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Abstract—In this paper, we consider a multichannel cognitive
radio network, where cooperative secondary users have hetero-
geneous sensing ability in terms of their sensing accuracy. We
employ a group-based cooperative spectrum sensing (CSS) scheme
in which cooperating secondary users are grouped such that dif-
ferent groups are responsible for sensing different channels. In
this group-based CSS scheme, channels sharing the same coop-
erating users are scheduled to sense in different sensing rounds.
In this work, we propose adaptively assigning the heterogeneous
cooperating secondary users to different groups to maximize
the throughput efficiency while maintaining a predefined sens-
ing accuracy. To this end, we analytically derive a closed-form
expression for the throughput efficiency in terms of the aver-
age opportunistic throughput and average sensing overhead. We
also formulate the throughput efficiency maximization problem
for heterogeneous secondary users as a nonlinear binary pro-
gramming problem, which is computationally intractable. We then
propose three efficient adaptive assignment heuristics that per-
form the assignment of users to groups and the assignment of those
groups to the sensing rounds such that the throughput efficiency
is maximized. Simulation results demonstrate that our proposed
assignment heuristics can achieve near optimal performance with
low computational complexity and can also improve the through-
put efficiency significantly compared to the existing nonadaptive
assignment and sequential CSS schemes.

Index Terms—Cognitive Radio, Cooperative Spectrum Sensing
(CSS), Sensing Accuracy, Sensing Overhead.

I. INTRODUCTION

C OGNITIVE radio (CR) technology offers a possible solu-
tion to improve utilization efficiency of the existing radio

spectrum. In a cognitive radio network, secondary users (SUs),
equipped with cognitive radios, access the wireless spectrum
opportunistically without interfering with the licensed primary
users. To reliably identify the vacant licensed bands, some
methods that SUs can employ are: geolocation combined with
access to database, beacons, spectrum sensing or a combination
of any of those methods [1], [2]. With the geolocation method,
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primary users register the relevant data such as their location
and transmit power as well as expected duration of usage at a
centralized database. SUs then have to access this database to
determine the availability of vacant licensed bands at their loca-
tion. With the beacon method, SUs only transmit if they receive
a control signal (beacon) identifying vacant channels within
their service areas. Without reception of this control signal, no
transmissions are permitted by SUs. With the aforementioned
methods, secondary devices will need additional connectivity
in a different band in order to be able to access the database [1]
or a dedicated standardized channel will be needed to broad-
cast the beacons [2]. With the spectrum sensing approach, SUs
autonomously detect the presence of the primary signals and
only use the channels that are not used by the primary users.
In this paper, we consider that SUs employ spectrum sens-
ing to determine vacant licensed frequency bands and restrict
their secondary transmissions to those empty bands. The energy
detection approach is mostly used in spectrum sensing since
it has low computational and implementation complexities and
prior knowledge of the primary users’ signal is not needed [3].

The unreliability in individual secondary user’s sensing
results gives rise to sensing errors which affect the sens-
ing accuracy. Spectrum sensing performance can be improved
using network cooperation where SUs share their spectrum
sensing measurements [4]. When each SU has only one
transceiver, it is difficult for SUs to transmit their data and
sense at the same time. Due to this hardware limitation, SUs
employ a periodic sensing-transmission structure in which the
sensing and transmission are performed periodically in separate
periods [5]. An alternative to the periodic sensing-transmission
structure is to take advantage of dedicated sensors that perform
cooperative spectrum sensing and report decision to SUs as a
service. However, energy efficiency is a critical issue in sensor-
aided CR networks. In [6], the authors proposed a cooperative
schedule of each sensor node’s on/off time and an optimal
scheduling order to extend the network lifetime and minimize
the node switch frequency.

In centralized cooperative spectrum sensing (CSS), SUs send
their sensing information to a centralized unit, called a fusion
center, for making a combined decision. In practice, when an
SU transmits the local decision to the fusion center, errors
may occur over the reporting channel [7]. In [8], the authors
proposed an efficient data fusion technique combining power
control and phase shifting techniques to enhance the detection
performance of CSS based on OR fusion rule. For the case
of multiple input multiple output reporting channels, where
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the fusion center is equipped with multiple antennas, it was
shown in [9] that the impact of orthogonal transmissions among
SUs on the reporting channel is significant in the case of
non-cooperative communication, while it becomes negligible in
the case of cooperative communication considering decode and
forward protocol.

In sequential CSS, all the cooperating SUs sense an iden-
tical channel in each sensing period and channels are sensed
one by one sequentially. This CSS scheme exploits the mul-
tiuser diversity leading to improved sensing accuracy. In [10],
it was proven that, for sequential CSS, the optimal sensing
order that maximizes the system throughput can be achieved
by sorting the channels in descending order of the ratio of the
achievable throughput on the channel to the sensing time. In
[11], a sensing-period optimization mechanism and an optimal
channel-sequencing algorithm were developed to maximize the
discovery of spectrum access opportunities and minimize the
delay in discovering an available channel when all SUs partic-
ipate in sensing a channel simultaneously. In [12], the authors
studied the CR technology from a cyber physical system (CPS)
perspective focusing on actively applying spectrum sensing to
improve communication reliability and state estimation perfor-
mance in CPS for the single and multiple licensed channels
cases. For the case of multichannel sensing, sequential CSS was
applied in which SUs only sense a subset of all the channels in
each sensing round.

In addition to the sensing accuracy, the throughput effi-
ciency, which can be represented by the metrics of sensing
overhead and opportunistic secondary throughput, has a signifi-
cant impact on the performance of spectrum sensing. However,
there is a fundamental trade-off between sensing accuracy
and throughput efficiency in spectrum sensing. To increase
the cooperation gain (i.e., sensing accuracy), more cooperat-
ing SUs should perform the sensing. However, using more
cooperating users will lead to an increase in the amount of
overhead traffic in the secondary network [13] which decreases
the throughput efficiency. In sequential CSS, only one channel
could be sensed by the cooperating SUs during each sensing
period which leads to a delay in the discovery of available
channels and consequently, a degradation in the throughput
efficiency.

In [14], two different channel sensing policies, the random
sensing policy and the negotiation-based sensing policy, were
proposed to discover the available channels. In both policies,
different users are allowed to sense different channels, that are
selected either randomly or through negotiation, which enables
SUs to identify and utilize the maximum number of vacant
channels. The authors assumed that each SU is equipped with
two transceivers. One transceiver is tuned to the dedicated
control channel, and another transceiver is used to periodi-
cally sense and dynamically use the identified unused channels.
The authors in [15] proposed full parallel cooperative sens-
ing, where each user senses a distinct channel, with the aim
of discovering multiple spectrum opportunities in a single sens-
ing period. To maximize the achievable throughput, the authors
optimized the number of sensing SUs and adaptively changed
the stopping threshold in searching for available channels by
considering the wireless channel dynamics. In [16], the authors
proposed a group-based CSS scheme in which the cooperative

SUs are divided into several groups and each group senses
a different channel during a sensing period while SUs in the
same group perform the joint detection on the targeted channel.
The sensing process will not stop unless an available channel
is discovered. Assuming that all SUs have equal probabilities
of detection and false alarm, they formulated the achievable
throughput maximization problem to determine the number of
groups and number of users in each group in time varying
channels.

