IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 26, 2016, accepted February 5, 2016, date of publication February 23, 2016, date of current version March 23, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2533394

Network Selection and Channel Allocation for
Spectrum Sharing in 5G Heterogeneous Networks

NAJAM UL HASAN', WALEED EJAZ2, NAVEED EJAZ3, HYUNG SEOK KIM?,
ALAGAN ANPALAGAN?, AND MINHO JO3

! Department of Electrical and Computer Engineering, Dhofar University, Salalah 211, Oman

2Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
3Department of Computer Science, College of Science in Zulfi, Majmaah University, Al Majma’ah 15361, Saudi Arabia
4Department of Information and Communication Engineering, Sejong University, Seoul 143-747, South Korea

5 Department of Computer and Information Science, Korea University, Seoul 136-701, South Korea

Corresponding authors: M. Jo (e-mail: minhojo@korea.ac.kr).

ABSTRACT The demand for spectrum resources has increased dramatically with the advent of modern
wireless applications. Spectrum sharing, considered as a critical mechanism for 5G networks, is envisioned
to address spectrum scarcity issue and achieve high data rate access, and guaranteed the quality of
service (QoS). From the licensed network’s perspective, the interference caused by all secondary users (SUs)
should be minimized. From secondary networks point of view, there is a need to assign networks to SUs in
such a way that overall interference is reduced, enabling the accommodation of a growing number of SUs.
This paper presents a network selection and channel allocation mechanism in order to increase revenue by
accommodating more SUs and catering to their preferences, while at the same time, respecting the primary
network operator’s policies. An optimization problem is formulated in order to minimize accumulated
interference incurred to licensed users and the amount that SUs have to pay for using the primary network.
The aim is to provide SUs with a specific QoS at a lower price, subject to the interference constraints of
each available network with idle channels. Particle swarm optimization and a modified version of the genetic
algorithm are used to solve the optimization problem. Finally, this paper is supported by extensive simulation

results that illustrate the effectiveness of the proposed methods in finding a near-optimal solution.

INDEX TERMS Channel allocation, network selection, 5G heterogeneous networks, optimization.

I. INTRODUCTION

The last decade has seen the dramatic increase in the demand
of mobile data due to the increase in mobile devices and
versatile applications. It is forecast that the data traffic
will increase 10-fold between 2014 and 2019 [1]. This
explosive demand of mobile data results in several chal-
lenges which shifted the research directions to fifth gen-
eration (5G) networks [2]. 5G networks are intended to
provide significantly high data rate access and guaranteed
quality-of-service (QoS). Thus, the demand of spectrum
resources is expected to increase significantly in 5G net-
works. This requires wireless system designers to propose
efficient spectrum management schemes. Different views on
5G architecture are presented in [3]-[5] with key technologies
such as massive MIMO, energy efficient communications,
cognitive radios, visible light communication, small cells, etc.
In nutshell, 5G is visualized as heterogeneous networks
which can provide access to a range of wireless networks and

access technologies [6]. The 5G heterogeneous networks will
mainly consist of network densification, i.e., densification
over space and frequency. The dense deployment of small
cells is called the densification over space whereas utilizing
radio spectrum in diverse bands is called densification over
frequency. Network densification can meet the demand of
high capacity in 5G networks [7]. However, opportunistic
spectrum sharing is important in order to achieve stringent
goals of 5G in heterogeneous environment.

Spectrum sharing ensures the coverage of 5G heteroge-
neous networks everywhere and all the time. It can support
a large number of connected devices and diverse appli-
cations [8]. In addition, it is spectrum efficient as it can
use all non-contiguous spectrum, can achieve better sys-
tem capacity, reduce energy consumption, and increase cell
throughput. Dynamic spectrum access (DSA) has emerged as
key for spectrum sharing in an opportunistic way [9], [10].
A radio network employing DSA to coexist with a licensed
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network (primary network) is known as a cognitive radio
network (CRN) [11]. The users who subscribe to any of these
primary networks are known as primary users (PUs). On the
other hand, users who do not belong to any of these primary
networks and contend for the unused portion of the spec-
trum in these networks are known as secondary users (SUs).
SUs may face a problem in choosing which primary network
to join because a 5G heterogeneous network incorporates
multiple primary networks with different characteristics in
terms of bandwidth, price, and capacity; this is known as the
network selection problem [12], [13].

