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Abstract—In this paper, we present a multiple imputations par-
ticle filter (MIPF) to deal with non-linear state estimation when
part of the observations are missing. The MIPF uses randomly
drawn values called imputations to provide a replacement for the
missing data and then uses the particle filter to estimate non-linear
state with the data. Unlike the existing techniques, we do not as-
sume a linear system and also take into account the time-varying
transition matrix when accounting for missing data. We present
the convergence analysis of the MIPF and show that it is almost
surely convergent. We present examples with a non-linear time-
varying model, which demonstrate that the MIPF can effectively
deal with missing data in nonlinear problems. Comparison with
existing techniques further validates the improvement offered by
the proposed MIPF.
Index Terms—Particle filter, missing data, imputations, non-

linear state estimation, multiple imputations particle filter.

I. INTRODUCTION

N ON-LINEAR state estimation deals with estimation of
input states, provided a measurement sequence from

a sensor with the unknown input sequence. The observation
and/or state transition matrices represent how the input and
output sequences evolve with time are non-linear. Theoreti-
cally, the optimal non-linear filter for state estimation may be
generated by the use of Bayesian techniques, whose main idea
is to estimate the probability density function of the nonlinear
state on the basis of the given observations.
Analytical approximations of the optimal nonlinear method

include the extended Kalman filter (EKF) [1], the sigma point
Kalman filter (SPKF) [2], etc. EKF is based on first order expan-
sion of the non-linearities and approximates system state distri-
bution and noise densities by Gaussian random variables [3]. It
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is known to be effective for systems that are linear or near linear
but has poor robustness [4] and fails to give good estimates if
the system is not approximated well by a localized lineariza-
tion. SPKF also estimates state distribution by Gaussian random
variables, but is based on deterministic sampling approach and
uses a set of deterministically chosen weighted sample points;
it is able to achieve accuracy obtained by second or third order
Taylor Series expansion [3]. Its computational complexity is of
the same order as the EKF and its implementation is easier com-
pared to the EKF. Particle filter (PF) [5]–[7] solves the esti-
mation problem numerically and is useful for non-linear non-
Gaussian state-space models that can not be solved using ana-
lytic means.
In addition, data from multiple sensors may be used in non-

linear state estimation problems so as to complement the data
of one sensor by the data of the other sensor. This allows to
extract the maximum amount of information about the environ-
ment that is being sensed, e.g., radar measurements from in-
dividual sensors are integrated in the fusion center to obtain a
global surveillance picture. EKF and PF have been used for data
fusion, a couple of relevant references are [8] and [9].
Missing data arises in many practical applications involving

single or multiple sensors due to, e.g., hardware power limi-
tations, unreliable channel, sensor failure, low signal-to-noise
ratio, data loss, expensive acquisition equipment, limited
storage space for data, etc. The above mentioned standard ap-
proaches for state estimation can not be used in such a situation
without modifications. Some references where this issue has
been addressed are described in the following.
One approach is to use a PF based on compressive sensing

[14] to deal with missing data. However, this approach requires
measurement matrices that are either physically not realizable
or in case they are physically realizable, result in performance
degradation. It also requires that the states be sparse in a par-
ticular dictionary or transform, which may not always be pos-
sible and leads to performance degradation when such condi-
tions are not met. This approach is also susceptible to mismatch
errors [15].
Another possible approach is to use Expectation Maximiza-

tion (EM) algorithm [16], [17] that provides an iterative way to
minimize the likelihood function of incomplete data. This algo-
rithm is applied to resolve missing data in [18]. It ignores the
state dynamics.
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A few other references deal with missing data problem in
the context of data fusion. In [10], optimal fusion of measure-
ments obtained from two sensors that suffer from missing data
is described. In [11]–[13], missing data problem is described
to solve asynchronous fusion problem. This problem arises in
case where the scanning process of different sensors may not be
synchronized and have different measurement rates. Thus data
fusion can be seen as handling missing data in case where one
data set is available at a higher rate and the other one at a lower
rate. In [11], an EKF is formulated with a time-varying transi-
tion matrix for carrying out asynchronous data fusion for a radar
network; it does not deal explicitly with missing data. In [12],
Kalman filter based fusion of asynchronous data fusion is car-
ried out for linear systems in the absence of data. In [13], asyn-
chronous multi-sensor fusion for non-linear systems in case of
missing data is described using SPKF. In [12] and [13], when
there are no missing data, fusion is carried out normally. In the
presence of missing data, the main idea of these references is to
use the previous state and error covariance estimates.
Another approach for non-linear state estimation with

