n)pm(n)+ εk(n)

√
M

∑
m=1

|pm(n)|2

wmk(n)
.

With the definition of ϒ, a sufficient condition for the unique-
ness of the RNE is provided in the following theorem.

Theorem 3.4: The follower sub-game admits a unique RNE
if ρ(I−ϒ)< 1, where ρ(·) is the spectral radius of a matrix.

Proof: See Appendix F. �
Although not intuitive from Theorem 3.4, interference (in-

cluding both co-tier and cross-tier interferences) impacts the
uniqueness of the RNE. Specifically, the sufficient condition
for uniqueness can be satisfied if the received or generated
interference is low. Similar results are also shown in [5], [13],
[16], and [21] for both nominal and robust power control games.

In the following, we propose an algorithm to arrive at the
RNE. To this end, we first introduce the regularized gap func-
tion [23] of the formulated V I problem as

Γ(plow) = sup
p̆low∈X

Φα(plow, p̆low),

where Φα(plow, p̆low) = F(plow)(plow − p̆low)

− α
2
‖plow − p̆low‖2

, (20)

for a regularization parameter α > 0.
Then we show that the V I reformulation of the follower

GNEP leads to a fixed point problem as shown in the following
proposition.

Proposition 3.5: plow∗ is a solution of V I(X,F) if and only
if plow∗ is a fixed point of the following equation:

plow = arg max
p̆low∈X

Φα(plow, p̆low). (21)

Based on proposition 3.5, the solution can be obtained by
solving the fixed point problem for which the Picard iteration
[26] based algorithm can be used as shown in Algorithm 1.

Algorithm 1 Obtaining the solution of the V I problem

1) Initialization: set i= 0, select an initial power allocation
plow(i).

2) Update the power allocation as

plow(i+1) = arg max
p̆low∈X

Φα

(
plow(i), p̆low

)
. (22)

3) Repeat step 2 until termination condition is satisfied.

The above algorithm is a centralized one. To enable dis-
tributed solutions, we follow the penalty method in [21], [25].
In this method, the original problem is reformulated where
a pricing-based penalty term is introduced into the payoff
function of each player which is motivated by the appearance
of the Lagrange multiplier of the global interference constraint
(e.g., λm(n) in (18)). Specifically, for each follower k, the
reformulated problem is expressed as

max
pk

min
gk,hk,hkm(n)

{Rk(pk,p−k,pup)−Ck(pk,λ)} (23)

s.t. pk ∈ P̄k, gk ∈ Gk, hk ∈ Hk, hkm(n) ∈ Hkm. (24)

Ck(pk,λ) = ∑N
n=1 ∑M

m=1 λm(n)hkm(n)pk(n) is the penalty term.
And the global interference constraint is taken into account by
appropriately choosing the prices λm = {λm(n)}N

n=1 to satisfy
the following additional complementary conditions:

0 ≤ λm(n) ⊥ Imax
m (n)−

K

∑
k=1

pk(n)hkm(n)≥ 0, (25)

where a ⊥ b means a ·b = 0.
Due to the existence of the additional complementary con-

ditions in (25), the analysis of the above reformulated game
is challenging. However, the equivalence of the reformulated
game and the V I(X,F(plow)) can be established by showing
the equivalence of the KKT conditions of the game and that
of the V I problem (note that this reformulated game cannot be
directly reformulated as a variational inequality problem due
to the unboundedness of the prices). The previously obtained
results on the existence and uniqueness can also be applied
here. Although helpful in theoretical analysis, the reformulated
game still results in a centralized solution as shown above.
To enable distributed solutions, a nonlinear complementarity
problem (NCP) equivalence can be established. To this end, we
observe that the game has two parts: an inner game (23) which
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is a normal NEP and a complementarity condition. For the inner
game, we have the following observations.

For a given price vector λ = {λm(n)}m,n, the solution
of the inner game exists. Under the condition that ϒ is
positive definite, the inner game admits a unique RNE. This
existence and uniqueness can be simply shown by directly
reformulating the inner game as a variational inequality

problem V I(Xin,Fin(plow)), where Xin = ∏K
k=1 P̄k, Fin(plow)

Δ
=

{−∇pk [R̂k(pk,p−k,pup) − Ĉk(pk,λ)]}K
k=1, and Ĉk(pk,λ) =

∑N
n=1 ∑M

m=1 λm(n)(h̄km+εm(n)/
√

wkm(n))(n)pk(n) is the worst-
case valuation of the penalty term Ck(pk,λ). Then a similar
analysis could be done which is omitted here for brevity.

