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ABSTRACT In this paper, we propose a solution to the problem of scheduling of a smart home appliance
operation in a given time range. In addition to power-consuming appliances, we adopt a photovoltaic (PV)
panel as a power-producing appliance that acts as a micro-grid. An appliance operation is modeled in terms
of uninterruptible sequence phases, given in a load demand profile with a goal of minimizing electricity
cost fulfilling duration, energy requirement, and user preference constraints. An optimization algorithm,
which can provide a schedule for smart home appliance usage, is proposed based on the mixed-integer
programming technique. Simulation results demonstrate the utility of our proposed solution for appliance
scheduling. We further show that adding a PV system in the home results in the reduction of electricity bills
and the export of energy to the national grid in times when solar energy production is more than the demand
of the home.

INDEX TERMS Appliance scheduling, optimization, branch-and-bound, smart home network, smart grid.

I. INTRODUCTION
The advent of smart grid has enabled the utilities to find
ways for promoting small scale renewable energy generations
and ways to keep the electricity demand in line with the
supply during peak timings of usage. This ability to control
usage is called demand-side management (DSM) and it could
translate into as much as $59 billion in societal benefits
by 2019 [1]. DSM plays a vital role in facilitating greater
connection of intermittent renewable generation [2].

DSM manipulates residential electricity usage to reduce
cost by altering the system load shape [3]. DSM pro-
grams comprise of two principal activities: 1) demand
response (DR) programs and load shifting, and 2) energy
efficiency and conservation programs. DR programs transfer
customers’ load during periods of high-demand to off-peak
periods by offering them incentives [4] and can reduce critical
peak demand or daily peak demand. Shifting daily peak
demand flattens the load curve, allowing more electricity
to be provided with less expensive base load generation.
DR programs can also save the cost of building additional
generation capacity to meet future critical peak demand.

Most of our high energy use is due to heating/cooling,
cooking, lighting, washing and drying. The home appliances
performing these functions are beginning to become smart
with connectivity features. These features allow them to be
automated to reap benefits that smart metering and variable
tariffs bring. Such smart devices enable the consumers to take
advantage of the DR program, where a utility can contact

a consumer to reduce/shift his or her electricity consumption
in return for certain monetary benefits. These devices can
form part of a home area network (HAN), which consists
of networking of devices inside or within close vicinity of
a home.

The traditional grid has DR programs for large-scale con-
sumers such as industrial plants or commercial buildings;
however, a similar mechanism for the residential consumers
does not exist mostly due to two reasons. First, it is hard to
handle the large number of residential units without com-
munication, sensors, and efficient automation tools. Second,
the impact of DR programs is considered to be relatively
small when compared with their implementation cost. The
advent of smart grid, smart meters, low-cost sensors and
smart appliances have led to novel residential energy man-
agement techniques that involve communications and inter-
action between consumers, devices and the grid [5]. Recent
advances in smart metering technology enable bidirectional
communication between the utility operator and the end-
users and facilitate the option of dynamic load adaptation.
In smart grid, real time pricing information updated by the
utility provider is in fact directly related to the consumer.

A. LITERATURE REVIEW
In the study of dynamic DSM, different techniques and
algorithms have been proposed, where the basic idea has
been to reduce the energy bill corresponding to the time-of-
use (TOU) tariffs incentives offered by the utility [6], [7].
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TOU tariffs are varied throughout the day according to the
supply and demand [8]. Consumers can also generate renew-
able energy, consume some portion of it locally, and sell
the excess energy to the utility companies when permitted.
For example, Ontario government’s micro feed-in tariff (FIT)
program in Canada allows home owners to sell locally gener-
ated energy [5], [22], [23].

In [5], a single objective optimization problem is
presented to minimize the total cost of electricity usage
at home. Four appliances were considered for comparing
two optimization algorithms. Optimization based residential
energy management was developed using external solver
CPLEX. The authors assume average non-varying consump-
tion value for complete operating cycle of an appliance.

Similarly authors in [6] discuss a model in which
objective function encompasses three different criteria: cost
minimization, maximization of scheduling preferences and
maximization of climatic comfort. A mathematical program-
ming problem is defined using a weighted objective function
based upon the importance given by the user. Since the com-
putational complexity of the problem is NP-hard, a heuristic
algorithm has been proposed to derive suboptimal solutions
within a limited computational time. The authors present
results by randomly generating the load profile length and
power consumed in the load profiles of devices.

In [24], optimization of appliances for a single home is
done using convex programming framework. Since the on/off
status of appliances can be gauged by the binary decision
variables, by relaxing decision variables from integer to
continuous values, the mixed integer linear problem can be
formulated as a new convex programming problem. The
authors consider minimization of cost and user dissatisfaction
in the objective function.

In [25], the authors use particle swarm optimization to
carry out scheduling according to the preference placed by
user on benefit from different services. The authors calculate
the schedule for hourly charging or discharging of the battery
of a hybrid electric vehicle, hourly heating power of the
heaters, hours for turning on the water heater and pool pump.
In [26], the authors formulate an integer linear problem that
minimizes cost, while at the same time ensuring that the heat
and electricity demands are met. In [27], the authors consider
the unit commitment problem that aims to find the minimum
cost dispatch of available generation resources to meet the
electrical load. The authors minimize overall cost consid-
ering the cost of energy production, spinning reserve and
interruptible load using mixed integer programming. In [28],
the authors consider the minimization of cost incurred by
distribution network operators in case of variation of load.
This strategy is based on varying the interruptible load and
dispatchable generation to account for any load variation.
In [29], the authors provide an optimization model that allows
a consumer to adapt his or her cumulative hourly load level
in response to varying hourly electricity prices. In [30], the
authors present a solution for managing the use of energy
supplies by minimizing the cost of using these supplies.