missing data is to use a multiple imputations particle filter
(MIPF) technique that consists of replacing missing data with
multiple imputations, i.e., randomly drawn values, to form
multiple complete data sets. Multiple imputation method is
based on the Bayesian framework that allows to simulate the
posterior distribution of missing values by imputing each data
with several values according to one or more estimation models.
This technique was used in [19] and [20] to deal with multi-rate
data arising in case of asynchronous fusion. However, these
references did not explicitly deal with missing data problem
and did not analyze the convergence of the solution obtained by
MIPF, which is necessary to show that it is able to estimate the
states correctly from missing data. In [21], we presented some
preliminary convergence and experimental results relating to
MIPF.
In this paper, we propose MIPF for non-linear state estima-

tion problem in case of missing data and present convergence
analysis of MIPF.We extend results in [22] and show that MIPF
is almost surely convergent. We further present an example
using the state and system equations for the non-stationary
growth model from [6] that shows the usefulness of MIPF
in dealing with missing data in nonlinear problems. We also
compare MIPF with various existing techniques and show its
superior performance compared to these algorithms.
Our earlier work [19], did not present any convergence anal-

ysis. In our later work [21], we presented a preliminary conver-
gence analysis. In addition, we did not compare the performance
of our method with other existing methods. Results were com-
pared only to a PF with complete data. In this paper, besides pre-
senting a detailed convergence analysis, we compare the perfor-
mance ofMIPFwith EKF, SPKF and EM algorithm followed by
application of PF. Unlike our work in [21] where only 10% and
20% missing data were considered, we show the dependency of
performance of MIPF on a range of missing samples varying
till 50%. We also show the dependency of the performance of
MIPF on the number of imputations.
This paper is organized as follows: Section II formulates the

problem and Section III reviews particle filters and multiple im-

putations. MIPF algorithm is presented in Section IV, whereas
Section V carries out convergence analysis of the algorithm.
Section VI applies the algorithm for non-linear state estimation
and compares performance with respect to several existing al-
gorithms. Finally, Section VII concludes the paper.

NOTATION

state transition equation at discrete time
measurement transformation of observer
imputation proposal function
imputed data set at time
number of observers
total number of imputations
discrete time index,
total number of particles
indicates if data from observer at time
is missing

missing data indicator vector
noisy observation of the state by observer
at time

noisy observations of the state by all
observers at time
weighting coefficient of particle at time
weighting coefficient of proposal function
approximation particle at time using
imputation
hidden state of the system at time
th particle at time
th particle at time using imputation
all available observations at time
all available observations from time 0 to
time
all missing observations at time
th imputation at time
importance function

II. PROBLEM FORMULATION

Consider a time-varying stochastic system with denoting
the state at time instance . behaves according to a non-ho-
mogenous Markov chain with transition probabilities described
by the following equation:

(1)

is a random evolution noise, assumed to be independent
identically distributed (iid) stochastic process and is the non-
homogenous evolution transformation. Let the system be ob-
served by sensors where the measurements are modeled as:

...
... (2)

denotes the noisy observation of the state where is an
i.i.d noise process and is the measurement transformation for
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sensor . We denote the -entry of the -dimensional vector
as . At each time instance , we consider the possibility that
some sensor observations may be missing. In order to handle
these missing observations, we introduce a random indicator
variable , which corresponds to the observation ; this
variable indicates if observation is available or not.

observation is available from sensor at time
observation is missing from sensor at time

Next, we define the missing information set as the collec-
tion of observations at time instance for all observers

such that . Similarly, the available infor-
mation set is the collection of for all such
that . It is assumed that the missing data mechanism
is independent of the missing observations given the available
observations:

(3)

This standard statistical assumption is known as missing at
random (MAR) [23]. Our objective is to obtain the poste-
riori probability density function of the state given all past
and present observations. We write this density function as

where denotes all observations from the initial
time instance to time instance .