Denote by p∗
k(λ) the unique solution of the inner game for

a given price vector λ (assume that the uniqueness condition is
satisfied). We define a mapping Θ(λ) as

Θ(λ)=

{
Imax
m (n)−

K

∑
k=1

h̄km p∗k − εm(n)

√
K

∑
k=1

p2
k(n)

}
m∈M ,n∈N

.

Then the game is equivalent to an NCP(Θ) problem given as

NCP(Θ) : 0 ≤ λ ⊥ Θ(λ)≥ 0. (26)

Based on the NCP reformulation, a distributed algorithm can
be given as follows.

Algorithm 2 Algorithm for obtaining the optimal power
allocation and price

1) Initialization: set i = 0, each MBS sets an initial price
λ0

m(n),∀n, each follower k randomly chooses a power
allocation p0

k .
2) Given the prices λ, each follower k computes its equi-

librium power allocation as the solution of

p∗
k

(
λi

m(n)
)
= argmax

pk
R̂k(pk,p−k,pup)−Ĉk(pk,λ).

3) The prices are updated by λi+1
m = [λi

m − τΘmn]
+, where

τ > 0 is a chosen step size.
4) Repeat steps 2 and 3 until the termination condition is

satisfied.

Remark: Note that price is also used in [9], [10]. However,
different from these works, the price here is just used to control
the interference, not for the purpose of profit maximization of
the MBSs.

IV. ROBUST LEADER SUB-GAME

In this section, we provide a comprehensive analysis of the
robust leader sub-game. Note that in the formulated robust
Stackelberg game, the leaders need to anticipate the best re-
sponses of the followers in terms of the RNE of the follower
sub-game. In this case, the leader sub-game becomes a robust
equilibrium problem with equilibrium constraints (EPEC). And

for each MBS m, the robust rate maximization problem be-
comes a mathematical program with equilibrium constraints
(MPEC) which can be expressed as follows:

max
pm

min
gm,hm

Rm

(
pm,p−m,plow∗(pup)

)
(27)

s.t. pm ∈ Pm, gm ∈ Gm, hm ∈ Hm,

p∗
k(p

up) = arg max
pk∈Pk

min
gk∈Gk,hk∈Hk

Rk(pk,p−k,pup), ∀k, (28)

where Pm = {∑N
n=1 pm(n) ≤ Pm, pm(n) ≥ 0} is the power con-

straint for MBS m, and (28) is the equilibrium constraint. Note
that we are considering service priority of the MBSs. In this
case, the interference constraint will only be imposed for the
SBSs, while there is no interference constraint for the MBSs.

Remark: Note that in general, the equilibrium response of
the follower sub-game could be non-unique (i.e., multiple
plow∗(pup) could exist for a given pup), and each leader could
have different estimations of the equilibrium response (i.e.,
there could exist plow∗

m (pup) �= plow∗
l (pup) for m �= l). In this

case, the equilibrium constraint in (28) could be different for
different MBSs. In this work, we assume that the uniqueness
condition of the follower sub-game is satisfied (e.g., the suffi-
cient conditions for uniqueness in [2]–[5] for nominal games,
and those in [13]–[15] and the sufficient condition in this
paper for robust games, are satisfied), and therefore, we have
plow∗

m (pup) = plow∗(pup),∀m.
Denote by pup∗ an RNE of the leader sub-game, then the

tuple {pup∗,plow∗(pup∗)} constitutes a robust Stackelberg equi-
librium (RSE) which is considered to be the solution of the
robust Stackelberg game. In the following, the leader sub-
game will be analyzed considering different formulations of the
follower sub-game shown in Section III. Specifically, two cases
will be considered: the follower sub-game with only power con-
straints and the follower sub-game with both power and global
interference constraints. Note that the case of follower sub-
game with both power and individual interference constraints
can be equivalently transformed into a follower sub-game with
only power constraints as shown in Section III, and therefore,
will not be explicitly discussed here.

A. Follower Sub-Game With Only Power Constraints

In this part, we investigate the robust Stackelberg game with
a follower sub-game considering only power constraints. Both
column-wise and ellipsoidal uncertainty models are considered.
Specifically, for the formulation with column-wise uncertainty
model, two cases are further categorized, i.e., a sparse BS
deployment scenario and a dense BS deployment scenario.
For both cases, closed-form exact solutions can be obtained
for a single leader. The results can be extended for multiple
leaders if closed-form approximate solutions are considered.
Also, sufficient conditions for the uniqueness of the closed-
form solutions are provided for sparse BS deployment. For the
formulation with ellipsoidal uncertainty model, a closed-form
solution is not available. Instead, a distributed algorithm is
provided to arrive at the RSE the existence of which can be
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established while the uniqueness cannot be guaranteed. The
details are shown as follows.