It was shown in [16] that by varying the number of groups
and the number of cooperative SUs in each group, the trade-
off between the sensing accuracy and the sensing efficiency,
which was defined in terms of the transmission opportunities
discovered by SUs and the sensing overhead due to coopera-
tion, could be adjusted. However, similar to most existing work
on CSS, it was assumed that all SUs have the same energy
detection threshold and identical average signal-to-noise ratio
(SNR) to the primary user [17]. In reality, however, the aver-
age SNR will vary since SUs are at different distances from the
primary user. Also, the cost of using multiple sensing rounds
to find the desired channel on the performance of the group-
based sensing scheme was not considered in [16]. In this work,
we design novel adaptive user-group assignment algorithms for
group-based CSS to achieve a trade-off between the through-
put efficiency and sensing accuracy. In contrast to the work
in [16], we consider that the cooperating SUs have heteroge-
neous sensing ability in terms of the sensing accuracy which
introduces new challenges to the group-based CSS. We ana-
lyze the scenario when channel state information is available
and SUs can adapt their transmission rate according to the
channel quality. In our prior work [18], we considered an adap-
tive grouping scheme for CSS in the absence of channel state
information.

The contributions of this work can be summarized as follows:
• We analytically derive closed form expressions for the

average opportunistic throughput and average sensing
overhead for the group-based sensing scheme over addi-
tive white Gaussian noise (AWGN) channels when SUs
have heterogeneous sensing ability and adaptive transmis-
sion rate. We incorporate in our analysis the cost of using
multiple sensing rounds to find a vacant channel.
• We formulate the throughput efficiency maximization

problem for non-identical SUs as a non-linear binary
programming problem which is generally NP hard.
• We propose three efficient heuristic assignment algo-

rithms to solve the formulated optimization problem in
which the non-identical SUs are adaptively assigned to
groups based on their probabilities of detection.
• Using extensive simulations, we show that our proposed

algorithms can achieve comparable performance to the
optimal solution with much lower computational com-
plexity and can outperform the existing non-adaptive
grouping and sequential sensing schemes.
• We examine the effect of different parameters such as

the number of groups, the number of SUs, the sensing
duration and imperfect reporting channel conditions on
the performance of the three proposed algorithms as well
as the the existing non-adaptive grouping and sequential
sensing schemes.
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The rest of the paper is organized as follows. We present
our system model in Section II. In Section III, we describe
the group-based cooperative sensing scheme and formulate
our throughput efficiency maximization problem. We present
our proposed adaptive user-group assignment algorithms and
analyze their complexity in Section IV. We evaluate the per-
formance of our proposed assignment algorithms in Section V.
We discuss some related issues in Section VI and conclude the
paper in Section VII.

II. SYSTEM MODEL

In this paper, we consider a cognitive radio network with
K SUs and L licensed channels. We assume that all the con-
sidered SUs utilize the licensed channels used by the same
set of primary users. Therefore, the licensed channel avail-
ability information sensed by each SU is consistent among all
SUs [19].

A. Primary User Channel Usage Model

We consider the alternating ON/OFF model for the primary
user channel usage pattern as studies have shown that it approx-
imates the spectrum usage pattern at public safety bands [20].
In this model, each channel alternates between two modes: ON
mode, in which the channel is occupied by a primary user and
OFF mode, in which the channel is idle. The SUs can utilize the
OFF period of the primary user channel to transmit their own
data. We consider the operation of SUs on a frame by frame
basis. Each frame duration, T , consists of a sensing period, Ts ,
and a transmission period, Tt , for data transmission in case the
primary user is absent. During data transmission within a frame,
if the transmission time, Tt , is relatively short, it is reasonable to
assume that the spectrum state does not change during Tt [15].

B. Discrete Rate Adaptive Modulation

To utilize the time-varying feature of the channels, an SU
can adapt its transmission rate according to the channel quality
using adaptive modulation. In this work, we consider secondary
user pairs with low mobility; therefore, the channel gain of each
transmission link can be estimated accurately via pilot sym-
bols or training sequences [21]. Assuming the channel is idle,
using the background noise and transmit power, the achievable
transmission rate of a secondary user pair over this channel can
be determined based on the physical layer model and param-
eters [22]. According to Shannon theory, the channel rate and
the received SNR have a one-to-one mapping relationship, i.e.,
Rm = W log2(1+ SNRm), where W refers to the channel band-
width. In adaptive modulation with continuous rate adaptation,
the set of signal constellations is unrestricted. In this work, we
consider the more practical scenario where only a discrete finite
set of M constellations is available [23]. For the discrete rate
case, the rate region boundaries {SNRm}Mm=1 define the range
of SNR over which the different constellations are transmitted.
More specifically, for each channel, M − 1 thresholds divide
the SNR range (0,∞) into M regions and assigns a corre-
sponding achievable rate Rm to each region [SNRm, SNRm+1).

Therefore, when the SNR falls within a given region, the
associated signal is transmitted with the corresponding data
rate.

C. Energy Detection

Considering that there is no information exchange between
the primary and SUs, each SU needs to perform spectrum sens-
ing non-cooperatively. We employ the computationally efficient
and widely used energy detection technique [24] for spectrum
sensing. Energy detection requires no information about the
primary user’s signal which is more practical. In the energy
detection model, the problem of detecting the presence of pri-
mary users is equivalent to distinguishing between the two
following hypotheses [3],

xk(n) =
{

vk(n), H0

hks(n)+ vk(n), H1
(1)

where xk(n) is the received signal of the kth secondary user
at the nth time instant, hk is the kth user channel gain which
is assumed to be constant during the detection interval. The
primary user’s transmitted signal, s(n), is an independent iden-
tically distributed (i.i.d.) random process with zero mean and
variance σ 2

s and is assumed to be a binary phase-shift key-
ing signal. The noise, vk(n), is a real-valued Gaussian variable
with zero mean and variance σ 2

v . Without loss of generality,
s(n) and vk(n) are assumed to be independent. The goal of the
spectrum sensing is to decide between two hypotheses, H0 and
H1, the hypothesis that the primary user is absent and present,
respectively.

The test statistics for the energy detector for the kth user, Yk ,
is computed as the sum of the received signal energy over an
interval of N = Ts fs samples, where fs is the sampling rate,
and is given by [17]:

Yk =
N∑

n=1

|xk(n)|2. (2)

For a large number of samples, N (N ≥ 10 [21]), using the
central limit theorem [25], the distribution of the test statis-
tics, Yk , can be approximated by a Gaussian distribution with
mean [17]

μk =
{

Nσv
2, H0

N
( |hk |2σs

2

σv
2 + 1

)
σv

2, H1
(3)

and variance

σ 2
k =

{
2Nσ 4

v , H0

2N
(

2|hk |2σs
2

σv
2 + 1

)
σv

4, H1
(4)

We assume that the channels between the primary transmit-
ter and secondary receivers change slowly such that they can be
assumed to be constant during each operation period of inter-
est. The noise variance, σ 2

v , can be estimated by measuring the
power level of a channel which is known to be idle and the chan-
nel gain, hk , can also be obtained a priori when the primary
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Fig. 1. Illustration of the group-based cooperative sensing scheme.

transmitter is known for sure to be active [26]. This a priori
information about the channel condition is attainable since pilot
signals are transmitted periodically in the primary system for
this specific purpose.

In this paper, we consider SUs with heterogeneous sens-
ing abilities that are represented by different probabilities of
detection and false alarms, pd,k and p f,k , that are, respectively,
given by

pd,k = P(Yk > γk |H1) = Q

(
γk − N (σ 2

v + |hk |2σ 2
s )√

2N (σ 2
v + 2|hk |2σ 2

s )σ 2
v

)
,

(5)
and

p f,k = P(Yk > γk |H0) = Q

(
γk − Nσ 2

v√
2Nσ 4

v

)
. (6)

where γk is the decision threshold for the kth secondary user.