III. PARTICLE FILTERS AND MULTIPLE IMPUTATIONS

A. Particle Filters

Consider noisy observations of the state as introduced
in Section II. We assume that there is no missing information
and all observations are available for processing at each time
instance . We wish to obtain the probability density function
of the state given all past and current observations , i.e.,

. We can express this density using known quantities
by the following set of equations:

(4)

(5)

As noted in [24], (4) does not have a closed form solution in the
general case. The particle filter can be viewed as a technique that
performs stochastic integration on (4). The particle filter uses a
set of randomly drawn states, also known as particles, and
their corresponding weights where indexes the particles at
each time instance . These particles, , discretize
the density as follows:

(6)

where denotes a dirac function. The particles are obtained in
a recursive manner. At each time instance , the particles from
time instance are used in sampling from an importance
function :

The particle weighting coefficient is obtained by the fol-
lowing calculation:

Note that in an application with missing data, the standard
particle filtering algorithm does not incorporate the response in-
formation when performing the procedure and is not guar-
anteed to be stable. Thus, in the presence of missing data, the
particle filter can diverge or its performance can be severely
degraded.

B. Handling Missing Data With Multiple Imputations

Missing data can introduce bias into the statistical estima-
tion process and the existence and severity of the missing data
bias depends on the missing data mechanism. Unfortunately, the
structure of the missing data mechanism is almost never avail-
able for analysis. However, under the condition of MAR (3),
it can be shown that one does not need to know the structure
of the missing data mechanism. Consider sensors that are all
observing the same hidden state , we let denote the set of all
available observations from the sensors and denote the set of
all missing observations. Moreover, let be
the -dimensional indicator vector for the response of the sen-
sors. Note that this problem is not time dependent and there is
no state space model. We wish to compute the probability den-
sity , which can be written as:

(7)

Using the condition of MAR as defined in (3), it can be shown
[23] that (7) reduces to:

Thus, we do not need to know the statistical structure of the
missing information mechanism. We can approximately com-
pute the density by the Monte Carlo approximation:

(8)

where are the multiple imputations and is the
number of imputations.
Note that multiple imputations do not use the past observa-

tions and the state transition equation in estimating the density
. This is significant since many real world problems are

well modeled by a Markov structure, which is dependant on the
past values to determine the present ones. Thus, in such appli-
cations, we expect that the performance of the multiple imputa-
tions will be degraded.

IV. MULTIPLE IMPUTATIONS PARTICLE FILTER
We present a new algorithm that resolves the mentioned defi-

ciencies in the particle filtering and multiple imputations algo-
rithms. This algorithm uses both the state and observation dy-
namics while accounting for the missing data.
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A. Approximation of the Imputing Function
The multiple imputations method draws imputations from the

missing data probability density as shown by (8).
However, in the context of a state space model with missing in-
formation, this density is unknown. In similar applications with
unknown missing data probability density, a common solution
is to draw the imputations using Markov Chain Monte Carlo
(MCMC) methods [17]. These MCMC methods are iterative in
nature andmay not be applicable in some problem domains such
as real time systems. In this section, we present a new approach
to perform the imputation process by utilizing particle approxi-
mation techniques. The imputing probability density
can be written as:

(9)

Note that the filtering density appears inside the in-
tegral; as we do not know this density, we are unable to sample
directly from . However, (9) suggests the following
approximation:
First, find a discrete density that approximates the

true filtering density reasonably well. Then using the relation-
ship given in (9), one can obtain the discrete density ,
which will approximate the desired density .Wewrite
the approximate filtering density using a particle ap-
proximation as follows:

(10)

where the particle set is obtained by performing
the particle filtering with no regard for missing data, as in
Section III-A. Substituting this approximation into (9) and
assuming , i.e., the missing data's pdf
is the same as that with observable data, we obtain the proposal
function :