1) With Column-Wise Uncertainty Model: We first consider
the case with column-wise uncertainty model for which the
uncertainty sets for the leader m can be expressed as

Gm = {ḡlm(n)+�glm(n), |�glm(n)| ≤ εlm(n)}l �=m,l∈M ,

Hm =
{

h̄km(n)+�hkm(n), |�hkm(n)| ≤ εkm(n)
}

k∈K .

The uncertainty sets for the followers Gk and Hk are shown
in Section III. Due to the difference in analysis, two cases
are further categorized: sparse BS deployment and dense BS
deployment scenarios.

i) Sparse BS deployment scenario: In this scenario, the in-
terference experienced by SBSs is sufficiently small such
that the following assumption can be satisfied.1

µk − ṽk(n)> 0, ∀k,n, (29)

where ṽk(n) is shown in (9). In this case, the followers are
active in all subchannels.

We start the analysis by considering a single leader m. In
this case, according to the analysis in Section III-A, the robust
equilibrium power allocation of each follower k given the power
allocation of the single leader pm is obtained as

p∗k(n) = µk −
[
σ2

k(n)+
(
h̄mk(n)+ εmk(n)

)
pm(n)

+ ∑
j �=k

(
g̃ jk(n)+ ε jk(n)

)
p∗j(n)

]
, ∀k. (30)

Accordingly, we can have a system of K linear equations as

Aplow∗(n)T = B, where

A =

⎡
⎢⎣

1 · · · g̃K1(n)+ εK1(n)
...

. . .
...

g̃1K(n)+ ε1K(n) · · · 1

⎤
⎥⎦ ,

B =

⎡
⎢⎣

µ1 −σ2
1(n)−

(
h̃m1(n)+ εm1(n)

)
pm(n)

...
µK −σ2

K(n)−
(
h̃mK(n)+ εmK(n)

)
pm(n)

⎤
⎥⎦ . (31)

Given the values of µk which can be numerically obtained by
an iterative water-filling algorithm for the followers, the optimal
power allocation of the followers can be represented as a linear
function of the leader’s power allocation as follows:

p∗k(n) = ak(n)pm(n)+bk(n), (32)

where ak(n) and bk(n) are the corresponding coefficients which
can be obtained by solving the above system of equations.

With the linear representation of the followers’ best re-
sponses with respect to the leader’s strategy, now let us turn to

1The cases, in which this assumption does not hold in a sparse BS de-
ployment scenario, can be analyzed in the same way as that in a dense BS
deployment scenario.

the robust optimization problem for a single leader which can
be restated as

max
pm∈Pm

N

∑
n=1

log

(
1+

pm(n)
a(n)pm(n)+b(n)

)
, (33)

where a(n) = ∑K
k=1 ak(n)(h̄km(n)+εkm(n)) and b(n) = σ2

m(n)+
∑K

k=1 bk(n)(h̄km(n)+ εkm(n)).
Applying the KKT conditions, it is not difficult to find the

unique optimal solution of the single leader’s power allocation
as follows (the derivation is omitted here for brevity):

p∗m(n) =−b(n)(1+2a(n))
2a(n)(1+a(n))

. (34)

Accordingly, the tuple {p∗
m,p

low∗} constitutes the RSE with
p∗

k = ak(n)p∗m(n)+bk(n).
Regarding the existence and uniqueness of the RSE, we

have shown that for any given leader’s strategy, the follower
sub-game admits a unique equilibrium if certain condition is
satisfied. Then the problem is to determine whether the optimal
strategy for the leader exists and is unique given the unique
response of the followers which in turn relies on the existence
and uniqueness of the coefficients ak(n) and bk(n). A sufficient
condition for the uniqueness of the RSE is provided in the
following theorem.

Theorem 4.1: With a sparse BS deployment where (29) is
satisfied, the single-leader multiple-follower robust Stackelberg
game with column-wise uncertainty model admits a unique
RSE if rank(A) = K.

The proof is straightforward in that if rank(A) = K then the
system of linear equations admits a unique solution. It is worth
noting that this uniqueness condition can almost be always
satisfied in practice due to the random nature of the channel
gain which makes all K coefficient vectors independent of each
other, and therefore, achieving the full rank.