Price is a key factor while leasing/selecting the network of
a specific operator for spectrum access. In [14], a joint price-
based spectrum sharing and power allocation scheme is pro-
posed for interference management. Author in [15], presented
a price based spectrum sharing algorithm. The optimization
problem is formulated to minimize the price incurred by the
SUs and solved using the particle swarm optimization (PSO).
However, the algorithm is based on assumption that there
exists an interaction between PU and SUs which is practically
not a feasible option. A price-based spectrum sharing and
rate allocation scheme is proposed to address the problem
of sub-carrier sharing with discrete rate allocation in [16].
In [17], the PSO approach is used to solve the problem of
network selection. However, due to the intractable nature
of the network selection problem in 5G heterogeneous net-
works, it is desirable to explore other avenues to develop
better algorithms for solving the network selection problem.
Therefore, it is required to study network selection problem
in order to enhance the previous work.

A. RELATED WORK

A media independent handover and software-defined
network (SDN)-based framework for network selection in
5G heterogeneous network is proposed in [18]. The concept
of SDN is used to propose a pre-selection mechanism and
two-dimensional cost function in order to reduce the network
selection latency. An effective network selection algorithm
for 5G heterogeneous networks is proposed that can effi-
ciently choose the network with guaranteed data rate and
user performance [19]. The network is selected based on a
parameter which considers various metrics associated with
users, system, base station transmitted power, traffic load,
and spectral efficiency. In [13], authors considered realistic
approaches based on network-centric and user-centric for
intelligent network selection. However, none of them con-
sidered price based network selection approach.

A uniform framework to investigate and evaluate network
selection strategies is presented in [20]. Authors proposed a
gradient-based optimal network selection strategy and dis-
cuss several existing strategies. In [12], authors studied a
single network selection scheme to maximize the mutual
information over all secondary networks while satisfying the
constraint of availability of the primary service. Spectrum
band selection scheme is presented in [21] while satisfying
the constraint on delay. The aim is to select a band with
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highest secondary channel power gain and lowest inter-
ference channel power gain to PUs. Authors formulated
a problem to maximize effective capacity by optimizing
transmit power allocation with both band selection criteria.
A game-theoretic framework for network selection is pro-
posed in [22]. The network selection problem is formulated
as a non-cooperative game (ordinal potential game) with SUs
as players. To solve this problem, a decentralized stochas-
tic learning-based algorithm was proposed in which Nash
equilibrium is achieved without cooperation with other SUs.
A cross-layer framework is designed in [23] while jointly
considering spectrum sensing, access decision, physical-
layer adaptive modulation and coding scheme, and frame
size. The throughput of SUs is maximized for which problem
is formulated as Markov decision process.

The genetic algorithm (GA) and the PSO are derived from
natural phenomena and are commonly used for solving the
optimization problem. They belong to the class of evolution-
ary algorithms. The GA is inspired from the concepts in evo-
lutionary biology, such as inheritance, mutation, selection,
and crossover. Whereas the PSO relies on the social behavior
of the particles. In every generation, each particle adjusts its
trajectory based on its own best position and the position of
the best particle in the entire population. More specifically,
regarding evolutionary computing in CRNs, a number of
efforts have been reported so far, such as spectrum sensing
using the PSO [24], [25], resource allocation using the PSO
and the GA [26], [27], dynamic parameter adaptation using
the GA [28], the GA aided transmit power control [29],
energy efficient scheduling based on the PSO [30].

In summary, the above network selection schemes do not
address more realistic case where both data rate and subscrip-
tion fee are considered.