B. MIPF Algorithm
First, we draw the random observations or imputations, from

a proposal function :

Note that we can write the filtering probability density
as follows [25]:

(11)

By forming the imputed data sets and taking a
Monte Carlo approximation, we can write (11) as follows:

(12)

Next, the algorithm performs particle filtering on each data set
to obtain an approximation as in (6):

(13)

where is the th particle for the th imputation at time
instance and is its weight. Finally, the algorithm com-
bines the multiple particle filtering results by substituting (13)
into (12) to obtain an approximation of the desired density as
follows:

V. MIPF CONVERGENCE ANALYSIS

Given the algorithm described in the previous section, an ob-
vious and critical question to ask is how the approximate distri-
bution obtained by the multiple imputations particle
filter is related to the true density. We begin by reformulating
the state spacemodel and themultiple imputations particle filter.
We then follow by analyzing its convergence. This analysis ex-
tends results by Crisan et al. [22].

A. Probability Space Formulation

Let be a probability space where
is the Borel set of , the Borel set is the standard set of all
possible probability events on . On this probability space
we define a vector-valued stochastic process
where is the dimension of the state space of . The process

is Markov with initial distribution and probability
transition kernel :

The process can be viewed as hidden state that we wish to
obtain, for example in radar application this would be the true
object position. Moreover, we define a stochastic process

where and is a
-dimensional vector for . The process is condi-

tionally independent of :

(14)

We may think of the process as noisy observations of the
hidden markov process , in our application these observa-
tions would represent all observations from multiple sensors.
We let the density of conditional on have the following
factorization

(15)

We can think of this factorization as the statement that given an
array of sensors, each sensor is independent of the other. Thus,
combining the statements (14) and (15) we have

Consider the non-response vector-valued stochastic process
where is a -dimensional vector. We let
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be indicator variables. We introduce the following
sets:

with a probability density

The density represents our knowledge of the non-response
mechanism, later we will show that we can use that knowledge
to improve our knowledge of the underlying state .

B. Multiple Imputations Particle Filter
Consider the following probability distributions of interest:

The probability density can be thought of as the posterior
probability density which combines the data from observations
and non-response while the family of probability densities
describe the probability distribution of the state given only a
set of observations. For notational convenience, we write it as

. We are interested in obtaining the density so
that we can compute estimates such as MAP and MMSE. The
distributions and are related by the following expression:

(16)

Standard Bayesian filtering theory gives us the following
equation:

Substituting this expression into (16), we have

(17)

This equation cannot be generally solved except for very spe-
cific models such as linear Gaussian. Thus we resort to ap-
proximation strategies. Consider a set of values or particles dis-
tributed approximately according to , we sample

as the standard bootstrap procedure. Thus, the par-
ticles are distributed approximately according to and we
have the following empirical distributions:

where

Now we wish to incorporate the additional knowledge of the
non-response. This can be done by substituting the empirical
distribution into (16) in place of the true distribution .
Having done so, we get the Monte Carlo approximation

The integral above cannot be evaluated explicitly in general,
therefore, we again resort to an approximation scheme. For sim-
plicity, we apply a naive Monte Carlo procedure to approximate
the integral, let for , then we
can write

Therefore, we have an approximation to the desired prob-
ability density in terms of two particle sets and

.

C. Almost Sure Convergence of the MIPF
The integral expression (17) can be thought of a sequence

of three transformations whose overall result is taking a proba-
bility density to the next one in time . We can write this
sequence of maps as where and
are intermediate distributions due to the particle filtering. We
wish to prove the convergence of this sequence of mappings.We
begin with an abstract argument and later show how it is related
to the algorithm at hand. Consider a metric space and
let be sequences of continuous functions

indexed by . In addition, let

where . Now, we introduce two, not neces-
sarily continuous, perturbation functions in
the following way: We assume that as and increase,
and converge to the identity function respectively. We per-
turb using these two functions in the following way

Let and be a sequence of elements in the metric space
indexed by and , respectively and let denote a single
element of . We require that satisfy the following con-
ditions for all such sequences :

(18)