III. GROUP-BASED COOPERATIVE SPECTRUM SENSING

Suppose a secondary user, k′, wants to find an idle chan-
nel to initiate data transmission. To find an idle channel, SUs
will cooperatively sense the licensed channels using the group-
based CSS scheme. In this proposed sensing scheme, the
cooperative SUs are grouped into several groups and each group
senses a different channel during a sensing period. SUs in the
same group cooperate together to sense the targeted channel
using energy detection. Cooperative SUs, with heterogeneous
sensing abilities represented by non-identical probabilities of
detection and false alarm, will be adaptively assigned to groups
to achieve a trade-off between the throughput efficiency and
the sensing accuracy. Groups sharing the same cooperating SUs
will perform sensing in different sensing rounds. An illustrative
example of the proposed adaptive group-based CSS scheme is
shown in Figure 1.

A. Problem Formulation

In this work, we define the total number of groups to be equal
to the number of licensed channels, i.e., |G| = L , where G =

{g1, · · · , g|G|} is the set of all groups and |G| is the cardinality
of set G. The ”group” in this work refers to a set of cooper-
ating SUs sensing a certain channel from the set of licensed
channels. According to the above definition, each group, gi (i =
1, · · · , |G|), will sense a distinct channel such that, for exam-
ple, sensing by group 1 is equivalent to sensing channel 1 and
sensing by group 2 is equivalent to sensing channel 2 and so on.
However, the number of groups used in each sensing round (the
number of licensed channels that can be sensed in each sens-
ing round) will differ based on how the cooperating SUs are
assigned to the different groups. After each sensing period, the
sensing results are sent back to the fusion center that makes the
final decision about the occupancy of a certain channel by fus-
ing the decisions made by the cooperating SUs in each group.
The choice of the fusion scheme will affect the achievable
throughput of the cognitive radio system [27] but it will not alter
the conceptual way the user-group and group-sensing round
assignments are performed which is the main objective of this
work. In order to minimize the communication overhead, we
consider that each secondary user, k, sends a single one-bit hard
decision, dk , to the fusion center on the absence or presence of
the primary signal. One of the simplest suboptimal data fusion
strategies is the counting rule in which the fusion center counts
the number of secondary users’ decisions which are in favor of
the hypothesis H1. In the case when SUs have heterogeneous
sensing ability, the counting rule reduces the required system
knowledge and complexity and it has been shown in [28] that
the counting rule provides remarkable robustness properties in
such scenario. Using the counting rule, the fusion center makes
the final global decision, d0, as follows:

d0 =
{

Decide H1, if
∑K

k=1 dk ≥ n′

Decide H0, if
∑K

k=1 dk < n′
(7)

where n′ represents the minimum number of users that needs
to decide in favor of the presence of a primary user’s signal
in order for the fusion center to decide globally that a primary
user’s signal is present.

If no idle channel is found in the first sensing round, more
sensing rounds are performed until an idle channel is discovered
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or all the available L channels are sensed. Therefore, the total
number of sensing rounds, Q, is less than or equal to the num-
ber of channels to be sensed (this is equal to the total number
of groups, |G|). In the worst case, all the cooperating SUs are
assigned to each group to sense each channel in a separate sens-
ing round. This results in the total number of sensing rounds Q
being equal to the total number of groups, |G| (i.e., sequential
CSS). When an idle channel is discovered, the SU that reserved
the channel can access the discovered channel and transmit its
data. The average transmission time for an SU using an idle
channel is equal to the average duration of the channel idle time.

Let R = {R1, R2, · · · , RM } represent the achievable chan-
nel rate vector of length M where region m corresponds to an
achievable rate Rm and m = 1, · · · , M . Therefore, each sec-
ondary transmitter can select a rate according to its SNR on the
channel [29]. Since the total number of groups, |G|, is equal
to the number of licensed channels, L , and each group, gi , is
assigned to sense a distinct channel, l, in the analysis that fol-
lows, sensing by group gi is equivalent to sensing channel l.
If channel l (sensed by group gi ) is discovered using q sens-
ing rounds, the achievable throughput of the secondary user
k′ that uses this channel for secondary transmission during the
transmission time, Tt , is given by

C(q) = Ri,k′
Tt

qTs + Tt
, (8)

where Ts is the duration of the sensing period in each frame
and the rate, Ri,k′ , is the channel rate achievable on the channel
sensed by group gi for user k′ when the sensed channel is free
and is chosen for transmission and Ri,k′ ∈ R.

Therefore, we can express the average opportunistic through-
put in each channel, F , by,

F = E[C(q)]

=
Q∑

q=1

C(q)Pq(g(i))

=
Q∑

q=1

Pq(gi )Ri,k′
Tt

qTs + Tt
, (9)

where E[.] is the expectation operator, q is the index of the
sensing round and Q represents the total number of sensing
rounds needed to sense the licensed channels until an idle
channel is found where 1 ≤ Q ≤ |G|. The term Pq(gi ) is the
probability that at least one group, gi , was successful in discov-
ering an idle channel in the qth sensing round which we will
derive later in this section. For a given Ts and Tt , the average
opportunistic throughput will decrease as the delay in finding a
vacant channel, which is represented by the number of sensing
rounds, increases.

Since SUs use a periodic sensing-transmission structure as
mentioned earlier, they do not sense and transmit their data
at the same time. Therefore, there will be a throughput cost
incurred as a result of the cooperative sensing which we refer
to in this paper as sensing overhead. The sensing overhead will
depend on the number of cooperating SUs and the rates of
the channels that they were using for transmission. We define

the average sensing overhead incurred by the group-based CSS
scheme, O , as

O =
Q∑

q=1

Pq(gi )

q∑
h=1

∑
gi∈G(h)

∑
k∈gi

Ri,k
Ts

Tt
, (10)

where G(h) = {gi |1 ≤ i ≤ |G|} is the set of groups that perform
sensing in the hth sensing round and Ri,k is the rate with which
the cooperating user k was transmitting on its selected channel
and Ri,k ∈ R. If the cooperating user was not transmitting, we
set Ri,k = 0.

Let Ps(gi ) represent the probability that a channel is success-
fully discovered by group gi . Then, we have

Ps(gi ) = (1− PF (gi ))PI , (11)

where PF (gi ) is the probability of false alarm of the final deci-
sion by the fusion center on the channel sensed by group gi and
PI is the probability of a channel being idle.

Due to non-identical probabilities of false alarm for SUs and
the variable number of SUs in each sensing group, the probabil-
ity, Ps(gi ), will be different for different groups. Therefore, the
probability that at least one channel is discovered by the adap-
tive group-based sensing scheme in the qth sensing round, pq ,
is modelled by Poisson binomial distribution which describes
this probability of obtaining at least one success in |G(q)| non-
identical Bernoulli trials, where |G(q)| is the cardinality of set
G(q), as [30], [31]:

pq =
|G(q)|∑
x=1

∑
J|G(q)|∈A(x)

|G(q)|∏
c=1

(Ps(uc,q)) jc (1− Ps(uc,q))1− jc

(12)

where J|G(q)| = ( j1, · · · , j|G(q)|) is a vector of length |G(q)|
and A(x) is a set of vectors where all elements are either 0
or 1 and the sum of the elements is equal to x , i.e., Y =
(y1, · · · , yb) ∈ Ax if yr ∈ {0, 1},∀1 ≤ r ≤ b and

∑b
r=1 yr =

x . The vector U q
|G(q)| = (u1,q , · · · , u|G(q)|,q) is a vector of

length |G(q)| and uc,q ∈ G(q) such that 1 ≤ c ≤ |G(q)| and
uc,q �= ud,q , ∀q, c, d, c �= d. The probability that channel l
is successfully discovered by group uc,q , Ps(uc,q), is given
by (11).