B. CONTRIBUTIONS
In this paper, we consider a 5G heterogeneous network that
incorporates multiple primary networks. At any given instant,
each primary network has a different number of channels
available for the SUs, and each channel has a different
capacity. Each network has some constraints in terms of
interference, subscription fees, and capacity. SUs specify
their requirements in terms of the minimum data rate and
the maximum subscription fee that they are willing to pay.
Based on SU requirements and primary network constraints,
we employ the PSO and the modified GA algorithms to find
a near-optimal solution. The goal of this paper is to find a
solution such that the overall cost for all SUs is minimized
and the overall interference incurred to the PUs of different
primary networks is also reduced. Our work differs from
previous efforts in the following ways:
o The proposed model respects the perspectives of the SUs
as well as the PUs, and seeks to create a balance between
SU requirements and constraints of primary networks.
o The metrics on which the proposed model is built are
interference to PU and the price SU has to pay to achieve
a desired quality of service.
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e To solve the model, a modified version of the
GA algorithm is proposed and compared with the PSO
based network selection.

This paper is organized as follows: In Section II,
the network selection problem for the 5G heterogeneous
network is formalized. Sections III and IV focuses on
the mapping of network selection problem in terms of
PSO and GA, respectively. Section V presents the simulation
results of of proposed work. Finally, the conclusion is drawn
in Section VI.

Il. PROBLEM FORMULATION

We consider a 5G heterogeneous network which is composed
of N primary networks, where each primary network can have
any number of subscribed users (PUs). Each primary network
has maximum number of channels denoted by p,,, however,
the number of channels available for SU communication
depends on the PU behavior. For each particular primary
network, the PU behavior is modeled using Poisson process
with two states, i.e., ON-OFF state model. Most publications
in this field modelled PU traffic as independent and identi-
cally distributed ON-OFF process [31]-[33]. For example,
in [31], authors proposed a Super Wi-Fi using an ON-OFF
model based PU activity. A Super WiFi uses spectrum holes
and is operated by a wireless service provider which leases a
licensed spectrum band.

The maximum possible rate of transmission on i channel
of m™ network is C 4*. The value of Cj;, depends on the
i channel condition in network m. It is assumed that there
is a cognitive network operator (CNO) that manages all the
incoming SUs and collects the network status information
of all the available primary networks, as shown in Fig. 1.
This assumption depicts the practical scenario in which the
5G network has to implement authentication and an account-
ing mechanism. When j”* SU enters the system, it specifies its
minimum data rate requirement y; and the maximum price p;
that it is willing to pay to the CNO. Let U = {uy, ua, ..., up}

Primary network 1: cellular mobile system  Primary network 2: cellular mobile system

=

Primary network 4: Wi-Fi Network

Primary network 3: WiMax

FIGURE 1. An illustration of cognitive network operator-based
5G heterogeneous network.
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denote the set of M SUs contending for access. When j SU
is allocated a particular channel i in a network m, it is assumed
that SU creates a unit interference denoted by hj, with
the PUs. The amount of interference depends on the channel
condition. It is desired to limit the maximum interference
to the PUs of m™ network below a specified threshold €.
Assume that a cost f;, is associated with every m™ network;
this means if a/”* SU joins an m™ primary network the cost fi
will be charged. The objective is to minimize the overall cost
and the interference caused by assigning SUs to different
networks, subject to the constraints of each network. Thus,
the objective function for the optimization is expressed as:

M N
Minimize : Q(x) = Z Z(hjm + fim)Xjms
j=1 m=1

N
Subject to: » xjm=1, Vj=12,...M,

m=1

M
> himXim < €m. Vj=1,2,...N,
j=1

YiXim < Cim, Vi, j, andm,
DiXjm = fm, ¥ jandm,
Xjm € {0, 1}, ey

where Q(X) is the objective function that accumulates the
interference incurred to PUs in the system and the amount that
SUs have to pay for using primary networks. The first con-
straint states that each SU can be assigned only one channel
among all the channels in networks at a given instant. If the
binary decision variable x;;, is 1, the user is assigned to the
m'™ network and vice versa. Second, third and fourth con-
straints depend on the primary network resources available
for SUs as well as the policy of the network. Second con-
straint ensures that the total interference caused by all SUs
assigned to a particular network m will not exceed the max-
imum tolerable interference ¢,,. Third and fourth constraints
show that the assigned channel must be suitable for the SU in
terms of bandwidth and cost requirements, respectively.