In [9], the authors reduce the peak-to-average ratio and
cost using genetic algorithm. The authors do not use any
threshold on peak power, instead, they consider that if the
power is greater than a certain threshold, the price becomes
high. The authors use delay time rate, which means that
an application should finish the work as soon as possible.
They consider a single constraint for meeting the length of
operating time of the appliances. In the results section, the
appliances with fixed power are used. In [10], the energy cost
is minimized under the energy-price uncertainty, where the
prices randomly vary around nominal values with a known
underlying distribution. The authors consider energy-storage
devices, and use simulated values of active level of appliances
in a certain range. They do not consider any leveling and
assume appliances to have a constant energy consumption.
In [11], day-ahead prices and residential load schedule are
obtained, then price is adjusted in real-time. The authors max-
imize the utility company’s profit with respect to distribution
grid constraints and minimize the consumer’s electricity bill
as well as disutility function.

In [12], the authors consider uniform distribution of power
for each appliance and minimize cost using stochastic behav-
ior of wind power. The authors present a protocol for home-
area network design to permit load scheduling amongst
flexible and controllable loads. The authors do not consider
constraints for starting and ending of appliances. In [13],
the authors minimize the energy cost to find the optimal
energy consumption and operation time of the throttleable
and shiftable appliances, respectively. Subsequently, a multi-
objective optimization problem considering consumer prefer-
ences is formulated, with objectives to minimize the energy
cost, operation delay and energy gap. The authors consider
fixed energy consumption of devices with no PV panel and
consider daily usage. In [14], the authors mainly discuss
the architecture for PV system management in residential
areas and PVmonitoring systemwithout considering any load
scheduling problem. In [15], the authors consider flattening
of load profile of the gird and providing uninterrupted power
supply to homes. They present a design for controllers that
consider the required power by home and based on available
power from grid and other sources, manage the distribution.
The appliance load scheduling problem is not considered in
this reference.

In [16], the authors describe the design of a solar home
system. In [17], the optimal scheduling of energy consump-
tion in smart homes is presented using mixed-integer linear
programming. In order to minimize a one-day forecasted
energy consumption cost, operation and electricity con-
sumption tasks are scheduled based on different electricity
tariffs, electricity task time window and forecasted renewable
energy output, and no leveling or reducing peak demand
is considered. In [18], the authors deal with reducing cost
and energy consumption, without considering any PV. The
authors first provide a schedule that will achieve desired
cost or energy savings, and include an objective to minimize
deviation between historical activation use pattern and the
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proposed pattern, and do not consider any leveling. In the
performance evaluation, they present the computation time
of their presented approach.

In [19], the authors consider scheduling of three kinds
of appliances (1) heating-cooling system by using Dijkstra
routing algorithm, where nodes are possible temperature
points and the cost of each transition between nodes is a
combination of energy cost and comfort (2) washing machine
that is scheduled using exhaustive search by considering all
possible starting moments as well as the respective cost of
each of them, and (3) water heater whose total required
duration is calculated and then most efficient time intervals to
activate the device are presented. Each kind of scheduling is
done independently, with no overall constraints. In [20], the
authors present a power consumption management scheme
based on maximizing comfort and meeting temperature and
peak power constraints. This management is based on a pro-
tection layer that makes decision if some constraints such
as maximum power are violated, and an anticipation layer
that can schedule energy consumption in advance, based on
predictions. The reference mainly deals with heating man-
agement in a household. In [21], the authors minimize the
daily energy bill, constraints consist of activity scheduling
and batteries constraints. They do not consider any leveling as
well as constraints that restrict the running of each appliance
to be uninterruptible and sequential. In the results section, the
authors show that their proposed technique is able to reduce
the electricity demand during peak hours.

Available DR optimization schemes are implemented
through either incentive based rates or time based rates [24].
TOU pricing has been shown to have a significant influence
on ensuring a stable and optimal operation of a power system.
A residential customer’s daily activities are characterized by
a list of tasks to be scheduled at preferred time intervals.
Some of these tasks are persistent, as they consume electricity
throughout the day, e.g., the use of a refrigerator; others can
be scheduled according to the user-specified constraints and
the variable tariffs offered by the utility company to achieve
cost savings and peak demand reduction [7].

Although the flexibility associated with appliances and
time varying prices can achieve tangible benefits for cus-
tomers, current residential load control activities are mainly
operated manually, which pose great challenges to customers
in optimally scheduling the operations of their appliances.
Some customers may not have time to make such scheduling
decisions and if prices vary fast and frequently, scheduling
may be too complex. In order to let the users participate in
the DR program and maneuver their consumption pattern
through pricing signal, studies have suggested employing
automated household energy management strategies. Hence,
a centrally located automated intelligent device is necessary
to optimize the appliances and load operation on behalf of
customers. In [31], this device is called automated building
energy management controller (BEMC). Energy box (eBox)
referred in [6] does the computation while considering all the
parameters, and demands consumers to strictly adhere to the

suggested pattern. In [7], the implementation of the intelligent
residential energy manager is done through a master energy
controller (MEC). The personalized home energy manage-
ment system manages all configurations at the customer-
end to control various home appliances either remotely or
locally through the MEC. At each residential unit in HAN, as
outlined in [32], smart device controller (SDC) coordinates
the energy demand and supply processes based on a commu-
nication infrastructure that can detect energy demand of the
load associated within the HAN and check the availability of
supply to address the demand.