We now extend the analysis for the multiple-leader multiple-
follower formulation. Similar to the analysis of the single
leader case, the best response power allocation of the followers
given the power allocations of all leaders is the solution of the
following system of equations:

Aplow∗(n)T = B̃, where

B̃=

⎡
⎢⎣

µ1−σ2
1(n)−∑M

m=1

(
h̃m1(n)+ εm1(n)

)
pm(n)

...
µK−σ2

K(n)−∑M
m=1

(
h̃mK(n)+ εmK(n)

)
pm(n)

⎤
⎥⎦ . (35)

Then by solving the above system of equations, we can have

p∗k(n) =
M

∑
m=1

akm(n)pm(n)+ b̃k(n), (36)

where akm(n) and bk(n) are the corresponding coefficients.
In other words, the power allocation of each follower can be
represented by a linear combination of power allocations of all
leaders.
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However, different from the single leader case, in the
multiple-leader formulation, the robust optimization for the
leaders’ problems will induce a system of quadratic equations
which would be not tractable. In this case, instead of obtaining
the exact solution, we aim to find a closed-form approximate
solution. To this end, when optimizing the leader’s rate, we
assume that the values of optimal response from the followers
with respect to the leaders’ optimal strategies (i.e., p∗k(p∗m)) are
given and are treated as constants, then we substitute the exact
linear representation of the followers’ strategy (i.e., (36)) into
the obtained leaders’ strategies. With this assumption, we can
have the optimal power allocation of the leader m as

p∗m(n) = µm −σ2
m(n)− ∑

m�=l

(ḡlm(n)+ εlm(n)) p∗l (n)

−
K

∑
k=1

(
h̄km(n)+ εkm(n)

)
p∗k(n, p∗m). (37)

Substituting (36) into (37), we can have a system of M linear
equations as

Âpup∗(n)T = B̂, (38)

where Â and B̂ can be constructed accordingly. And the closed-
form approximate solution for the leaders can be obtained by
solving this system of equations. Also, a similar uniqueness
condition is provided in the following theorem.

Theorem 4.2: With a sparse BS deployment where (29)
is satisfied, the multiple-leader multiple-follower robust
Stackelberg game with column-wise uncertainty model admits
a unique closed-form approximate RSE if rank(Â) = M and
rank(A) = K.

ii) Dense BS deployment scenario: In the case of dense BS
deployment, the assumption in (29) may not hold. In
this case, results similar to those in [8] can be obtained.
However, in [8], the spectral mask constraints of the
followers are not considered. Here we extend the analysis
by considering the spectral mask constraints.

We also start the analysis with a single-leader multiple-
follower formulation. Denote by Am and Ak the sets of active
subchannels2 of the single leader m and follower k, respec-
tively. Also, denote by Amax

k the set of subchannels to which
follower k allocates its maximum allowable power. Apparently,
we have Amax

k ⊆Ak. With the spectral mask constraints, the best
response power allocation of follower k is given by

pk(n) =

⎧⎨
⎩

0, n ∈ N \Ak,
µk − ṽk(n), n ∈ Ak \Amax

k ,
pmax

k (n), n ∈ Amax
k ,

(39)

where µk = 1
|Ak\Amax

k | (P
sum
k − ∑n∈Amax

k
pmax

k (n) +

∑n∈Ak\Amax
k

ṽk(n)).
Now we represent the followers’ optimal power allocations

for a given leader’s strategy. For a subchannel n, let us denote

2An active subchannel means a player allocates some non-zero power in this
subchannel.

by J (n) the set of interfering followers for the leader. Also, let
Amax(n) denote the set of followers which allocate maximum
power on subchannel n. Then the power allocated by follower
k, where k �∈ Amax(n), can be represented by

p∗k(n) = µk − (σ2
k(n)+

(
h̄mk(n)+ εmk(n)

)
pm(n)+

(
ḡ jk(n)

+ε jk(n)
)(

∑
j∈J (n)\Amax(n)

p∗j(n)+ ∑
j∈Amax(n)

pmax
j (n)

)
.

Accordingly, we can have a system of |J (n) \Amax(n)| linear
equations the solution of which can be denoted by

p∗k(n) = ãk(n)pm(n)+ b̃k(n), ∀k ∈ J (n)\Amax(n), (40)

where ãk(n) and b̃k(n) are the corresponding coefficients.
Given the active sets of Ak and Amax

k , denote by I =
Am

⋂
(∪k∈K Ak) the set of interfering subchannels for the leader.

Then by substituting (40), the leader’s robust rate maximization
problem can be restated as

max
pm

∑n �∈∪k∈K Ak
log

(
1+

pm(n)
σ2

m(n)

)

+∑n∈∪k∈K Ak
log

(
1+

pm(n)

ãn pm(n)+ b̃(n)

)
, (41)

where ãn = ∑k∈J (n)\Amax(n) ãk(n)(h̄km(n) + εkm(n)) and
b̃n = σ2

m(n) + ∑k∈J (n)\Amax(n)(h̄km(n) + εkm(n))b̃k(n) +

∑k∈Amax(n)(h̄km(n)+ εkm(n))pmax
k (n).