Ill. PARTICLE SWARM OPTIMIZATION (PSO)

FOR NETWORK SELECTION IN

5G HETEROGENEOUS NETWORKS

PSO consists of a swarm of particles in which each particle
resides at a position in the search space [34]. The position
of each particle is represented by a vector that presents a
solution. The algorithmic flow of PSO technique starts with
an initial population of n random particles. Each particle is
initialized with a random position and velocity in the search
space. PSO is an evolutionary algorithm, so the position and
velocity of each particle is updated in every iteration. After
the update, the fitness value of each particle is computed
using a fitness function. The fitness of each particle represents
the quality of its position. The velocity of each particle is
influenced by its own best previous position (pbest) found
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Algorithm 1 Generale Description of PSO
1: Randomly initialize the position x; and velocity v; of
each k" particle
Calculate the fitness of k™ particle
Calculate pbest; for k™ particle
Calculate nbest; for the swarm
Update the velocity v; of k™ particle using (2)
Update the position x; of k™ particle using (3)
Calculate fitness of k™ particle
Update pbesty of k™ particle
Update gbest; of the swarm
Terminate the algorithm if the stopping condition is
reached, otherwise go to step 5

R A A A T

=4

by itself and the best previous position (nbest) found by
its neighbors. If all the particles in a swarm are defined as
neighbors of a particle, nbest is called global best (gbest),
whereas if only some of the particles are declared neighbors
of a particle, nbest is called local best (Ibest).

Let v and x; denote the velocity and position of the
k™ particle, respectively. In [35], the author mentioned that
they are updated as

Vi = w X vi + crri(pbesty — xi)
+corp(nbesty —xx), Vk=1,2,...n (2)
x]zlew — X + VZEW, 3)

where w is the inertial weight and ¢ and ¢, are the accel-
eration constants of the particles. w, c¢1, and ¢y represent
the influence of their own previous velocities, personal best
position, and its neighbor’s best position on the new velocity,
respectively. n is the number of particles in the swarm, and
r1 and rp are random numbers distributed in [0, 1]. The swarm
will eventually converge to the optimal position, as it is driven
by individual particle experience and global experience. The
general description of PSO is given in Algorithm 1.

Now we discuss the PSO algorithm for network selection in
5G heterogeneous networks. The algorithm includes several
features, such as associating a particle position into the dif-
ferent primary networks and channels (encoding of particles),
computing fitness value of a particle, updating the particles
position and velocity and employing a repair process for all
infeasible allocations.

A. ENCODING OF PARTICLES

One of the key problems in applying PSO is the definition
of an encoding scheme that describes one-to-one mapping
between the solution and the particle. Each particle should
consist of a complete solution for SUs, primary networks,
and channels. This paper considers the k™ particle position
in a search space of a vector for the problem of M SUs
and N primary networks, each with p,, channels. To clarify,
consider an example with parameters N = S5and M = 5
which means that there are five primary networks with five
SUs in a 5G heterogeneous network. It is assumed that each
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m™ network has the same channel denoted by p, i.e., p =
p = 7. In this case, each group of 35 slots (M X p) represents
the network and channel allocation for one SU, as shown in
Fig. 2. Slots 1-35 represent both the channel and network
allocated for the first SU, slots 36-70 for the second SU
and so on.

............. 32 33 34 35

SU1 | 0 | 0| o0 | 0 | 1] o | 0 } ------------ [of[o]ofo]
................... 67 68 69 70
su2 | 0 }----| 0 | 0 | 0 | 1 | 0 } ------------ [of[o]o]o]
................... 102 103 104 105
SU3 | 0 }----l 1 | 0 | 0 | 0 | 0 } ------------ [of[o]o]o]
------ 120 121 122 123 124 eemeemmeemeen 137 138 139 140
sw|o+----|o|o|o|or'ﬁ ------------ KIKIEEEY
------ 161 162 163 164 165 wemmmmmmemeen 172 173 174 175
SUs | 0 }----| o oo of 1 frmmmeeaes [of[o]o]o]

{(1,5), (2,52), (3,87), (4,124), (5,161)}

) Dimension: 1 2 3 4 5
APSO particle |7, 1y 5 52 87 124 16l

FIGURE 2. Network selection to PSO particle mapping.