B. CONTRIBUTIONS
Overall, the work carried out in existing reference do not
consider some or all of the following scenarios: 1) Actual
load profiles are replaced by average loads or maximum
load of devices. As the load profiles of devices vary with
respect to time, results of scheduling with average load may
not always give a feasible solution, compared to using real
load profiles. 2) Specific objective functions for leveling
demands are not considered. Although an objective function
that minimizes cost helps in leveling demand and avoiding
peaks in the high-priced area, it may still lead to peak loads
in low-priced region. 3) Most of the work in the literature
does not provide a solution to the end-user where he or she
may get an operating schedule of the devices, instead they
concentrate on providing an overall optimum hourly demand
level or consider cost reduction from the point of view of
providers/dispatchers. 4) The constraints considered in some
references ignore that appliances may have to run without
interruption and sequentially. 5) The results mainly show the
cost savings or reduction in demand during peak hours, no
actual schedule of the devices is presented, which can in fact
reveal further if the reduction in cost or demand has come at
the expense of scheduling of appliances during inconvenient
timings.

In this paper, we consider a scenario where automated
energy consumption scheduling is done at a centralized con-
trolling device (CCD) also referred to as a scheduler. Contrary
to many references reviewed above, we present an approach
that can be directly used by a consumer for appliance schedul-
ing, according to input tariffs and peak load constraint.
User preference for an appliance to start within a particular
time interval is also taken into account. The considered sce-
nario is more realistic as we consider constraints that allow
the appliances to run sequentially and without interruption.
All the home appliances are smart appliances, which imme-
diately after being powered on and connecting to the HAN
will exchange their handshake signals with the CCD. A smart
meter can also serve the same purpose, where it is assumed to
be equipped with an automated energy consumption schedul-
ing function and all the appliance operating features in terms
of operation cycle, power consumption and energy IDwill get
through the HAN to neighborhood area network and finally to
the national grid. The CCD function is programmed based on
the user’s energy consumption needs, then it automatically
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TABLE 1. Symbols used in problem formulation.

controls the operation of various appliances such as the
batteries of electric vehicles, washer, dryer and dish
washer.

We consider the limitations of existing methods and pro-
pose a solution to overcome these limitations. We formulate
the problem of scheduling of smart appliances operations in
a given time range as a problem consisting of two objective
functions: one dealing with cost minimization, and the other
dealing with leveling of demand. We propose a solution to
the problem based on mixed integer programming technique.
We further evaluate the performance of a residential energy
model and optimize the performance of different types of
loads associated within. In the results section, we take into
consideration real load profiles of the appliances and generate
starting and ending plan satisfying all the time and energy
constraints given by the user. Our proposed solution can be
directly used by a user to get a calculated schedule corre-
sponding to variable tariffs and load profiles. Additionally
it can be used for generating appliance scheduling plan in
comparable time to be true as a real time process, thus, it is
adaptable to any change in tariffs.

This paper is organized as follows: In Section II, we present
the system model. In Section III we discuss the problem for-
mulation and the proposed solution. In Section IV, we present
results. Conclusions are given in Section V. A summary of
symbol notations is shown in Table 1.

II. SYSTEM MODEL
A. TYPES OF LOADS
In a particular HAN, appliance load can be further sub-
categorized into manageable and non-manageable loads.
Existing literature of energy management system focusses
mainly on manageable loads because of its high energy con-
sumption and predictability in its operation. In [6] and [31],
manageable load has been further categorized as:

1) Shiftable load (flexible delay having certain consump-
tion cycle with specified energy consumption profile),
e.g., washing machine, dish washer, etc.

2) Interruptible load (e.g., water heater and refrigerator
they are either ON with fixed energy consumption
or OFF. However, their ON cycle duration depends
upon user preference setting).

3) Weather based load (e.g., air conditioner and electric
heaters which depend upon weather and power absorp-
tion of premises).

Non-manageable loads include TV, laptops, lights, etc. There
are appliances that are in home use such as TV, lights, clock,
phones, computers etc. Their loads compared to the major
load discussed above are insignificant and not power consum-
ing. Moreover, these appliances are interactive and have little
scheduling flexibilities.

FIGURE 1. HAN model for appliance scheduling.

B. DESCRIPTION OF MAJOR HOME APPLIANCES
Fig. 1 summarizes the system model. We consider a mid-size
home with the following major electricity consuming appli-
ances: dishwasher, clothes washer and dryer, refrigerator, air-
conditioner (AC), oven-1, oven-2 and electric vehicle (EV).
The home also has on-grid photo voltaic (PV) panels for elec-
tricity generation. It is known that different appliances have
definite timing of completion of their cycles and thus have
definite power consumption vector, which can be ascertained
either from the appliance specifications or measuring demand
experimentally at equal time intervals till the completion of
cycles. The load vector for EV used in this paper is taken from
the data used in [33]. We have adopted the power vectors of
the appliances from a study done at Virginia Tech. Advance
Research Institute [34]. The time-dependant power vectors
are called load profiles in the rest of the paper. The TOU
tariffs used in this paper are 13.5 cents/kWh, 11.2 cents/kWh
and 7.5 cents/kWh for on peak, mid peak and off peak,
respectively [35]. In the following, we describe each of the
appliances along with its load vector.