We calculate the probability that at least one channel is
discovered after q sensing rounds as

Pq(gi ) = p1

1−∏|G|w=1(1− pw)
, q = 1 (13)

and,

Pq(gi ) = pq
∏q−1

u=1(1− pu)

1−∏|G|w=1(1− pw)
, q = 2, 3, · · · , |G| (14)

where pq is given by (12) for 1 ≤ q ≤ |G|.
Following the decision rule in (7), due to the non-identical

probabilities of false alarm and detection for SUs, the global
probabilities of detection and false alarm are modelled by



KHALID AND ANPALAGAN: ADAPTIVE ASSIGNMENT OF HETEROGENEOUS USERS 237

Poisson binomial distribution of obtaining at least n′ successes
in |Ki | independent non-identical Bernoulli trials, where Ki =
{k ∈ gi |1 ≤ k ≤ K } is the set of users in group gi and |Ki | is
the cardinality of set Ki . Therefore, using the same formula
as in (12), the global probabilities of false alarm and detection
of the final decision on the channel sensed by group gi are,
respectively, given by

PF (gi ) =
|Ki |∑
x=n′

∑
J|Ki |∈A(x)

|Ki |∏
k=1

(pi
f,k)

jk (1− pi
f,k)

1− jk , (15)

and

PD(gi ) =
|Ki |∑
x=n′

∑
J|Ki |∈A(x)

|Ki |∏
k=1

(pi
d,k)

jk (1− pi
d,k)

1− jk , (16)

where pi
f,k and pi

d,k denote the probabilities of false alarm and

detection of the kth user on the channel sensed by group gi ,
respectively, J|Ki | = ( j1, · · · , j|Ki |) is a vector of length |Ki |
and A(x) is a set of vectors where all elements are either 0 or 1
and the sum of the elements is equal to x as defined in (12).

From (5) and (6), the target probability of false alarm for the
channel sensed by group gi , pi

f,k , is related to the probability

of detection, pi
d,k , as follows:

pi
f,k = Q

⎛
⎝
⎛
⎝
√

2|hi
k |2σ 2

s

σ 2
v
+ 1

⎞
⎠ Q−1(pi

d,k)+
√

N

2

|hi
k |2σ 2

s

σ 2
v

⎞
⎠ ,

(17)

where hi
k is the channel gain of the kth user on the channel

sensed by group gi .
Using the adaptive group-based sensing scheme, it is pos-

sible to sense more than one channel at each sensing period.
This possibility can increase the throughput efficiency which
we define as the ratio of the average opportunistic throughput
over the sum of the average opportunistic throughput and the
average sensing overhead. Our objective is to optimally assign
the non-identical cooperating SUs to groups and then assign
those groups to the sensing rounds such that the throughput effi-
ciency is maximized. We define the throughput efficiency, �e f f ,
to be

�e f f = F

F + O
. (18)

To formulate the throughput efficiency maximization prob-
lem, we introduce the user assignment indicator, ξi,k , and the
group assignment indicator, ηi,q , where i , k and q are the
indices of the groups, users and rounds, respectively. The user
assignment indicator ξi,k is equal to 1 if user k is assigned to
group i and ξi,k = 0, otherwise. Similarly, the group assign-
ment indicator ηi,q is equal to 1 if group i is sensing in round
q and ηi,q = 0, otherwise. Therefore, we can express the aver-
age opportunistic throughput and the average sensing overhead
incurred by the adaptive group-based sensing scheme as follows

F =
|G|∑
q=1

Pq(gi )
Tt

qTs + Tt
max

i
(Ri,k′ηi,q), (19)

and

O =
|G|∑
q=1

Pq(gi )

q∑
h=1

|G|∑
i=1

K∑
k=1

ξi,kηi,h Ri,k
Ts

Tt
, (20)

where Pq(gi ) is given by (13) for q = 1 and by (14) for 2 ≤
q ≤ |G|.

We can express the probability that at least one channel is
discovered in the qth sensing round, pq , as

pq =
|G|∑
x=1

∑
J|G|∈A(x)

|G|∏
i=1

(ηi,q) ji (Ps(gi ))
ηi,q ji (1− Ps(gi ))

ηi,q (1− ji ).

(21)

The probability of false alarm for each group is

PF (gi )=
K∑

x=n′

∑
JK∈A(x)

K∏
k=1

(ξi,k)
jk (pi

f,k)
ξi,k jk (1− pi

f,k)
ξi,k (1− jk ).

(22)

Similarly, the probability of detection for each group is

PD(gi ) =
K∑

x=n′

∑
JK∈A(x)

K∏
k=1

(ξi,k)
jk (pi

d,k)
ξi,k jk (1− pi

d,k)
ξi,k (1− jk ).

(23)

We can now formulate the throughput efficiency maximiza-
tion problem as follows:

max
ξi,k ,ηi,q

�e f f (24)

subject to

ξi,k ∈ {0, 1} 1 ≤ i ≤ |G|, 1 ≤ k ≤ K (25)

ηi,q ∈ {0, 1} 1 ≤ i ≤ |G|, 1 ≤ q ≤ |G| (26)
|G|∑
i=1

ξi,kηi,q ≤ 1, 1 ≤ q ≤ |G|, 1 ≤ k ≤ K (27)

|G|∑
q=1

ηi,q ≤ 1, 1 ≤ i ≤ |G| (28)

|ηi,q − η j,q | = min

(
1,

K∑
k=1

ξi,kξ j,k

)
, 1 ≤ i, j, q ≤ |G|, i �= j

(29)

PD(gi ) ≥ PDth, ∀gi ∈ G (30)

Constraints (25) and (26) are to ensure proper values for
the user and group assignment indicators, respectively. Since
each user can sense at most one channel at a time, constraint
(27) restricts the assignment of each user to only one group in
each sensing round. However, to allow for more flexibility in
the assignment, we do not restrict the assignment of the same
user to a different group in another sensing round as shown in
the example in Figure 1. Constraint (28) ensures that, at each
sensing round, any group that did not sense yet will be given
the chance to sense if it meets its sensing requirement. This
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constrain also restricts each group to sense in only one sensing
round to ensure that each channel is sensed at most once during
all sensing rounds. Constraint (29) indicates that the groups that
do not share any users should be assigned to sense in the same
sensing round. This constraint tends to maximize the number of
groups in each sensing round in order to decrease the number of
rounds needed to sense all the available channels which in turn
reduces the delay in finding a vacant channel. Constraint (30)
puts a limit on the probability of detection for each group gi ,
1 ≤ i ≤ |G| to guarantee an adequate level of sensing accuracy.

B. Sensing Duration

In this section, we investigate the effect the sensing duration,
Ts , on the maximum throughput efficiency when the sensing
threshold for user k lies between the mean noise power and
the primary signal power such that σ 2

v ≤ γk ≤ σ 2
v + |hk |2σ 2

s .
This implies that the secondary transmitter can effectively
distinguish between the noise power and the primary sig-
nal power. Therefore, as the sensing duration increases (the
number of samples N increases), the false alarm probability,
p f,k(γk, Ts) decreases monotonically, while at the same time
the detection probability, pd,k(γk, Ts) increases monotonically
[32]. For a certain user-group assignment, according to (22)
and (23), PF (gi , Ts) and PD(gi , Ts) are monotonically increas-
ing in pi

f,k(γk, Ts) and pi
d,k(γk, Ts), respectively. Therefore, if

a certain sensing duration, Ts,0, is able to guarantee an ade-
quate level of sensing accuracy, PD(gi , Ts,0) = PDth , any other
sensing duration, Ts,1, which is greater than Ts,0, is able to sat-
isfy constraint (30) for the same γk and the same user-group
assignment, since PD(gi , Ts,1) > PD(gi , Ts,0).