The position of a particle can be represented by multi-
dimensional vectors whose entries belong to a set of
{1,2,.....M x pN}. The M-dimensional position of the
kth particle is defined as xy = (xk1, X2, -..., Xkar), Where
xi; represents the j™ dimension of the k™ particle, which
indirectly provides the assigned network and channel for the
j™ su.

The above-mentioned encoding of the particles can be
easily extended to a problem with m” network having the
different number of channels denoted by p,,. In this case,
the value of p will be maximum of p,,, i.e., p = max py,.
This means that it is supposed that each network has the
same p channels. For any network m having the number of
channels p,, < p, a value 1 is inserted in all the slots other
than p,,, which indicates that p — p,, slots of network m are
already occupied. Mathematically, the network and channel
corresponding to an element of a particle can be computed as
follows:

(-1 xN
network = Fckj U= D xNx p—‘ 4)
p
e —p |
channel = x;j — p : %)
p

Fig. 2 shows an example of a mapping between a net-
work/channel selection and particle position. In this example,
X 18 (Xk1, Xk2, Xk3, Xk4, Xks5) = (5,52, 87,124, 161). Out of
1-35 available slots, the first SU occupies slot number 5
(xk1 = 5), which means that the first SU is assigned to the
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fifth channel of the first network according to (4) and (5).
Similarly, out of the 35 available slots for the second SU
from 36-70, the second SU occupies the 17" slot (xx2 = 52),
which means the third channel of the third network according
to (4) and (5).

B. FITNESS FUNCTION

The overall interference incurred by SUs and the overall cost
SUs have to pay (Q(x)) as described in Section II are used
to evaluate the performance of the algorithm. In our case, the
fitness function is the inverse of Q(X), which means a solu-
tion with higher accumulative interference and subscription
charges will have a lower fitness value. The fitness value of
each solution can be estimated using

fitness[k] = (Q(X))~". (6)

C. UPDATE OF VELOCITY AND POSITION

The PSO algorithm uses the new velocity obtained from (2)
to update the particle position to a new position according
to (3). In this paper, we define the velocity vector of particle k
as vk = Vi1, Vik2, - - -» VM), Vkj € R where Vij is the real
number pointing toward the movement of the SU for the
k™ particle from the current slot to the next one. For exam-
ple, the velocity vector vy = (1.2, —1.5,2.3, —1.68, 1.87)
in the next generation is added to the position vector
xr = (5,52,87,124,161), and the new position vector
equals (6.2, 50.5, 89.3, 122.32, 162.87). Because the values
in the particle are slot numbers, a non-integer value such
as 6.2 cannot be a slot number. Therefore, elements of the
position vector should be the integer slot numbers to which
the non-integer numbers are rounded. Thus, the particle posi-
tion (6, 51, 89, 122, 163) is obtained in the next generation.
Generally, the value of each component in v can be clamped
to the range [—Viax, +Vimax] to prevent excessive roaming of
particles outside the search area. If vy; is smaller than —v,,y,
then set vij = —Vpqy; if vy is greater than +vy,4y, then set
Vkj = Vmax. We se€t Vg = 7, which limits the forward or
backward movements of each SU to a maximum position
of 7 slots. For example, if an SU is currently associated
with network 3, in the next generation it can join network 2,
network 4, or remain in network 3.

D. REPAIR PROCESS
The algorithm starts to randomly generate as many potential
solutions for the problem as the size of the initial population
of the PSO. Each dimension in the particle vector represents a
channel as well as a network assigned to a SU. The allocation
of a network and a channel to SUs is performed sequen-
tially until all SUs are assigned to a network and channels.
Each particle represents a complete solution that ensures
that each allocation must satisfy the constraints mentioned
in Section II.