1) DISHWASHER
The dishwasher has three main operating cycles: wash, rinse
and dry and it takes approximately 105 minutes to complete
all the cycles. During the running of the dish washer, load
varies from maximum 1.2 kW to minimum 0.6 kW as shown
in Fig. 2. The energy consumption is about 1.44 kWh for
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FIGURE 2. Load profile of dishwasher [34].

one complete cycle of dishwasher. Dishwasher is classified
in category of shiftable load.

2) CLOTH WASHER AND DRYER WORKING IN TANDEM
This is a case of two appliances working in sequence.
Cloth washing machine precedes the dryer and has three
cycles of operation: wash, rinse and spin, which take
45 minutes to complete. The power load varies between
0.52 kW to 0.65 kW. Then after lapse of 15 minutes, dryer
starts, which takes 60 minutes to complete. The load of dryer
varies from 2.97 kW to 0.19 kW. The load profile of such
a device is shown in Fig. 3. The energy consumption of
the combined appliances is 2.68 kWh per operation. Cloth
washing machine and dryer are classified in the category of
shiftable load.

FIGURE 3. Load profile of cloth washer & dryer [34].

3) REFRIGERATOR (15.6-cuft) WITH TOP FREEZER
Refrigerator falls in the category of appliances which works
24 hours a day. The only time compressor rests is when the
inside temperature is lower or equal to the set temperature
of the refrigerator. The compressor also rests when defrost
heating starts. The load profile of the refrigerator is shown

FIGURE 4. Load profile of refrigerator [34].

in Fig. 4, which is marked by spikes at regular intervals
reaching 0.37 kW, due to defrosting of the refrigerator. The
maximum and minimum load during the operation of the
refrigerator is 0.37 kW and 0 kW respectively. The electricity
energy consumption is 3.43 kWh/day. Refrigerator is classi-
fied as continuous non-shiftable load.

4) CENTRAL AIR-CONDITIONER
The load profile of the central air-conditioner (AC) is shown
in Fig. 5 which resembles like a series of square wave train
showing peak load of 2.75 kW when compressor of AC is
working, and 0.25 kW when the compressor is switched off.
This occurs when inside room temperature is equal or below
the set room temperature. However, air fan continues to work
for circulation of air. The energy consumption of 2.5-ton
AC is around 31.15 kWh per day. AC is classified as con-
tinuous non-shiftable load with sub-classification as weather
based load.

FIGURE 5. Load profile for air-conditioner [34].

5) OVEN FOR MORNING
The use of cooking ovens falls into the category of appliances
that are used more than once in a day. For instance, an oven
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used in the morning and in the evening can be treated as two
separate appliances. The use of oven in the morning is of
short duration and usually lasts 30 minutes. The load varies
from 1.28 kW to 0.83 kW as shown in Fig. 6. The electricity
consumption is estimated to be 0.53 kWh. Oven is considered
as shiftable load to user specified time preferences.

FIGURE 6. Load profile for oven used in morning hours [34].

6) OVEN FOR EVENING
The use of oven in evening is extended and usually two
burners are used. The evening oven runs for 1.5 hours, during
which time the load varies between 2.35 kW and 0.75 kW as
shown in Fig. 7. The electricity consumption is 1.72 kWh.

FIGURE 7. Load profile for oven used in evening hours [34].

7) ELECTRICAL VEHICLE
Electrical vehicles (EVs) are slowly gaining popularity and
automobile manufacturers are producing hybrid vehicles that
work both on gas and electric batteries. The batteries are
charged through home electricity. The EV takes 2.5 hours
to charge fully at a constant 3 kW load and immediately
tapers off to zero. The consumption of EV is estimated to
be 7.50 kWh. EV is considered as shiftable load to user
preference time when TOU tariff is the lowest like between
7 PM to 7 AM. The load vector for EV used in this thesis

model is taken from the data used in the publication [33] and
shown in Fig. 8.

FIGURE 8. Load profile for electric vehicle [33].

8) MICRO-GRID
A typical micro-grid for buildings integrates the operation
of electrical and thermal energy supply and demand. The
supply may include energy sources from distribution grid,
fuel cells, renewable energy sources such as PV solar panels
and wind power, etc. [36]. We consider a micro-grid of 3kW
PV panel systemwith on-grid connection and having a profile
given in [37]. Electricity generated by the PV system will be
consumed in home. On-grid connectionmeans that PV panels
are connected to the national grid. If during any instance of
time, PV produced electricity is more than the demand of
home, the surplus electricity will be exported to the national
grid. When the electricity produced by PV is less than the
demand in the home, the surplus electricity will be imported
from the national grid. The PV panel energy selling rate is
considered as 39.617 cents/kWh [23]. Power profile of a
typical 3kW solar panel is shown in Fig. 9, according towhich
power varies from 2.9 kW to 0 and energy production on a
sunny day is 23.11 kWh.

FIGURE 9. Locally generated PV panel profile [37].
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9) OTHER APPLIANCES
There are appliances that are in home use such as TV, lights,
clock, phones, computers etc. Their loads compared to the
major load discussed above are insignificant and not power
consuming. Moreover, these appliances have little scheduling
flexibilities.

C. DURATION OF OPERATION
A day of 24 hours is divided into 96 time slots. All the time
slots are represented by their starting times. The starting slot
and ending slot times over the whole day are 6:00 AM and
5:45 AM, respectively. Thus each time slot represents an
interval of 15 minutes, giving a total of 96 time slots in a
day. The end time of an individual slot is obtained by adding
15 minutes to the starting time. For example, for time
slot 2, the starting time is 06:15AM and ending time
is 06:30AM.