(19)

We need the following lemma from [22]:
Lemma 1: Let and be as defined above. Then if
satisfies condition in (18), we have

Moreover, satisfies
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then we can prove the following lemma:
Lemma 2: Let and be as defined above, then

if conditions given in (18)–(19) are satisfied we have

Let where and
. Then by Lemma 2, we know that

since is continuous,

Now set and
for all then clearly, and . Using
the condition in (19), we have

Nowwe specialize this abstract discussion to the domain ofmul-
tiple imputation particle filters. Consider the following defini-
tion of convergence: Let be a Hilbert space with inner product

. A sequence is weakly convergent to
if for every element we have

Let be the space of probability measures with the
standard inner product, then is a Hilbert space. We endow
this space with the topology of weak convergence as defined
above. Let be an arbitrary probability measure and is any
continuous bounded function, then we define

Assuming is feller, i.e., is continuous and the
function is continuous, bounded and strictly positive, then

can be shown to be continuous. Also, we define the func-
tion

We assume to be a continuous operator, this is a reasonable
assumption since we can interpret that requirement as the fact
that adding or removing observers will influence the quality of
observation in a continuous manner (where the continuity is in

the function space sense). Moreover, we define the perturbation
functions and as:

where are . random variables with common distribution
and are . random variables with common distribution
. We have the following lemma:
Lemma 3: If and are as defined above, then they sat-

isfy conditions (18)–(19) almost surely. If we consider the em-
pirical measure , it is easy to see that

Thus, we have the following theorem:
Theorem 1: Assuming the transition kernel is feller and

is bounded, continuous and strictly positive, then almost surely
is convergent to as follows:

where the convergence is in the weak sense. Using the defini-
tions above we have

and if then .
Also, we see that

then by Lemmas 2 and 3 we have,

Subsequently, we can write

VI. PERFORMANCE ANALYSIS

In this section, we analyze the performance of MIPF through
simulation results. We consider the state and observation equa-
tions given in the non-linear model used in [6] and utilize them
to generate data. The model in [6] is chosen as it is well known
and has been used in other existing literature such as [26]. We
remove a varying number of samples from these data randomly
and apply MIPF to estimate the non-linear state. We further
apply techniques in [12] and [13], as well as the EM algorithm
to get non-linear state estimation with missing data and compare
their performance to MIPF. We make a comparison of perfor-
mance by comparing the results obtained by all these methods.
In addition, we compare the results with those obtained using
a PF applied to the complete data. We present figures with one
set of simulation results as well as give results with root mean
square averaged over several iterations.
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Fig. 1. Simulation results with 10% missing data. The results with PF are without any missing data and are used as a benchmark. SPKF shows divergent behavior,
the results shown here with SPKF are the best results. (a) Results with MIPF. (b) Results with EKF. (c) Results with SPKF. (d) Results with EM-PF.

A. Non-Linear Model
We use the following non-linear model that represents the

nonstationary growth model at th instance [6]:

(20)
(21)

The state evolves according to (20), whereas the observations
are made according to (21). The process and measurement noise
are considered to be Gaussian with mean 0 and variance of 10
and 1, respectively, i.e., and .

B. Results and Explanation
We simulate data for a total number of iterations by

varying from 1 to 50 in the non-linear model. We first apply
PF to complete data for non-linear state estimation and consider
30 particles, i.e., . Subsequently, we remove data ran-
domly and apply MIPF to the data with missing samples. Note
that in general, multiple imputations do not depend on the type
ofmissing datamechanism and imputed data may be valid under
any mechanism. The simulation examples in this section mainly
present missing completely at random (MCAR) case. This is
done for the ease of data simulation and in addition as MCAR

implies MAR [28], we can use the results of using MIPF with
MCAR data to examine the performance of the proposed ap-
proach. The condition of the missing data mechanism being in-
dependent of the missing observations still holds in the case of
MCAR. Furthermore, it is known that multiple imputations can
be used for MCAR [29] data and using MIPF for MCAR data
can improve the estimation performance as we impute missing
values based on the system model.
Please note that we use consider MCAR case as it is easier to