The next stage is to use the proposed algorithm to adjust the
position of the particles. This algorithm starts at the beginning
of the first dimension and works through to the end of the
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SU network and channel allocation
SU1 SU2 SUm

Network and channel status

Network 1 Network 2 Network n
1 2 3 4145 6 771 2 3 commmnen | A 7
Sut|ojofo|of"1f00|[0/|O0|O 0[0|0]| o0 0
Su2(ojo0jo0fof!la40|0[0]0|O0 0[0|0]| O 0

FIGURE 3. Repair process for an infeasible allocation of SU1 and SU2 to
the same channel and network.

particle. As mentioned earlier, the algorithm uses the new
velocity based on (2) to update the particle’s current position
to a new position according to (3). It is worth mentioning
that the new position must be feasible, i.e., it must satisfy
all the constraints, and the next step is to check whether the
corresponding network and channel allocation satisfy all the
constraints mentioned in Section II. Fig. 3 shows an example:
the first SU occupies the fifth channel in the second network,
and the second SU updates to the same slot in the second
network. This means that the allocation of the fifth channel
in the second network violates the constraint, i.e., a channel
can be assigned to only one user at an instant, so it needs
to be corrected. There are three approaches to deal with
an infeasible allocation [36]: discarding it, applying a high
penalty in the fitness function, and repairing it. The authors
showed that discarding an infeasible solution or applying a
high penalty is an option only when a large proportion of the
population is feasible.

Here, we adopt a repair process where the position of
SUs is adjusted to meet the constraints. The first step is to
identify infeasibility. There are four types of infeasibility:
1) two SUs clash in terms of their allocation, 2) SU’s demand
is more than the capacity of the assigned channel, 3) a SU
cannot be assigned to this network because it is not will-
ing to pay the charges of this network, and 4) the network
cannot accommodate any further assigned SUs because its
interference tolerance limit has been reached. The second
step is to regenerate the new velocity of the SU to identify
a new position (slot) for reallocation. If the newly generated
slot satisfies all the constraints, the SU’s position is updated.
Otherwise, the second step is repeated until a slot is obtained
that satisfies all the constraints.

IV. GENETIC ALGORITHM (GA) FOR NETWORK
SELECTION IN 5G HETEROGENEOUS NETWORKS
Normally GA starts by creating an initial population of chro-
mosomes denoted by N,,,. Each chromosome encodes a
solution of the problem, and its fitness value is related to the
value of the objective function for that solution. Generic oper-
ations, such as crossover, mutation, and natural selection are
applied during each iteration in order to search for potentially
better solutions. The crossover operation combines two chro-
mosomes to generate the next generation of chromosomes
while preserving their characteristics. The mutation operation
reorganizes the structure of genes in a chromosome randomly
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so that a new combination of genes may appear in the next
generation. It serves the purpose of the search by jumping
out of the local optimum solutions. Reproduction involves
copying a chromosome to the next generation directly so that
chromosomes from various generations can cooperate in the
evolution. The quality of the population may be improved
after each generation [36].

A. ENCODING OF CHROMOSOMES

Chromosomes are the basic building blocks of the GA. Each
chromosome should be represented in such a way that it
provides complete information about the solution of problem.
A chromosome consists of genes that can be represented
in the form of a binary or integer string. For the prob-
lem of N SUs and M primary networks, we represent each
k™ chromosome (potential solution) as a binary string. Let
us consider an example where there are 5 primary networks
and 5 SUs (N = 5 and M = 5) and each primary network
has 7 channels available for SUs. As there are 5 SUs, there
are 5 genes in k™ chromosome. Once we have decided on
the number of genes for the chromosome, the next step is the
encoding of the chromosome. Each gene represents one SU,
and each SU should be assigned to a network and a channel.
Because there are 5 primary networks and 7 channels in each
network, we need 3 bits for representing the network and
3 bits for representing the channel, i.e., each gene will have
6 bits. As a result, each chromosome will have 30 bits with
5 genes, as shown in Fig. 4.