D. EXECUTION WINDOW OF EACH OPERATION
For each appliance, there is a minimal starting time and
a maximal ending time. For instance, if a user comes
home at 05:00PM and wants to end dinner not later than
08:30PM, then the oven may be scheduled on any time
after 05:15PM and has to finish by 07:45PM. We limit the
case where each appliance is executed exactly once dur-
ing the day. However, we can take into account multiple
usage of the same appliance by considering the appliance
and multiple appliances of the same type. The scheduler is
free to switch on the appliances on any time as long as it
respects the starting and ending time constraints within the
range.

E. EXAMPLE LOAD PROFILE OF APPLIANCE
An appliance operation process follows a load profile,
comprising a set of sequential load phases, e.g., the load
profile of a dishwasher in kW is [1.2, 1.2, 0.2, 1.1, 0.68,
0.8, 0.6] spaced at 15 minutes apart and has seven load
phases. The whole cycle of dishwashing takes 105 minutes.
The dishwasher has three sub-cycles: wash, rinse and
dry, which are carried sequentially in that order. The
first 45 minutes associated with wash cycle, next
30 minutes for rinse and the remaining 30 minutes are
spent in washing. A load phase is un-interruptible and
sequential.

There can be additional inter-appliance operational con-
straints. A certain appliance cannot start before some other
appliance finishes, e.g., dryer cannot start before completion
of washing. More importantly, due to safety reasons, the
sum total of loads of all the appliances at any point of time
cannot exceed a pre-defined peak load. To put the appliance
load phases in operation with operational constraints, the
appliance’s scheduler determines the load assignments, as a
function of time in a day with the objective to find the least
energy cost of the appliances and/or a flat demand curve
(minimizing peak load).

III. APPLIANCE SCHEDULING OPTIMIZATION PROBLEM
FORMULATION AND SOLUTION
In this section, appliance scheduling is formulated using a
mixed integer programming (MIP) technique for which use
of decision variables and auxiliary binary decision variables
are defined and applied. We further describe the proposed
solution.

A. PROBLEM DEFINITION
The set of number of appliances for scheduling are denoted
by N and their corresponding number of set of un-
interruptible load profile for each appliance is denoted by ni
for i = 1, 2, 3, . . . ,N . Pkij represents load variable assigned

to an appliance i having load phase j during time slot k.

B. DECISION VARIABLES
The typical unit for Pkij is kW, but when this is multiplied by
a factor of (15/60 = 0.25), its unit will be changed into kWh.
The load profiles Pkij are real and continuous decision vari-

ables. In addition to Pkij, we need auxiliary binary decision
variables to indicate whether a particular load profile is being
processed or not. Binary decision variables are denoted by
X kij ∈ {0, 1}. X

k
ij = 1, if an appliance i and its load phase j

is being processed during the time slot k, otherwise X kij = 0.
Similarly, we can introduce other auxiliary binary variables
Skij = 1 indicating an appliance i, load phase j is already
finished by time slot k. It meansX kij and S

k
ij are complementary

and either binary variables X kij = 1 or Skij = 1, i.e.,

X kij + S
k
ij = 1, ∀i, j, k. (1)

C. OBJECTIVE FUNCTION
The first objective of the load scheduler is to minimize the
total electricity cost for operating the appliances based on
24-hours ahead TOU electricity tariff. LetCk denote electric-
ity TOU tariff for time slot k. Then the total cost of electricity
consumption function fC is given by the following equation:

P1A : fC = min
X

m∑
k=1

Ck
( N∑

i=1

ni∑
j=1

PkijX
k
ij

)
, (2)

where X is a vector whose entries are X kij . Once first load

phase starts, it will sequentially complete all the phases with-
out interruption. The corresponding auxiliary binary variable
X kij ∈ {0, 1} is used with Pkij as on/off switch to estimate the
time slot k, when the appliance first phase starts till all of its
load phases end. Therefore, optimization will be on binary
variable X kij for all values of {i, j, k} of which appliance i
and its load profile j are known and only k is unknown. This
will provide optimal layout of appliances with their respective
start and end slot time with the objective to minimize energy
cost according to the TOU tariff and minimize and level peak
demand of the appliances by using (2), and (3) and (4) given
in the following.
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Eqn. (2) has a different variant if a micro-grid (G) is
added:

P1B : fC = min
X

m∑
k=1

N∑
i=1

ni∑
j=1

(
CkPkij X

k
ij − g

kGkij X
k
ij

)
(3)

where g represents feed-in tariff. Gkij is the power produced
by PV panel consisting of different phases j at time k.
Micro-grid component in the objective function is con-
stant as it has fixed possible starting and ending time. The
optimization will be achieved through appliance scheduling
only.

The second objective is to minimize the maximum peak
load function fL of the home:

P2 : fL = min
X

m∑
k=1

N∑
i=1

ni∑
j=1

(
PkijX

k
ij − q

)2

, (4)

where q is the average load of all the appliances considered
and is given by (5).

q =

1
4

(∑N
i=1

∑ni
j=1 Pij

)
24

(5)

Here, Pij is the variable to indicate assigned load of appli-
ance i having phase j. This in fact translates to minimizing the
sum of squared of deviation (SSOD) from the average value
of the appliances load. SSOD is ameasure of leveling effect in
the load demand curve.When the peaks in the demand pattern
decrease and the gaps are filled, SSOD of the load curve will
reduce.