By applying the KKT conditions, the optimal power alloca-
tion for the single leader can be obtained as

pm(n) =

⎧⎪⎨
⎪⎩

0, n ∈ N \Am,
µm −σ2

m(n), n ∈ Am \ I ,

− b̃(n)(1+2ã(n))
2ã(n)(1+ã(n)) , n ∈ I .

(42)

Similar to the sparse deployment scenario, for the multiple-
leader formulation, we also try to find a closed-form approxi-
mate solution. Under the same assumption, for each leader m
we have

p∗m(n) = µm −σ2
m(n)− ∑

m�=l

(ḡlm(n)+ εlm(n)) p∗l (n)

−
K

∑
k=1

(
h̄km(n)+ εkm(n)

)
p∗k (n, p∗m) , (43)

where

K

∑
k=1

(
h̄km(n)+ εkm(n)

)
p∗k (n, p∗m) =

(
h̄km(n)+ εkm(n)

)

×
(

∑
k∈J \Amax

(n)p∗k (n, p∗m)+ ∑
k∈Amax

pmax
k (n)

)
,

and p∗k(n, p∗m) = ãk(n)p∗m(n)+ b̃k(n). Accordingly, we can also
have a system of M linear equations and the closed-form
approximate solution can be obtained by solving this system
of equations.
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2) With Ellipsoidal Uncertainty Model: The uncertainty
sets for leader m are expressed as

Gm=
{

ḡlm(n)+�glm(n),‖�glm(n)‖wlm
≤ε2

m(n)
}

l �=m,l∈M
.

The uncertainty sets for the followers are shown in Section III.
According to the analysis in Section III, the robust equilibrium
power allocation for each follower k is a robust water-filling
like solution given as p∗

k = [µk − v̂k(n)]+ with only total power

constraint or p∗
k = [µk − v̂k(n)]

pmax
k (n)

0 if the spectral mask con-
straints of the followers are considered. And

v̂k(n) = σ2
k(n)+

M

∑
m=1

h̄mk(n)pm(n)+ ∑
j �=k

ḡ jk(n)p j(n)

+ εk(n)

√√√√∑
j �=k

∣∣p j(n)
∣∣2

w jk(n)
+ εk(n)

√
M

∑
m=1

|pm(n)|2

wmk(n)
.

We first show the existence of a RSE in the following theorem.
Theorem 4.3: There exists at least one robust Stackelberg

equilibrium for the formulated multiple-leader multiple-
follower robust Stackelberg game with ellipsoidal uncertainty
model.

Proof: See Appendix G. �
However, due to the nonlinear terms in the followers’ best

response, a linear representation of the followers’ best response
strategies with respect to the leaders’ strategies is not avail-
able which is different from the column-wise uncertainty case.
Accordingly, a closed-form solution for the leader cannot be
obtained for either of the sparse or dense deployment scenarios,
and therefore, we do not distinguish them in this formulation.
Specifically, given the leaders’ strategies pup, the followers
respond with the unique optimal power allocation plow∗ (as-
suming that the uniqueness condition of the follower game is
satisfied), which can be numerically obtained. Then each leader
m updates its strategy according to the following equation:

pm(n) = µm − v̂m(n), (44)

where

v̂m(n) = σ2
m(n)+ ∑

l �=m

ḡlm pl(n)+
K

∑
k=1

h̄km p∗k(n)

+ εm(n)

√√√√∑
l �=m

|pl(n)|2

wlm(n)
+ εm(n)

√√√√ K

∑
k=1

∣∣p∗k(n)∣∣2
wkm(n)

.

Accordingly, an algorithm to arrive at the RSE of the game
is proposed as shown in Algorithm 3.

Algorithm 3 Algorithm for reaching the RSE

1) Initialization: set i = 0, each MBS chooses an initial
power allocation pi

m.
2) Given the power allocation of all MBSs pup(i), each

SBS k responds with the unique power allocation p∗
k(i).

3) With the best response power allocations of the follow-
ers, and given the power allocations of other MBSs,
each MBS m updates its power as pi+1

m (n) = µm −
v̂i

m(n).
4) Repeat step 2 and 3 until termination condition is

satisfied.

B. Follower Sub-Game With Power and Global
Interference Constraints

We investigate the robust Stackelberg game formulation with
follower sub-game considering both power and global inter-
ference constraints. Note that the interference constraints are
not imposed to MBSs, and the leader sub-game only considers
power constraints. Also, we consider both uncertainty models.