The throughput efficiency in (18) decreases as the ratio
between the average sensing overhead and the average oppor-
tunistic throughput, O/F , increases which is given by

O

F
= Ts

∑|G|
q=1 Pq(gi )

∑q
h=1

∑|G|
i=1

∑K
k=1 ξi,kηi,h Ri,k

T 2
t
∑|G|

q=1
1

qTs+Tt
Pq(gi ) max

i
(Ri,k′ηi,q)

(31)

Both the average sensing overhead, O , and the average oppor-
tunistic throughput, F , are dependent on the variation of Ts

through the term Ts and the probability Pq(gi ) which is a func-
tion of Ts . The truncated geometric distribution Pq(gi ) in (13)
and (14) has a maximum at q = 1 and decreases monotonically
with increasing q for a certain Ts . Note that, the effect of chang-
ing Ts will be most dominant when q = 1 and since the term
Pq(gi ) appears on both the nominator and denominator of (31)
this will in turn diminish the effect of changing Pq(gi ) with
Ts on the throughput efficiency �e f f . Therefore, from (18) and
(31), as Ts increases, for a certain user-group and group-round
assignment, the ratio O/F increases and the throughput effi-
ciency �e f f decreases. Based on the above discussion, in order
to prevent performance degradation in terms of the throughput
efficiency, the secondary network should reduce the sensing
duration to the minimum sensing duration that satisfies the
sensing accuracy constraint. In this work, we generally do not
restrict the number of users assigned to a certain group; there-
fore, we design Ts such that it satisfies the sensing accuracy
constraint for the case of a single user.

C. Imperfect Reporting Channel

In this section, we incorporate the effect of imperfect report-
ing channels between the heterogeneous SUs and the fusion
center in our group-based CSS scheme. We consider that the
secondary users communicate to the fusion center over a dedi-
cated binary symmetric channel (BSC). The BSC model arises
when separation between sensing and communication layers
is performed in the design phase, namely a decode-then-fuse
approach [33]. Reporting channel errors are assumed to be i.i.d
and we denote the probability of error of sending the one-bit
decision from the kth user to the fusion center by pe,k . For the
case of binary information, the received probabilities of detec-
tion and false alarm at the fusion center from the kth user are,
respectively, given by:

p f c
d,k = pd,k(1− pe,k)+ (1− pd,k)pe,k, (32)

and,

p f c
f,k = p f,k(1− pe,k)+ (1− p f,k)pe,k . (33)

Therefore, we can express the probability of false alarm for
each group as

PF (gi ) =
K∑

x=n′

∑
JK∈A(x)

K∏
k=1

(ξi,k)
jk (p f ci

f,k )ξi,k jk (1− p f ci
f,k )ξi,k (1− jk ).

(34)

Similarly, we can express the probability of detection for
each group as

PD(gi ) =
K∑

x=n′

∑
JK∈A(x)

K∏
k=1

(ξi,k)
jk (p f ci

d,k )ξi,k jk (1−p f ci
d,k )ξi,k (1− jk).

(35)

where p f ci
f,k and p f ci

d,k denote the probabilities of false alarm and

detection received at the fusion center from the kth user on the
channel sensed by group gi , respectively.

IV. ADAPTIVE ASSIGNMENT ALGORITHMS

The optimization problem in (24)–(30) is a non-linear binary
programming problem. This problem is computationally hard
as it is more general and harder to solve than binary program-
ming which is known to be NP hard [34]. In this section, we
propose three assignment heuristics to solve the problem given
in (24)–(30) with low computational complexity.

In order to achieve our objective of maximizing the through-
put efficiency with a guaranteed sensing accuracy on each
channel, we need to maximize the opportunistic throughput
while minimizing the sensing overhead. Both the opportunistic
throughput and sensing overhead depend on the total number
of sensing rounds needed to discover an idle channel and the
number of cooperating users in each group. In our proposed
group-based CSS scheme, each sensing round has a subset of
channels (all channels have equal probability of being idle, PI )
and the channel subsets in different sensing rounds are sensed
in a sequential manner.
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A. Channel Selection then Best User Assignment (CSBUA)
Algorithm

We first propose a greedy heuristic algorithm with the objec-
tive of assigning the maximum number of groups (channels)
to each sensing round. Each channel is then sensed with the
best subset of the available cooperating users such that the
sensing accuracy is achieved with minimum number of users.
Algorithm 1 shows the pseudo code of the proposed Channel
Selection then Best User Assignment (CSBUA) algorithm. In
CSBUA algorithm, the channels are first sorted in descend-
ing order of the achievable rates of user k′ on those channels.
Therefore, for i < j , Ri,k′ ≥ R j,k′ , ∀i, j . At the start of each
sensing round, the best channel is selected and the user (chosen
from the set of all candidate users for this round) with the best
probability of detection pi

d,k on this channel is assigned to the
channel and removed from the set of all candidate users for this
round. Intuitively, the user with the best detection probability
on a certain channel should necessarily be one of the cooperat-
ing users sensing this channel. Therefore, by assigning available
users with the highest probability of detection to sense each
channel, the sensing accuracy for each channel is increased with
fewer number of users which will in turn decrease the average
sensing overhead. User k can sense only one channel in each
round but can be assigned to sense another channel in a differ-
ent round, i.e., the set of all candidate users is initialized with all
cooperating SUs at the beginning of each sensing round. In the
example shown in Figure 1, SU1 is assigned to sense channel 1
(highest channel rate for k′ in this round), therefore, SU1 cannot
be assigned to sense channel 3 even if it has the best probability
of detection on it. On the other hand, channel 3 must still be
sensed in this round if its sensing requirement can be achieved
using a subset of the unassigned SUs (SU3 and SU5 in this
example).

Once a channel is selected, CSBUA algorithm will assign
users to a group (channel) until the probability of detection
on this channel reaches a certain target value, PDth ; then, this
group is removed from the set of all groups. This group will
then be assigned to this sensing round and so the equivalent
channel will be sensed in this round (following that, the algo-
rithm continues assigning users to the next group in the same
fashion and so on). To maximize the number of groups in each
sensing round, the algorithm will try to place any unassigned
users in the remaining groups. For example, assume M is the
set of cooperating SUs and that CSBUA algorithm assigns the
set of users K1 to group 1 and the set of users K2 to group 2 such
that the sensing requirement (i.e., PDth ) for each of those groups
is achieved. If the remaining unassigned users (i.e., the set of
users M− K1 − K2) cannot meet PDth for group 3, then before
going to the next sensing round, CSBUA algorithm will try to
place those unassigned users in group 4 to meet PDth . As long
as there are unassigned users remaining, the algorithm will con-
tinue in the same manner until PDth is achieved for a group or it
is determined that no more groups can be sensed in this sensing
round. This is possible since each user has a different probabil-
ity of detection for each group, pi

d,k . The rationale behind this
group assignment is that by maximizing the number of groups

Algorithm 1. Algorithm for Channel Selection then Best User
Assignment (CSBUA)

1: G = {g1, g2, . . . , g|G|}
2: V = {1, 2, . . . , |G|}
3: M = {1, 2, . . . , K }
4: q ← 1 /*Initialize the rounds*/
5: Sort the channel rates Rchannel = {R1, R2, . . . , R|G|} in a

descending order
6: for i = 1 to |G| do
7: for k = 1 to K do
8: ξi,k← 0 /*Initialize the user assignment indicators*/
9: end for

10: for q = 1 to |G| do
11: ηi,q ← 0 /*Initialize the group assignment indica-

tors*/
12: end for
13: end for
14: while G �= ∅ & q ≤ |G| do
15: Ḿ ←M

16: for i ∈ V do
17: while Ḿ �= ∅ do
18: k∗ = arg max

∀k∈Ḿ

{pi
d,k |k ∈ Ḿ} /*Choose one user

with maximum pi
d,k for each channel (group)*/

19: ξi,k∗ ← 1 /*Assign user k∗ to group gi */
20: Ḿ ← Ḿ\{k∗} /*Remove user k∗ from the set of

all candidate users Ḿ*/
21: calculate PD(gi ) according to (23) for a given n′
22: if PD(gi ) ≥ PDth then
23: ηi,q ← 1 /*Assign group gi to sense in round

q*/
24: G← G\{gi } /*Remove group gi from the set

of groups G*/
25: V← V \{i} /*Remove index i from the set of

group indices V = {1, 2, . . . , |G|}*/
26: break;
27: end if
28: end while
29: if ηi,q = 0 then
30: for k = 1 to K do
31: if ξi,k = 1 then
32: Ḿ ← Ḿ ∪ {k}
33: end if
34: ξi,k ← 0 /*Initialize the user assignment

indicators for the unassigned groups*/
35: end for
36: end if
37: end for
38: q ← q + 1 /*Go to the next sensing round*/
39: end while

in each round, we will in turn minimize the number of rounds
needed to sense all available channels which will increase the
average opportunistic throughput and accordingly increase the
throughput efficiency.