simulate andMIPF can be applied toMCARdata. Using PF only
on available observations and ignoring the missing observations
may give unbiased results for MCAR case, as it is known that
an estimator that uses only the available data can give an un-
biased estimate for such a case. However, it is also known that
by ignoring the missing data, especially if the missing data per-
centage compared to the available data is high, statistical power
is reduced as the estimation is carried out on part of the data [30].
In addition, a PF that only uses the available data will not esti-
mate the states for the instants where the data are not available.
On the other hand, MIPF generates the missing data and tries to
compensate for the uncertainty of missing observations through
multiple imputations and averaging of the results. MIPF also es-
timates the states for those instants where the observations are
absent.
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Fig. 2. Simulation results with 20% missing data. The results with PF are without any missing data and are used as a benchmark. SPKF shows divergent behavior,
the results shown here with SPKF are the best results. (a) Results with MIPF. (b) Results with EKF. (c) Results with SPKF. (d) Results with EM-PF.

For MIPF, we consider 30 particles and 50 imputations, i.e.,
and . One set of results of the non-linear state

estimation using MIPF is shown in Figs. 1–3, with 10%, 20%
and 50% missing samples in Figs. 1(a), 2(a) and 3(a), respec-
tively. These figures show the true state, the estimated state by
PF with complete data and the estimated state using MIPF with
missing data. We compare the results of applying PF to the com-
plete data and MIPF to missing data to verify if the MIPF can
estimate the non-linear states even if data are missing. It can be
seen that the performance of MIPF with 10% and 20% missing
data is similar to that of the PF, which shows the effectiveness
of MIPF in dealing with missing data. With 50% missing data,
the difference between the results using PF and MIPF is more,
which shows that with 50% missing data, the performance of
MIPF degrades.
Next we compare the results of MIPF with existing tech-

niques in [12] and [13]. The techniques in [12] and [13] use
modifications of EKF and SPKF to estimate non-linear state
with missing data. In addition, we compare with using the EM
algorithm to estimate missing data and then apply PF to the data
for non-linear state estimation. When using the EM algorithm,
we first generate all the data, then remove varying number of
samples from the data and subsequently estimate the mean and
covariance of the data using the remaining data. The missing

values are then generated using the estimated mean and covari-
ance and then PF is applied to the data for non-linear state es-
timation. Results with 10%, 20% and 50% missing samples for
[12], [13] and the EM algorithm are shown in Figs. 1(b), 2(b),
3(b), 1(c), 2(c), 3(c), 1(d), 2(d) and 3(d) respectively. It can be
observed by comparing with Figs. 1(a), 2(a) and 3(a) that MIPF
in general performs better than the other techniques. The per-
formance of the EM algorithm is the second best, followed by
SPKF and EKF. It can be seen that EKF and SPKF show some
large differences with the true state and estimated state using PF,
which indicates that these methods are sometimes not able to
carry out estimation when data are missing. Compared to these
techniques, MIPF does not show any large differences.
To further analyze and compare the performance of MIPF, we

calculate root mean square error (RMSE) between the estimated
and actual states as follows:

(22)

We average the RMSE values obtained from a total number
of 500 simulation experiments. We plot the results that show a
comparison with other techniques in Figs. 4 and 5. We first dis-
cuss the results using PF with complete data, and using MIPF,
EKF and SPKF with missing data shown in Fig. 4. It can be
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Fig. 3. Simulation results with 50% missing data. The results with PF are without any missing data and are used as a benchmark. SPKF shows divergent behavior,
the results shown here with SPKF are the best results. (a) Results with MIPF. (b) Results with EKF. (c) Results with SPKF. (d) Results with EM-PF.