1) With Column-Wise Uncertainty Model: For the robust
follower sub-game with column-wise uncertainty model, the
best response power allocation for each follower k is

p∗k(n) =

[
1

1/µk +∑M
m=1 λm(n)

(
h̄km(n)+ εkm(n)

) − ṽk(n)

]+
,

where λm(n),∀m,n are the Lagrange multipliers associated with
the global interference constraints which can also be interpreted
as prices.

Given the values of µk and λm(n), the followers’ strate-
gies can be represented by a linear combination of leaders’
strategies. And the following analysis is similar to the case
of follower game with power constraints with the replace-
ment of µk with 1

1/µk+∑M
m=1 λm(n)(h̄km(n)+εkm(n))

. Accordingly, for

both sparse and dense BS deployment scenarios, exact closed-
form solutions can be obtained for the single-leader multiple-
follower formulation and closed-form approximate solutions
can be obtained for the multiple-leader multiple-follower for-
mulation. Also, similar uniqueness conditions can be obtained.
The details are omitted here for brevity.

2) With Ellipsoidal Uncertainty Model: With ellipsoidal un-
certainty model, the best response strategies of the followers
cannot be obtained in closed form. Accordingly, a closed-form
RSE of the robust Stackelberg game is not available. However,
the existence of a RSE can still be established in the following
theorem.

Theorem 4.4: For the formulated multiple-leader multiple-
follower robust Stackelberg game with ellipsoidal uncertainty
model, in which the follower sub-game considers both power
constraints and global interference constraints, there exists at
least one RSE.

The proof is similar to that of Theorem 4.3. For numerically
obtaining the RSE, an algorithm is proposed. Specifically, the
Lagrange multipliers λm,∀m are considered as prices which
are used by the MBSs solely for controlling the interference
purpose. Then given the interference prices and leaders’ power
allocations, the followers respond with unique equilibrium
power allocation with which each MBS updates its prices and
power allocation.
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Algorithm 4 Algorithm for obtaining leaders’ optimal power
allocation and price

1) Initialization: set i= 0, each MBS m sets an initial price
λi

m and an initial power allocation pi
m.

2) Given the prices λi
m and power allocation pi

m of all M
MBSs, each SBS k responds with pi∗(λi

m,p
i
m) which

can be obtained from Algorithm 2.
3) Then each MBS m updates its price as λ(i+1)

m =

[λ(i)
m − τΘmn]

+
.

4) Each MBS m updates its power as pm(n) = µm− v̂i
m(n).

5) Repeat step 2 and 4 until the termination condition is
satisfied.

V. NUMERICAL ANALYSIS

A. Parameters

For the numerical analysis, we consider a two-tier HetNet
consisting of M = 2 MBSs and K = 5 SBSs sharing N = 10
orthogonal subchannels. For each subchannel, the noise power
at the receiver is −120 dBm. Independent and identically dis-
tributed Rayleigh fading model is assumed for each subchannel.
Accordingly, the channel gain can be obtained by squaring
the independent Rayleigh random variable which is described
by the modulus of circularly symmetrical complex Gaussian
(CSCG) distribution. The average nominal direct channel gains
for the MBSs and SBSs are assumed to be 1 and 3, respectively.
For the uncertainty model, we assume that the uncertainty term
varies linearly with the nominal value. Specifically, we use
glm(n) as an example, where glm(n) = ḡlm(n)+�glm(n) with
�glm(n) = θḡlm(n) and θ ∼ U(−δ,δ). Accordingly, we can
have the uncertainty bound for column-wise model as εlm(n) =
δḡlm(n) and the uncertainty bound for ellipsoidal model as
εm(n) = δ‖ḡlm(n)‖wlm(n).

B. Results

We first show the convergence of the algorithm for obtaining
an RSE of the formulated RSG with ellipsoidal uncertainty
model. Specifically, the leaders and the followers iteratively
update the power allocations and converge to the RSE. The
evolution of rates for the leaders and followers is shown in
Figs. 1 and 2, respectively. Note that due to the larger number
of players, the convergence of the followers is slower than that
of the leaders.

We also investigate the impact of interference on the conver-
gence (Fig. 3). We can observe that when the interference level
is low, the convergence can be guaranteed. With the increase
of interference level, the convergence probability decreases.
The convergence probability decreases even further when the
numbe of players increases (e.g., from 5 SBSs to 20 SBSs).

To compare the robust solutions with the nominal solution,
we first consider the formulation with only power constraints.
The robust solutions under column-wise uncertainty model
and ellipsoidal uncertainty model are obtained using the cor-

Fig. 1. The convergence of rate of leaders.