D. CONSTRAINTS
The constraints are grouped into energy constraints and tim-
ing constraints:

1) ENERGY CONSTRAINTS
To make sure that load phases of appliances fulfill their
energy requirements, the following constraint is imposed:

0.25
( m∑
k=1

P k
ij

)
= Eij ∀{i, j}, (6)

where Eij is the energy requirement for appliance i with load
phase j and m is the available time slots in a day.

The load safety constraint puts upper limit to the peak
coincident load demand of all appliances not exceeding a
certain pre-defined limit β.

N∑
i=1

ni∑
j=1

P k
ij ≤ β ∀{k} (7)

The peak signal β is provided by the grid operator, which is
a demand response signal.

2) TIMING CONSTRAINTS
a: UN-INTERRUPTIBLE OPERATION
This situation can be modeled by the constraint that, for
all i and j,X kij = 0. This can also be explained by the following
auxiliary constraint equations:

X kij + S
k
ij ≤ 1 ∀{i, j, k}. (8)

If Skij = 1, then at time = k , load phase j in appliance i
is already finished. Hence, the corresponding X kij = 0.
The condition triggering Skij = 1 is that X kij switches from

1 to 0, i.e., the load profile just finished. This situation is
shown as:

X k−1ij − X kij ≤ S
k
ij ∀{i, j}, ∀{k = 2, 3, 4, . . .m}, (9)

Another constraint is as follows:

Sk−1ij ≤ Skij ∀{i, j}, ∀{k = 2, 3, 4, . . .m} (10)

where m is the number of available time slots in a day. This
means that Skij should remain unity.

b: SEQUENTIAL PROCESSING
Sequential processing of load phases in a load profile of
an appliance means that a load phase cannot start unless
its preceding phases have finished. This requirement can be
described using the auxiliary decision variable Skij as follows:

X kij ≤ S
k
i(j−1) ∀{i, j}, ∀{k = 2, 3, 4, . . .m} (11)

c: USER TIME PREFERENCES
The appliance user can setup the time preference constraints
specifying the time interval an appliance must be finished
within. It means that appliance cannot be run outside of the
time preference interval.

tst − tend ≥ α, (12)

where tst is the starting time of the range selected by the user,
tend is the ending time of the range selected by the user and
α is the length of the load profile of an appliance.

The number of cycles or positions that can be available for
starting an appliance is given by:

cyc = tend − tst − α + 2. (13)

As an example consider an appliance load profile of the
dishwasher:

Pi,j =
[
1.2 1.2 0.2 1.1 0.68 0.8 0.6

]
,

where i = 1 refers to the dishwasher. Also α = 7 is the length
of the load profile consisting of number of load phases in an
appliance load. Also user time range constraints for starting
and ending of appliance is given as tst = 2 (06:15AM) and
tend = 14 (09:15AM). Since we are working on the time slots
given with respect to the hour of the day, we consider time
slot number for all our calculations of available time positions
for allocating an appliance. Using (13) we get the result as
cyc = 7, which is the available number of time slots in a day
in which an appliance can be operated.
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E. PROPOSED SOLUTION
The objective function given in (2) can be solved using
mixed-integer programming (MIP) technique. We divide the
time scale into 96 time slots. This is determined in MIP
through binary decision variableX kij , when its value is 1 at one
particular slot and 0 for all the remaining slots. In this work,
there is a need for 8× 96 binary variables for describing the
scheduling of appliances as there are seven appliances and
one PV panel.

Solving NP-hard discrete optimization problems optimally
is often an immense job requiring very efficient algorithms.
We use a branch and bound (B&B) algorithm, which is useful
for solving such a problem. The B&B algorithm is the basic
technique for solving MIP programming problems [39], [40].
The B&B algorithm searches the complete space of solutions
to a given problem for the best solution. The algorithm is
based on the observation that the enumeration of integer
solutions has a tree structure. Now the main idea in B&B is
to avoid growing the whole tree as much as possible, because
the entire tree is just too big in any real problem. Instead,
B&B grows the tree in stages, and grows only the most
promising nodes at any stage. It determines which node is
the most promising by estimating a bound on the best value
of the objective function that can be obtained by growing that
node to later stages. Branching occurs when a node is selected
for further growth and the next generation of children of that
node is created. The bounding comes in when the bound
on the best value attained by growing a node is estimated.
We use YALMIP toolbox [38] in Matlab that has an inter-
face for Gurobi solver [41], which is used to implement our
B&B based solution.

IV. OPTIMIZATION OF ENERGY COST AND
PEAK LOAD RESULTS
We run our MILP program code to schedule appli-
ances for minimizing the energy cost and minimizing
the peak load based on (2) and (4) for the following
four cases:
A: Appliances assigned to the full time range.
B: Appliances assigned to fixed range equal to the length

of load profiles.
C: Appliances with mixed time range equal to or greater

than the load profiles.
D: Case A above with PV panels.
E: Case B above with PV panels.

In TOU pricing, the electricity price per kWh varies for
different times of the day to fill the valleys and reduce the
peak load for more horizontal load distribution. However,
the maximum peak load in home is controlled through an
additional constraint that the sum of loads at any time be
always equal to or less than 5.5 kW in our case. Themaximum
peak is always assigned by the electricity provider. Reducing
the cost of electricity bill is important and relevant in this
work. Therefore, the effect on cost energy will be studied
for the five different appliances scheduling scenario shown
above.