Fig. 4. Comparison of RMSE between PF, MIPF, EKF, SPKF and EM-PF. The
results with PF are without any missing data and are used as a benchmark. SPKF
shows divergent behavior.

seen that RMSE for MIPF is lower than EKF till 30% missing
data and after that the performance of both filters becomes very
similar, the maximum RMSE is approximately 10. It can be fur-
ther seen that MIPF performs better than EM-PF. The RMSE
increases for both MIPF and EM-PF with increasing number of
missing samples. However, the rate of increase of RMSE de-
creases with increasing number of missing samples and reduces
to 0 around 40% missing samples. EM-PF shows reasonable

Fig. 5. Simulation results with 10%missing data showing divergence of SPKF.

performance; however, it requires the use of full data for pa-
rameter estimation.
The error for SPKF is very high. In fact, we encountered

two issues with using EKF and SPKF: We found that EKF and
SPKF would sometimes diverge where there were missing data,
the latter diverging more often than the former. SPKF also suf-
fers from the problem that sometimes the Cholesky decompo-
sition of the covariance matrix will not result in a semi-defi-
nite positive matrix. Therefore, we only considered those cases,
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Fig. 6. Comparison of RMSE using MIPF with different kinds of noise. The
parameters of -stable noise are: 1.5, 0, 0.5, 0 and the GMM consists of two
distributions with variance 1 and 2, and equal weights, i.e., 0.5.

where the result of the decomposition was a semi-definite ma-
trix. When the matrix is not semi-definite, we would re-run the
simulation. An example showing the divergence of SPKF is
shown in Fig. 5, where the divergence of SPKF can clearly be
seen from very high differences between the estimated and the
true states. From Figs. 1–3, we can also observe that when the
SPKF does not diverge, its performance is better than EKF.
Note that we consider Gaussian measurement noise in the

simulation section as we are using an already existing model.
However, our method does not depend on Gaussian noise.
RMSE with other commonly used alpha stable and Gaussian
mixture model (GMM) distributions [27] as measurement noise
are shown in Fig. 6 with varying percentage of missing sam-
ples. As it can be seen, the performance of MIPF with different
kinds of measurement noise is similar and its performance is
not dependant on the type of measurement noise.
We show simulation results with a PF ignoring the missing

data, i.e., whenever the data are missing, the PF only updates the
particles according to the observation equation and does not up-
date the weights. Moreover, the PF does not estimate the states
for the time instants where the observations are not available.
The performance in terms of RMSE for both methods can be
seen in Fig. 7. Note that as the PF does not estimate the states
for the time instants when the observations are missing, there-
fore, for the PF, RMSE ismeasured only for the states that can be
obtained from the observed data. Unlike the case with complete
data, RMSE for PF is more than that of MIPF and also increases
for PF with increasing percentage of missing samples. This fur-
ther reinforces the utility for MIPF: the imputed data values not
only replace the missing values in the observation, but also help
in better state estimation. This can be seen by the performance
of the PF, where only the available observations were used and
the RMSE is more than that obtained from theMIPF. After 30%
missing samples, the PF has lower RMSE than MIPF as the per-
formance of MIPF degrades similar to Fig. 4.
We vary the number of imputations and plot the RMSE values

in Fig. 8. We average the RMSE over 500 simulation instances.
We vary the number of imputations as and

. It can be seen that the RMSE for is much
higher than RMSE for the other two cases. Furthermore, it can

Fig. 7. Comparison of RMSE between MIPF and PF that ignores missing
values.

Fig. 8. RMSE with different imputations.

be noticed that and have similar performance.
The performance of after 30% missing samples is al-
most the same like the other two cases. The reason is that as
the number of missing samples increases, the performance of
MIPF degrades and the estimates have large differences. Once
the performance of MIPF degrades beyond a certain point, the
increasing number of imputations has very little effect on per-
formance improvement.

VII. CONCLUSION
In this paper, we applied the multiple imputations particle

filter (MIPF) to non-linear state estimation problem with
missing data. We showed that it can be used to deal with
missing data by using imputations to provide a replacement for
the missing data. We carried out a convergence analysis and
showed that the MIPF is almost surely convergent. Simulation
examples compared the performance of the MIPF with that of a
particle filter applied to the complete data and showed that the
MIPF performed well in the absence of data. We also compared
the MIPF with several existing techniques such as variants
of extended Kalman filter and sigma point Kalman filter, and
expectation maximization algorithm that further underlined the
superior performance of the MIPF for dealing with missing
data.
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