Fig. 2. The convergence of rate of followers.

Fig. 3. Convergence probability under different interference level.

responding uncertainty bounds, and the nominal solution is
obtained using the nominal value of the channel gains. The
performances of these three solutions are evaluated in a sce-
nario where the CSI is imperfect. That is, the actual value
of the channel gain deviates from the nominal value with a
uncertainty term within the uncertainty bound. The average
rates of the leaders and the followers are shown in Figs. 4
and 5, respectively. We can observe that with uncertainty in
channel information, both of the robust solutions offer better
performances than the nominal solution for both the leaders
and the followers. The performance gap increases with an
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Fig. 4. The normalized average rate of leaders.

Fig. 5. The normalized average rate of followers.

Fig. 6. Equilibrium power allocation of leader 1 in nominal formulation.

increase of the degree of uncertainty. This is due to the fact
that with the worst-case robust solution, the power allocation
is more conservative, and less power is allocated for high
interfering channels when compared with the nominal solution.
Examples of the power allocations of leader 1 with the nominal
solution and the robust solution are shown in Figs. 6 and 7,
respectively. Also, due to the more conservative nature, in an
imperfect CSI environment, the solution based on the column-
wise uncertainty model performs better than that based on the
ellipsoidal uncertainty model.

We then consider the formulation with global interference
constraints. Specifically, three solutions are compared, i.e., a
robust solution for the RSG considering global interference
constraints, a nominal solution for the nominal SG considering
global interference constraints, and a nominal solution for

Fig. 7. Equilibrium power allocation of leader 1 in robust formulation.

Fig. 8. Normalized average rate of followers under different level of aggregate
interference constraints.

Fig. 9. Normalized average rate of leaders under different level of aggregate
interference constraints.

the nominal SG without considering global interference
constraints. The performances of these three solutions under
different aggregate interference constraints are shown in Figs. 8
and 9 for the followers and the leaders, respectively. We can ob-
serve that for the followers, with strong aggregate interference
constraints, the solution without considering global interference
constraints performs better than the others. This is due to the
fact that, the interference constraints are imposed at the follower
side, and for satisfying the strong interference constraints,
only portion of the total power can be allocated. The solution
without considering global interference constraints can allocate
its whole power, and therefore, results in a better performance.
The robust solution performs the worst due to the requirement
of satisfying the interference constraint under worst-case
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Fig. 10. The aggregate interference experienced by a user of an MBS under
different solutions.

Fig. 11. The aggregate interference experienced by a user of an MBS under
different solutions.

channel realizations. When the global interference constraints
are loose enough to be inactive, then only the power constraints
are active, and accordingly, the robust solution performs better
than the others in such an imperfect CSI environment. For the
leaders, we can observe that the solution without considering
the global interference constraints performs the worst. The
reason is that the leaders are not protected in this case.

In Figs. 10 and 11, we show the interference experienced
by the leaders in each subchannel. We can observe that the
interference constraint could be violated if nominal solutions
are used in an imperfect CSI environment. With the robust
solutions, the interference constraints can be satisfied for each
subchannel.

VI. CONCLUSION

The problem of robust downlink power control for rate
maximization in OFDMA-based HetNets has been investigated
considering uncertainty in interfering channel information.
Specifically, the hierarchical interactions among the MBSs
and SBSs have been modeled as a multi-leader multi-follower

robust Stackelberg game where the MBSs and SBSs are con-
sidered to be the leaders and the followers, respectively. A
comprehensive treatment of the robust Stackelberg game has
been provided considering various power and interference con-
straints. Also, both column-wise and ellipsoidal uncertainty
models have been considered. Robust Stackelberg equilib-
rium (RSE) has been obtained as the solution of the robust
Stackelberg game and the existence of the solution has been
shown. In certain cases, a closed-form RSE has been obtained,
and mild sufficient conditions for its uniqueness have been pro-
vided. Algorithms have been proposed for obtaining the RSE.
Also, numerical analysis has been performed which shows the
effectiveness of the robust solutions.

APPENDIX

A. Stackelberg Game

Stackelberg game [30], also known as the leader-follower
game, is featured with a hierarchical structure and non-
simultaneous moves of players. In this hierarchical structure,
the players are grouped as leaders and followers. Different
from the simultaneous play non-cooperative games in which
all players make their moves simultaneously, in a Stackelberg
game, the leaders make their moves before the followers. Note
that the followers can observe the strategies made by the leaders
and make their best response moves accordingly. The leaders
are aware of this and can anticipate the best responses of the
followers which they take into account when making their
moves. Stackelberg equilibrium is considered to be the solution
of a Sackelberg game at which none of the leaders or followers
can improve the payoff by unilaterally changing the strategy.