For each case, we present a scenario, followed by opti-
mization results. These results consist of load patterns,
assigned starting and ending times, and other parameters
such as total energy consumption (TEC), energy cost (EC),
energy exported (EE), maximum peak load and its associated
time (MPLAT), and SSOD with q = 2 kW. The results are
obtained in most cases in less than five seconds, using a
computer with Intel i3 processor, which shows that results
can be obtained in near real-time. If a computer with higher
computational capability is used, the processingwill be faster.

A. APPLIANCES ASSIGNED TO THE FULL TIME RANGE
In this case, appliances can be assigned to any time slot.
Running the optimization algorithm forminimizing peak load
and minimizing cost of energy, separately, i.e, P1A and P2,
with appliances range available from time slot 1 (06:00 AM)
to time slot 96 (06:00AM), it is found that the scheduler
assigns some appliances to inconvenient starting time slots.
We consider two cases separately as follows:

1) MINIMIZATION OF PEAK LOAD
In case of peak load minimization, the emphasis is on allo-
cating the appliance operation over time scale where there
will be leveling of peak loads over the given range of time.
For this scenario, we are optimizing (4) over a given full
time range of 24 hours divided in to 96 slots. Therefore, load
graph of all the appliances run over the day would tend to
be leveled irrespective of the utility pricing signal (TOU) as
shown in Fig. 10. The starting and ending time of appliances
in this case is shown in Table 2.

FIGURE 10. Load pattern of appliances while minimizing peak load over
full time range of slots from 1 - 96.

As shown in Table 2, scheduled time of dishwasher to
start operating from 10:00 AM and ending at 11:45 AM is
not preferable. Dishwasher should be scheduled to operate
after dinner time. Similarly, the timing of oven-1 (Morning)
starting at 10:45 AM is too late and oven-2 (Evening) starting
at 3:30 AM is too early. Appliance scheduling as a result
of peak load minimizing under full time range (1-96) is,
therefore, inconvenient and not adoptable. Other parameters
are shown in Table 8 and will be compared next.
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TABLE 2. Appliances starting and ending times for minimizing peak load
over a full time range.

2) MINIMIZATION OF ENERGY COST
In this scenario, using objective function (2), we want to con-
sider the appliances in HAN to operate while minimizing the
cost of energy used based on time range starting from slot 1
to time slot 96. Appliance dynamic responses aremaneuvered
by utility TOU signal as shown in Figure 11. Table 3 shows
the starting and ending time of appliances when minimizing
the energy bill.

FIGURE 11. Load pattern of appliances while minimizing cost of energy
over full time range of 1 - 96 slots.

Figure 11 shows that while minimizing cost of energy, the
scheduling of appliances have moved in time range where
TOU tariff is low. The maximum peak load is 6.79kW, which
occurs at time slot 75 (12:30 AM).

As expected, the cost of electricity in case of mini-
mization of energy cost is indeed lower than the case of
minimization of peak load. The cost of electricity when
minimizing peak load is $4.63 as shown earlier. The cost of
energywhenminimizing energy cost is $4.46 showing energy
cost reduction of 3.6%. The reduction of energy cost came
with an increase in peak load level distortion, i.e., SSOD. The
SSOD increased from 156.98 to 238.80 (increase of 52.7%)
in minimizing peak load and minimizing energy cost,
respectively.

TABLE 3. Appliances starting and ending times for minimizing cost of
energy over a full time range.

Time allocations for dishwasher, oven-1 (Morning) at
time slot 75 (12:30 AM) and oven-2 (Evening) to time
slot 91 (4:30 AM) to operate are still inconvenient timings.
Therefore, there is a need to review the constraints of time slot
range assignment of the appliances for its operations keeping
its time of suitability and convenience. It is also to be noted
that the peak load has increased significantly and has to be
restricted to a limit.

B. APPLIANCES WITH FIXED TIME RANGE
Consider a scenario where an unconcerned consumer may
likely use appliances without giving due considerations to
TOU tariffs and limit to peak load. Such a situation is
described as a worst case. In this connection, consider a home
where appliances operate on the fixed time range equal to
the length of load profile as per schedule given in Table 4.
The starting time of the appliances given by the consumer
is fixed and there is no room for operating the appliances
other than the time given by the user irrespective of the TOU.
Based on the input range given in Table 4, Table 5 gives
starting and ending time of the appliances, obtained using the
proposed optimization algorithm. These times are the same
as the given input ranges and show the effectiveness of the

TABLE 4. Range of time constraints given for appliances in fixed range.
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TABLE 5. Appliance with fixed schedule (time range = length of a load
profile).

FIGURE 12. Load pattern of appliances operating on fixed time range
equal to the load profile.

TABLE 6. Range of time constraints given for appliances in mixed range.

proposed solution in dealing with given constraints. Demand
curve of the above situation is shown in Fig. 12, along with
TOU tariff curve. It shows that most of the appliances are
scheduled in the region of peak and mid peak of TOU tariff,
as the scheduling is not done with respect to TOU tariffs.
The peak load of 6.78 kW occurs at time slot 51 (6:30 PM),
which is in mid-peak TOU tariff. Other parameters are given
in Table 8.

FIGURE 13. Load pattern of appliances operating on mixed time range.

TABLE 7. Appliances starting and ending times for mixed time range
schedule.