240 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 1, JANUARY 2016

B. Best User Assignment then Channel Selection (BUACS)
Algorithm

Next, we propose a heuristic algorithm that assigns the best
set of users from all the cooperating users to each group
(channel) such that the sensing accuracy on each group is
achieved with the minimum possible number of users. The
channels are then sensed in a sensing order that maximizes
the average opportunistic throughput. Algorithm 2 shows the
pseudo code of the proposed Best User Assignment then
Channel Selection (BUACS) algorithm. In BUACS algorithm,
for each group (channel) i , the user k (chosen from the set
of all cooperating SUs) with the highest pi

d,k is assigned to
the group. BUACS algorithm then continues assigning more
users in descending order of their probability of detection on
group i until the probability of detection on this channel reaches
a certain target value, PDth . For every other group, BUACS
algorithm assigns the optimal subset of users chosen from the
set of all cooperating users (candidate users set will not be
reduced for each group). The groups, with their assigned opti-
mal user sets, are then sorted in descending order based on a
sorting factor for each group gi , �gi , i = 1, · · · |G|. Later in
this section, we will discuss two different sorting factors in
details.

For each sensing round, after selecting the group, gi , that has
the maximum �gi from the set of unassigned groups, any other
unassigned group g j whose optimal set of users is not a sub-
set of the optimal set of users for the selected group (groups) is
assigned to sense in the same sensing round. All these groups
will then be assigned to this sensing round and removed from
the set of all groups. Following that, the algorithm continues
assigning groups to the next sensing round in the same man-
ner until all groups are assigned. In the example shown in
Figure 1, SU2 is assigned to sense channel 1 and channel 2,
therefore, channel 1 and channel 2 must be sensed in different
sensing rounds. On the other hand, channel 1 and channel 3 are
sensed by different SUs and therefore can be sensed in the same
sensing round.

It is clear from the above discussion that the performance
of the BUACS algorithm will depend on the sorting factor,
�gi , i = 1, · · · |G|. We consider two variants of this algorithm
by using two different sorting factors as follows:

1) BUACS1: This algorithm sorts the channels based on
the achievable rates of user k′ on those channels, i.e., �gi =
Ri,k′ , i = 1, · · · |G|, which is the same sorting factor used in
CSBUA algorithm.

2) BUACS2: This algorithm makes use of the knowledge of
the optimal subset of users for each channel and use a sorting
factor to sort the channels based on the maximum achievable
throughput for each channel if it is sensed by its optimal set
of users, Ri,k′ Ps(gi ), i = 1, · · · |G|, divided by the number of
users in the optimal user set for this channel, |Ki |, i = 1, · · · |G|
i.e., �gi = Ri,k′ Ps (gi )

|Ki | . The rationale behind choosing this sort-
ing factor is that �gi is now proportional to the throughput
efficiency. Therefore, by choosing the channels with the high-
est �gi to be sensed first, whenever possible, the throughput
efficiency can be maximized.

Algorithm 2. Algorithm for Best User Assignment then
Channel Selection (BUACS)

1: Rchannel = {R1, R2, . . . , R|G|}
2: G = {g1, g2, . . . , g|G|}
3: V = {1, 2, . . . , |G|}
4: M = {1, 2, . . . , K }
5: q ← 1 /*Initialize the rounds*/
6: for i = 1 to |G| do
7: for k = 1 to K
8: ξi,k← 0 /*Initialize the user assignment indicators*/
9: end for

10: for q = 1 to |G| do
11: ηi,q← 0 /*Initialize the group assignment indica-

tors*/
12: end for
13: end for
14: for i = 1 to |G| do
15: Ḿ ←M

16: while Ḿ �= ∅ do
17: k∗ = arg max

∀k∈Ḿ

{pi
d,k |k ∈ Ḿ}

18: ξi,k∗ ← 1 /*Assign user k∗ to group gi */
19: Ḿ← Ḿ\{k∗} /*Remove user k∗ from the set of all

candidate users Ḿ*/
20: calculate PD(gi ) according to (23) for a given n′
21: if PD(gi ) ≥ PDth then
22: calculate �(gi )

23: break;
24: end if
25: end while
26: end for
27: while G �= ∅ & q ≤ |G| do
28: α← sorted indices of �gi ,∀i ∈ V /*sort indices of

the groups according to the descending order of the values
of � */

29: ηα(1),q = 1 /*Assign the channel with highest value of
the function � to sense in round q*/

30: if |G| > 1 then
31: for i = 2 to |G| do
32: σ ← 0
33: for j = 1 to i − 1 do
34: for k = 1 to K do
35: σ ← σ + (ξα(i),k · ξα( j),k)

36: end for
37: end for
38: if σ = 0 then
39: ηi,q = 1
40: G ← G\{gα(i)} /*Remove group gi from the

set of groups G*/
41: end if
42: end for
43: end if
44: G ← G\{gα(1)} /*Remove the first assigned group from

the set of groups G*/
45: q ← q + 1 /*Go to the next sensing round*/
46: end while
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C. Complexity Analysis

The main motivation of the proposed suboptimal algorithms
is their reduced computational complexity. The exhaustive
search which enumerates all possible solutions has an expo-
nential time complexity of O(2(K |G|+|G|2)) which is very high,
where O(.) is the big O notation. In this section, we quantify
the time complexity of our heuristic algorithms. For Algorithm
1, namely CSBUA, we first sort the channels according to their
rates, as shown in line 5, which requires time (|G| log(|G|)).
For each group, we need to sort the users according to their
maximum probability of detection for this group which requires
time (K log(K )) in line 18. Since we will have to return to
line 17 until the condition on the probability of detection of
the group in line 22 is satisfied, therefore, the complexity of the
internal while-loop in lines 17-28 is (K log(K )+ K ). In the
first sensing round, q = 1, the internal while-loop (lines 17-28)
is repeated for |G| groups. In each subsequent sensing round,
this internal while-loop will be repeated for all the remain-
ing unassigned groups. In the worst case, the complexity will
be the sum of the finite series [|G|(K log(K )+ K )+ (|G| −
1)(K log(K )+ K )+ (|G| − 2)(K log(K )+ K )+ . . .] which
is equal to (

|G|
2 )(|G| + 1)(K log(K )+ K ). Therefore, the com-

plexity of CSBUA algorithm is O(|G|2 K log(K )).
Similarly, for Algorithm 2, namely BUACS, the com-

plexity for the for-loop (lines 14-26) is |G|(K log(K )+ K ).
In the first sensing round, q = 1, the complexity of the
internal while-loop in lines 28-42 is (|G| log(|G|) (chan-
nel indices sorting) +K (|G| − 1)(|G| − 2) (three for-loops
lines 30-41). Following the above analysis for Algorithm 1,
the worst case complexity for the while-loop (lines 27-
46) is (

|G|
2 )(|G| + 1) ((|G| log(|G|)+ K (|G| − 1)(|G| − 2))).