Gene 1 Gene 2 Gene 5
[ofiToT1T1To] [ofiTof1fo]T] [fToToToTo 1]
Network: 010
SUL | Channel: 110

FIGURE 4. GA's chromosome mapping for network and channel selection.

The allocated network and channel for an SU are repre-
sented by the allocation bits of each gene in the chromosome.
The first three bits represent the network id and last three bits
are the channel id. For example, if the first gene representing
the first SU has a value of 010110 as allocation bits, this
means that the first SU is assigned to the second network and
the sixth channel.

B. FITNESS MEASURE

The next step after construction of the chromosomes and
generation of the initial population is to evaluate each chro-
mosome by measuring its fitness. The fitness measure is also
known as the survival measure that determines how well an
individual (i.e., the chromosome) from a population solves
the given problem. The fitness is generally a real number, the
higher the value of its value, the closer the chromosome is
to the optimal solution. We use the same fitness function as
in (6) for the GA, as discussed in Section III-B.
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C. SELECTION OF CHROMOSOMES

The process following the fitness measure is the construction
of the next generation selection. The selection process is
dependent on the fitness measure of the chromosomes. In the
selection process, the population is first sorted by a compar-
ison of fitness values. The top Npop X Ryerecr chromosomes
are included in the selected/mating pool, where Ny, is the
population size (total number of chromosomes) and Ryeject
is the selection rate (which is chosen as 0.5 in this paper).
A pair of parent chromosomes is selected from this pool and
mated using the crossover procedure discussed in the next
section.

D. CROSSOVER PROCESS

After the selection of chromosomes, the next step is to per-
form the crossover (also known as reproduction) on ran-
domly selected chromosomes. Crossover is a process in
which the characteristics of a pair of parent chromosomes are
exchanged with each other to form a pair of child chromo-
somes. The crossover rate is taken as 0.5. There are several
mechanisms for the crossover process, such as single point,
2-point, multi-point, and uniform crossovers. We have chosen
the 2-point crossover process. As described in Section I'V-A,
a binary encoding is used for the chromosome struc-
ture, so we have to develop some crossover specifications.
Two cross-points are set at the multiple of 3 bits, which
means either the border between genes or the mid-point of a
gene. Once two cross-points are chosen, every bit between the
two cross-points is swapped between the parent chromo-
somes, rendering two child chromosomes. For example,
as shown in Fig. 5, two parent chromosomes p; and p»
crossover and produce two child chromosomes ¢ and c;.

Crossover point 1 Crossover point 2

\‘fl\'IOIIIOII\OIOIIIOII\IIOIlllll\llllIIOII\IIIIOIOII\O\
\52\1]1]1]0|1\o]0]1]0]1\o]o]1]0|1\0]1]1]0]1\0]1]0]0|1\o\
\OC]\IIOIIIOIIIOIOIII0|II0I0III0IIIO\'IIIOII\IIIIOIOII\O\
\ocz\1]1]1|o|||0|o|1|0|||||o|||1|||||||| o[1To[1ToTo]1o]

FIGURE 5. 2-point crossover procedure for generating child
chromosomes.

Each crossover generates two child chromosomes that
replace two chromosomes from the bottom of the population
that are not in the mating pool. This replacement process
continues until all the chromosomes that are not in the mating
pool are replaced. In this manner, the chromosomes that have
high fitness, i.e., the ones in the mating pool, survive in the
subsequent generations. In contrast, the chromosomes that
have low fitness, i.e., the ones that are not in the mating
pool, do not survive and are replaced by the children of the
chromosomes of the mating pool, which potentially have
higher fitness.
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Algorithm 2 Elitism Based Genetic Algorithm (GA)

1: Generate the initial population of chromosomes

2: Evaluate the fitness of each chromosome

3: Check for Termination if the stopping condition is
reached goto step 4 otherwise step 5

4: Select the best chromosome and Stop

5: Elitist population to preserve the best individual of each
generation using sorting mechanism

6: Apply crossover on selected chromosomes

7: Apply mutation on selected chromosomes

8: Goto step 3

E. MUTATION

After producing the new generation using the crossover pro-
cess, another process, called mutation is performed. Mutation
is applied to the child chromosomes, altering a binary bit of
0to 1 or vice versa. The number of chromosomes undergoing
the mutation process out of 100 chromosomes is specified
by the mutation rate. Here, the mutation rate is chosen to
be 0.03, which means that every chromosome is considered
for mutation with a probability of 3%.