B. Variational Inequality

Variational inequality (VI) [22] is a discipline in the field of
mathematical programming which provides a unifying frame-
work to study optimization and equilibrium problems. The
definition of a VI problem is as follows:

Given a subset K of the Euclidean n-dimensional space R
n

and a mapping F : K →R
n, the VI problem VI(K ,F) is to find

a vector x∗ ∈ K such that

(x−x∗)T F(x∗)≥ 0, ∀x ∈ K .

Problems such as fixed point problems and game theory prob-
lems can be formulated as VI problems.

C. Robust Optimization and Worst-Case Approach

Traditional optimization problems (i.e., nominal optimiza-
tion problems) are based on the important assumption that all
parameters defining the optimization problems (including both
objective functions and constraints) can be precisely obtained.
However, uncertainties exist for many parameters in practice.
In such a case, the solutions obtained from solving nominal
optimization problems may lead to poor performance in a prac-
tical imperfect information environment. To this end, robust
optimization [31] has been developed to deal with optimiza-
tion problems with parameter uncertainties. In general, robust
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optimization can be classified into “probabilistic” Bayesian
based approach and “non-probabilistic” worst-case based ap-
proach. With the Bayesian approach, the uncertain parameters
are considered as random variables with known probability
distributions, and the performance is optimized on an average
basis (i.e., optimizing the expectation of the objective function).
With the worst-case approach, the uncertain parameters are
considered to be bounded within certain uncertainty regions,
and the performance is optimized for the worst cases (i.e.,
optimizing the possible worst parameter realizations within
the uncertainty region) for which “Wald’s maxmin model” is
usually employed, i.e.,

max
x

min
u

f (x,u),

where the decision maker tries to maximize the objective func-
tion f (x,u) by controlling the decision variable x, while the
nature (i.e., representing the uncertainty) tries to minimize the
objective function by finding the worst-case uncertain parame-
ter realization within the uncertaity bound.

D. Proof of Lemma 3.1

The proof is based on Theorem 3.3 of [20] which requires
the objective function and admissible set satisfy the convexity
assumption for proving the equivalence of a GNEP and a QVI
problem.

Considering the ellipsoidal uncertainty model, for each
follower k, the worst-case analysis of the payoff function
R̂ k(pk,p−k,pup) is continuously differentiable and is convex
with respect to pk for any given p−k. Also, the admissible
set P̄k

⋂
P̂k(p−k) is closed and convex with given p−k. In

this case, the convexity requirement in Theorem 3.3 of [20]
is satisfied. Accordingly, the equivalence can be established.
Specifically, plow∗ is a GNE if and only if plow∗ solves the
QV I(X(plow),F(plow)).

E. Proof of Theorem 3.2

The proof is based on the equivalence of the GNEP and the
VI problem. Specifically, we first show that the solution of
V I(X,F(plow)) exists since the set X is convex and compact
(i.e., closed and bounded) and the function F(plow) is con-
tinuous in plow[22]. Then based on the equivalence, we can
state that the RNE exists for the follower sub-game with global
interference constraint.

F. Proof of Theorem 3.4

The proof is based on Lemma 3.3 which states that “The
V I(X,F) admits a unique solution if F is strongly monotone.”
In the following, we give the main steps for the proof. First, if
the matrix ϒ is positive definite, the vector function F is strongly
monotone. Then the V I(X,F(plow)) admits a unique solution. A
sufficient condition for ϒ to be positive definite is ρ(I−ϒ)< 1.
Based on the equivalence of the GNEP and the VI problem, we
can have the uniqueness condition for the GNEP. Note that due
to space limitation, the lengthy intermediate steps of the proof
are omitted.

G. Existence of RSE

The proof is based on Schauder fixed point theory, which
states that every continuous function from a convex compact
subset to itself has a fixed point.

Denote by BRup and BRlow the best response functions for
the leader sub-game and the follower sub-game, respectively.
Accordingly, an RNE pup∗ of the leader sub-game exists if it is
a fixed point of

pup∗ = BRup
(

pup∗,BRlow(pup∗)
)
.

Since BRlow(pup∗) is a continuous function of pup∗, and BRup

is a continuous function of pup∗ and BRlow(pup∗), then BRup is
a continuous function of pup∗. Also, the admissible set P up is
convex and compact. According to Schauder fixed point theory,
at least one RNE of the leader sub-game exists. Also, we have
shown in Section III that the RNE of the lower sub-game exists
for any given leaders’ power allocation. Therefore, at least one
RNE {pup∗,plow∗(pup∗)} exists.
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