Therefore, the complexity of BUACS algorithm is O(|G|4 K ).
In most practical cases, the computational complexity of
BUACS algorithm will be higher than that of CSBUA algo-
rithm.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
adaptive assignment algorithms. The length of the sensing
period, Ts , is set to 1 ms and the length of frame, T , is 10 ms.
The threshold on the probability of detection, PDth , is set to
0.9 and the probability that the primary user is absent PI

is set to 0.3. The probability of detection for each user and
channel, pk

d,i , is randomly generated from a uniform distri-
bution between [0.5,1] and the number of samples N = 100.
For each pk

d,i , the probability of false alarm pk
f,i is calcu-

lated according to (17). The channel bandwidth is 6 MHz,
the number of transmission modes M = 5 and the rate vector
R = {4.54, 6.05, 7.56, 9.08, 12.10} Mb/s [35]. The results are
obtained by averaging over 1000 simulation runs.

We compare the three proposed assignment algorithms,
CSBUA, BUACS1 and BUACS2, with the non-adaptive group-
ing and sequential CSS schemes. In the non-adaptive grouping
scheme, SUs are randomly assigned to sense the channels,
not based on their probability of detection on each channel,
and the channels are randomly sorted with no specific sorting

Fig. 2. Throughput efficiency versus number of cooperating users for |G| = 2.

order. In the sequential CSS scheme, all SUs sense the same
channel in each sensing period with the aim of improving the
sensing accuracy of the primary user’s activity. Therefore, in
sequential sensing, we assign all the users to each group, i.e.,∑K

k=1 ξi,k = K ∀i and assign only one group to each sensing
round.

In Figure 2, we compare the throughput efficiency of
CSBUA, BUACS1, BUACS2, non-adaptive grouping (NA) and
sequential sensing (Seq) algorithms with the optimal solution
obtained by the exhaustive search (ES) when |G| = 2, 3 ≤ K ≤
6 and the OR rule is employed by the fusion center (n′ = 1 in
(23)). The main drawback of the exhaustive search is that its
complexity increases exponentially with the number of SUs,
K , and number of groups, |G|. Due to this high time com-
plexity, an exhaustive search could only be used in a domain
where K and |G| are small. We observe from the figure that the
throughput efficiency of CSBUA, BUACS1 and BUACS2 algo-
rithms are close to the optimal throughput efficiency obtained
through exhaustive search with a relative difference bounded
by 4.7%, 2.9% and 2.6%, respectively. On the other hand, the
relative difference between the exhaustive search and the non-
adaptive scheme is bounded by 13%. BUACS2 algorithm, that
uses a sensing factor proportional to the throughput efficiency,
gives better performance (closer to optimal value) for all the
considered values of K compared to CSBUA and BUACS1
algorithms. However, BUACS2 algorithm has higher computa-
tional complexity compared to CSBUA algorithm as discussed
in Section IV-C. We also observe from the figure that all
the proposed assignment algorithms outperform both the non-
adaptive grouping and sequential sensing algorithms for all the
considered values of K .

Next, we investigate the impact of different counting rules on
our proposed adaptive assignment algorithms. In Figure 3, we
compare the average global probabilities of detection and false
alarm for group i (averaged over 1000 simulation runs) when
different number of users is assigned to the group for the OR
and Majority Voting (MV) fusion rules. The global probabili-
ties of false alarm and detection for group i are obtained from
(15) and (16), respectively, where n′ = 1 for the OR rule and
n′ =  |Ki |

2 � for the MV rule with |Ki | denoting the number of
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Fig. 3. Average probability of detection for group i versus the number of users
assigned to group i for the OR and MV fusion rules.

Fig. 4. Throughput efficiency versus number of cooperating users for |G| = 4.

users in group i and x� is the smallest integer greater than x .
Since CSBUA, BUACS1 and BUACS2 algorithms assign users
to a group in descending order of their probability of detec-
tion on this group, we observe from the figure that, using the
OR fusion rule, we can achieve higher probability of detec-
tion compared to the MV rule for the same number of users
in a group on the expense of higher probability of false alarm.
The figure also shows that in order to achieve the desired sens-
ing accuracy, PDth , for the group using MV rule, we need to
considerably increase the number of cooperating users in this
group (provided sufficient number of users K are available for
cooperation) compared to the OR rule (|Ki | = 4 for OR rule
compared to |Ki | > 8 for MV rule) which will in turn result
in more number of sensing rounds and higher average sensing
overhead. Therefore, for the rest of this section, we consider
that the fusion center uses the OR fusion rule to combine the
decisions from the set of cooperating SUs in each group.

In Figure 4, we plot the throughput efficiency versus the
number of cooperating users K with |G|=4 for the proposed
assignment algorithms, non-adaptive grouping and sequential
sensing schemes. We observe from the figure that BUACS2
algorithm consistently provides the best performance, in terms

Fig. 5. Average opportunistic throughput versus number of cooperating users
for |G| = 4.

Fig. 6. Average sensing overhead versus number of cooperating users
for |G|=4.

of throughput efficiency, among all considered algorithms.
We also observe that the throughput efficiency for CSBUA,
BUACS1 and BUACS2 algorithms increase as the number of
users increases with respect to the number of groups (chan-
nels) since this provides more degrees of freedom in the
user assignment, which results in better performance, in terms
of the average opportunistic throughput and average sensing
overhead, of the proposed algorithms compared to the non-
adaptive and sequential schemes. For the sequential scheme,
the throughput efficiency decreases as the number of users
increases since the sequential scheme uses all the users to sense
a single channel which largely increases the average sensing
overhead and accordingly degrades the throughput efficiency.
Since the throughput efficiency depends on both the average
opportunistic throughput and average sensing overhead, we can
see from the figure that the change in the throughput effi-
ciency of the non-adaptive scheme as the number of users
increases will depend on the change in the average opportunis-
tic throughput compared to the change in the average sensing
overhead.

Figures 5 and 6 show the average opportunistic throughput
and average sensing overhead versus the number of cooperating
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Fig. 7. Probability mass function of the number of sensing rounds for the
proposed and non-adaptive schemes for |G| = 4 and K = 4.

Fig. 8. Probability mass function of the number of sensing rounds for the
proposed and non-adaptive schemes for |G| = 4 and K = 8.

users with |G| = 4, respectively. We observe that, for CSBUA,
BUACS1 and BUACS2 algorithms, when the number of users
compared to the number of channels is small (K < 8 in the
considered case), the average opportunistic throughput and the
average sensing overhead increase with the number of users.
However, when K ≥ 8, there is a slight increase in the average
opportunistic throughput while the average sensing overhead
starts to decrease as more users are available. The availability
of more users allows for the best users (with higher probabil-
ity of detection for the channels) to be chosen for cooperation.
Therefore, on average, less number of rounds are needed to
discover the available channel. For the non-adaptive grouping
scheme, increasing the number of users increases the aver-
age opportunistic throughput. However, increasing the number
of users will also increase the sensing overhead as the users
are randomly assigned. Therefore, on average, more sensing
rounds may be needed to discover the available channel as
compared to the proposed assignment algorithms. We also
notice that CSBUA algorithm provides the highest opportunis-
tic throughput compared to the other considered algorithms
since the algorithm tends to minimize the number of sensing

Fig. 9. Throughput efficiency versus number of groups for K = 2|G|.

rounds needed to sense the available channels as explained
in Section IV-A. On the other hand, BUACS2 algorithm pro-
vides the lowest sensing overhead since the algorithm tends to
minimize the number of users needed to achieve the desired
sensing accuracy as explained in Section IV-B. To illustrate
those facts, in Figures 7 and 8, we plot the probability mass
function of the number of sensing rounds needed by each of the
proposed assignment algorithms and the non-adaptive grouping
algorithm for K = 4 and K = 8, respectively. We compare the
average number of sensing rounds needed by each algorithm to
sense the available channels and show the effect of changing the
number of users K on the average number of sensing rounds for
the different algorithms as explained above. For the sequential
scheme, the number of sensing rounds is fixed and is equal to
the number of available channels (groups).