C. APPLIANCES WITH MIXED TIME RANGE
In this case, time range space is provided in Table 6 for
optimizing the scheduling of appliances as per convenience
of its operations. The time range provided is either equal or
greater than the length of the load profiles to give flexibility
for appliance scheduling and more time slots options for
allocating appliances. Only refrigerator and AC have fixed
range equal to their respective load profiles. It is noted that
energy demand of appliances being constant, reduction of
peak demand and electricity cost could occur by appropri-
ately shifting loads away from the peak TOU tariff timings.
We also seek optimization scheduler to determine the
minimum energy cost with additional constraint that peak
load be less than or equal to 5.5 kW at any instant of the time
range. The combined appliance load distribution is shown
in Fig. 13 and the recommended starting and ending times
of the appliances is given in Table 7, obtained using the pro-
posed algorithm. The electricity consumption is 48.45kWh,
which remains constant and its cost is reduced from $4.92 in
case A to $4.46 based on TOUTariff and peak load is reduced
from 6.78kW to 5.5kW, a reduction of 18.9%. The load curve
shows that shiftable loads under flexible time range move
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TABLE 8. Comparison of results.

FIGURE 14. Load pattern of appliances and PV generation operating on
fixed time range.

to region where tariff is low as evident from Fig. 13, which
shows the effectiveness of our approach.

D. APPLIANCES WITH FIXED TIME RANGE
WITH PV PANEL
Next, we study the effect of local electricity generation
through installation of 3 kW PV panels. PV panels will gen-
erate power as co-power supplier in addition to supply from
the national grid. Consider the same appliance configuration
shown in Table 5 with 3 kW PV panels. The load patterns
of appliances along with power generated by PV panel are
overlapped on time-wise basis as shown in Fig. 14. The
net demand of load from the national grid and export of
power to the utility grid are shown in Fig. 15. Other param-
eters calculated from the solution obtained by the proposed
optimization algorithm with the objective function P1B (with
micro-grid) are shown in Table 8. The results show that
amount of energy and total electricity cost is the same as
in case A. But if we take the effect of PV panel generation
shown by the parameter EE, the net import from national grid
decreased from 48.45kWh to 34.11kWh. Therefore, the cost
of energy decreased from $4.92 to $3.11 based on TOU tariff.
The home simultaneously exported 8.77kWh to national
grid. The expected sales proceed from the export of energy
is $3.47 based on FIT is $0.396/kWh as of 2014 [23]. Instead
of payment, the net amount receivables from the electricity
supplier is $0.36. Peak demand is reduced from 6.78kW to
6.34kW showing a reduction of 6.4%. The reduction in peak
demand is due to the reason that peak is occurring at the tail
end of solar generation time.

FIGURE 15. Net load demand from the grid and PV export for minimizing
energy cost in fixed time range.

E. APPLIANCES WITH MIXED TIME RANGE
WITH PV PANEL
Next, we optimize the scheduling of appliances on the basis
of minimizing energy cost subject to the same constraints
given in Table 6 and including additional constraint that the
load at any time be always less than or equal to 5.5 kW
with 3 kW PV panels. The scheduling of appliances comes
to be the same as the scenario discussed in case B, but final
demand curves are totally different because of the effect
power supply by PV panels. There is a mix of import and
export of electric power from and to national grid. Fig. 16
shows the demand of appliances and supply of power from
PV panels. The flexible loads have shifted to the low tar-
iff portion of TOU curve. Fig. 17 shows the net flow of
load. The upper portion of the graph shows import from the
national grid and lower part of the graph shows export to
the national grid. Other parameters are shown in Table 8. The
results show that the amount of energy and total electricity
cost are the same as in case B. But if we take the effect
of PV panel generation, the net import from national grid
decreased from 48.45kWh to 35.54kWh. Therefore, the cost
of energy decreased from $4.46 to $2.84 based on TOU tariff.
The HAN simultaneously exported −10.20kWh to national
grid. The expected sales proceed from the export of energy
is $4.04 based on FIT $0.396/kWh. Instead of payment, the
net amount receivable from the electricity supplier is $1.20.
The net cost of energy is −$1.20 as against $4.46, showing
energy cost reduction of 126.9%. Peak demand remained the
same at 5.5kW due to the constraint that peak load at any time
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FIGURE 16. Load pattern of appliances and PV generation for minimizing
cost in mixed time range.

FIGURE 17. The net load demand from the grid and PV export for
minimizing energy cost in mixed time range.

must not go above 5.5kW. The SSOD in case two has the low-
est value as the optimization allows to level the demand curve.
In cases C and D, it is higher as the effect of PV panel causes
the demand to decrease between slots 10 and 45 in case C and
between slots 10 and 50 in case D. As this demand is reduced
over a larger range in case D, the SSOD is larger.

V. CONCLUSION
In this paper, we formulated the appliance scheduling
problem in home area networks as a problem consisting of
two objectives along with constraints. The first objective
deals with the lowering of electricity cost and the second
objective deals with the minimizing of maximum peak load.
The problem for appliance scheduling was shown to be a
mixed integer programming with a binary decision variable
for switching an appliance ON and OFF, thus making our
optimization problem type a non-convex. We used seven
appliances of different shiftable types of load and one micro-
grid i.e., PV panel. We utilized branch-and-bound algorithm
to solve our problem. Simulation results showed the effec-
tiveness of our proposed solution in lowering the electricity
cost and peak load. We further showed that the addition of

PV panel enabled lowering of cost and export of electricity to
the main grid.
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