Figure 9 shows the comparison of throughput efficiency
for CSBUA, BUACS1, BUACS2, non-adaptive grouping and
sequential sensing algorithms with different number of groups
when fixing the number of users to twice the number of
available groups. The comparison indicates that the proposed
CSBUA, BUACS1 and BUACS2 algorithms are consistently
able to achieve higher throughput efficiency compared to the
non-adaptive grouping and sequential sensing schemes with
BUACS2 algorithm providing the best performance among all
the considered algorithms for all the considered cases of K
and |G|. We also notice that, when the number of groups and
users increase, the relative difference between the proposed
assignment algorithms and the non-adaptive grouping scheme
also increases. This is because by increasing the number of
group and users, we have more degrees of freedom in assign-
ing the users to the groups which is better exploited by the
adaptive assignment algorithms. For |G| = 6 and K = 12, the
relative difference between BUACS2 algorithm and the non-
adaptive grouping scheme is approximately 28.5% compared
to a relative difference of approximately 4.5% when |G| = 2
and K = 4. For |G| = 6 and K = 12, the relative difference
between BUACS2 algorithm and the sequential sensing scheme
is approximately 78%.

To evaluate the impact of the sensing duration, Ts , in
Figure 10, we plot the throughput efficiency versus the number
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Fig. 10. Throughput efficiency for BUACS2 algorithm versus number of
cooperating users with different Ts for |G| = 4.

of cooperating users K for BUACS2 algorithm with different
values of the sensing duration, Ts , when |G| = 4 (similar results
are obtained for CSBUA and BUACS1 algorithms which are
omitted due to space limitation). We can see from the figure that
as the sensing duration increases, for fixed number of users, the
throughput efficiency decreases which agrees with the analysis
in Section III-B. Therefore, the maximum throughput efficiency
will be obtained when Ts is set to the minimum sensing duration
that satisfies the sensing accuracy constraint in (30).

Next, we evaluate the effect of imperfect reporting channel
conditions on the performance of CSBUA, BUACS1, BUACS2,
non-adaptive grouping and sequential sensing algorithms. To
this end, in Figure 11, we compare the throughput efficiency
of all considered schemes for different values of the probabil-
ity of bit error pe for |G| = 4 and K = 6. The figure shows
that CSBUA, BUACS1 and BUACS2 algorithms outperform
the non-adaptive and sequential algorithm, in terms of through-
put efficiency, for all the considered values of pe and that
BUACS2 algorithm provides the best performance among all
the considered algorithms. We also notice that as pe increases,
the throughput efficiency decreases for all the considered algo-
rithms. This decrease in throughput efficiency is due to the
increase in transmission errors which causes the global false
alarm probability in (34) to increase. Therefore, the average
opportunistic throughput for all the considered schemes will
decrease while increasing the average sensing overhead.

VI. DISCUSSION

A. Stopping Strategy

In this work, we considered that sensing will stop when an
idle channel is found. If all the channels are sensed busy, SUs
will need to wait for a short period of time then resume sensing
till finding an idle channel to utilize. Using this stopping strat-
egy, the proposed group-based CSS scheme may incur a large
sensing overhead if the number of sensing rounds needed to find
a vacant channel is large. In our proposed scheme, the sensing
overhead depends on the number of sensing rounds used until a

Fig. 11. Throughput efficiency versus probability of bit error for |G| = 4 and
K = 6.

vacant channel is found which is in general less than the num-
ber of available channels to be sensed. For a certain number of
available channels, the number of sensing rounds (sensing over-
head) decreases as the number of cooperating users increases.
Therefore, the sensing overhead maybe significantly large if
and only if the number of cooperating users is small relative
to the number of channels to be sensed and the probability of
the channels being idle is low. To address this issue, another
stopping strategy may be employed. For example, we can limit
the number of sensing rounds used by the algorithm by plac-
ing an upper bound on the average sensing overhead. In the
proposed algorithms, after each sensing round, we can cal-
culate the expected sensing overhead (it depends on number
and rates of SUs assigned to the this specific round and the
probability of successfully finding an idle channel in this spe-
cific round), when the accumulated overhead over the previous
rounds exceeds the upper bound, sensing is stopped and may be
allowed to resume after a certain wait period.

B. Primary Transmitter Detection Model

While studying the performance of the proposed group-based
cooperative scheme, it has been assumed that a spectrum access
opportunity for secondary users exists when the primary trans-
mitter is inactive. However, secondary users can still share the
spectrum when the primary user is transmitting provided that
the amount of interference generated at the primary receiver is
not harmful. To protect the primary receiver, a guard area can
be defined around each receiver where the secondary transmis-
sion is not permitted. The spectrum sensing problem can then
be viewed as deciding whether or not the secondary transmitter
is within the guard area. In the case where the secondary user
can detect the primary user’s transmitter but can still be allowed
to transmit, the hypotheses may need to be modified in some
reasonable way that accounts for those spatial spectrum oppor-
tunities. The probabilities of detection and false alarm will
need to be computed using this modified formulation. The pro-
posed user-group assignment algorithms in this work depend
on the values of those probabilities and not on their specific
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distributions. This suggests that the proposed algorithms can
still be applied to improve the group-based CSS performance.
However, further performance analysis and evaluations need
to be carried out in future work to assess this performance
improvement.

VII. CONCLUSION

In CR networks, a key objective is to maximize the spectrum
efficiency without degrading the sensing accuracy. In this paper,
we considered an adaptive group-based CSS scheme where
the secondary users have heterogeneous sensing abilities and
derived a closed form expression for the throughput efficiency
that takes into account both the average opportunistic through-
put and the average sensing overhead. We formulated the
throughput efficiency maximization problem subject to a prede-
fined limit on the sensing accuracy as a non-linear 0-1 integer
programming problem and proposed three efficient heuristic
adaptive assignment algorithms, namely CSBUA, BUACS1 and
BUACS2 algorithms, to solve the formulated problem. The
proposed algorithms adaptively perform user-group and group-
sensing round assignments with the aim of minimizing the
number of sensing rounds and number of cooperating users
needed to discover an available channel while satisfying a
predefined sensing accuracy requirement and thus increasing
the throughput efficiency. The proposed assignment algorithms
have low computational complexity and their performance is
within 2.6%–4.7% of that of the exhaustive search for |G| =
2 with BUACS2 algorithm providing the best performance
and CSBUA algorithm providing the lowest computational
complexity. The simulation results demonstrated that the pro-
posed assignment algorithms can provide throughput efficiency
improvement of up to 28.5% and 78% when compared to
non-adaptive grouping and sequential sensing schemes, respec-
tively, for |G| = 6 and K = 12. We examined the effect of
several parameters such as the number of cooperating users
and channels, sensing duration and imperfect reporting channel
conditions on the proposed assignment algorithms. The pro-
posed assignment algorithms were consistently able to outper-
form the non-adaptive grouping and sequential sensing schemes
for the different parameters examined with the BUACS2 algo-
rithm consistently providing superior performance compared to
the other considered algorithms for all the considered cases.
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