In the first generation, the population is randomly gener-
ated so there is a chance that certain constraints of primary
networks are violated. For example, the channels and net-
works allocated for two SUs may be the same. Similarly, this
can also happen after mutation. Whenever there is a violation
of any constraint in a chromosome, including a clash between
the positions of two SUs, data rate, cost violation, or violation
of the second constraint, a repair process is triggered. In this
repair process, the positions of the SUs are randomly adjusted
so that violation of any constraint is eliminated. For example,
if two genes in a chromosome are somehow assigned the same
value, i.e., two SUs are assigned to the same channel in the
same network. If such a situation occurs, the value of one of
the two genes is randomly adjusted in such a way that the
violation is eliminated.

F. ELITISM

We applied the concept of elitism in the GA. In this concept,
unlike the standard GA, the excellent individual is reserved
in each generation. As mentioned earlier in the selection pro-
cess, the individuals are sorted according to their fitness value
and the best individuals are preserved. The child chromo-
somes replace the parent chromosomes with lower fitness val-
ues. Together with the help of elitism, the best individual can
be prevented from being lost during the process of selection,
crossover, and mutation. This is clearly helpful in the global
convergence property of the GA. The description of Elitism
based GA for network selection is given in Algorithm 2.

V. SIMULATION RESULTS

A. PARAMETERS SETTINGS

Simulations are carried out for the network selection in
5G heterogeneous network in order to evaluate the quality

986

of the solution and the convergence speed of both PSO and
GA algorithms. The performance of both GA and PSO
depends on the parameters chosen. After a preliminary set
of experiments, the parameters chosen for the simulations of
these algorithms are given in Table 1.

TABLE 1. Simulation parameters.

Parameters Value
Number of iterations 3000
Number of SUs in CRN 12
Number of primary networks 7

Number of channels in each network (p) 7
PSO:

Population Size 12
Acceleration constants ¢y, co 2
Inertial weight (w) 0.6
Vmin -7
‘/71’),(1.’6 7
GA:

Population Size 12
Crossover rate 0.5
Mutation rate 0.03

The simulations are performed under two scenarios using
different data sets in order to compare the performance of GA
and PSO. We performed 20 runs on each scenario to obtain
the average performance of PSO and GA. The PU arrival
process and channel availability for each primary network
is modeled using Poisson process. A channel occupied by
PU is considered to be unavailable for SUs, therefore, if an
SU tries to access this particular channel, the repair process
will be triggered. The information gathered about the primary
networks for both scenarios 1 and 2 is given in Table 2. When
a SU enters in the system, it specifies its requirements for
data rate and the price it is willing to pay to the CNO. The
information specified by the SU for both scenarios 1 and 2 is
shown in Table 3.

TABLE 2. Primary networks for scenarios in CRN.

Network Cost to join Capacity per Target
id (fm) channel interference
(C77*" bps) (€m)
1 2 1 2 1 2
1 90 80 80 80 5 7
2 50 60 100 70 10 6
3 70 65 70 70 7 7
4 95 60 100 90 8 10
5 95 70 80 100 9 9
6 40 40 80 70 7 5
7 60 50 80 60 9 9

When the j” SU joins a network, it causes interfer-
ence hjy, to the PUs of the m™ network. We assumed that the
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TABLE 3. SU's requirements and preferences for scenarios.

SU Scenario 1 Scenario 2
J Data rate  Price  Data rate  Price
(bps) (bps)

1 50 100 50 80
2 70 100 70 75
3 70 100 70 70
4 20 100 20 90
5 60 100 60 60
6 40 100 40 50
7 50 100 50 60
8 40 100 40 75
9 50 100 50 55
10 60 100 60 95
11 40 100 40 100
12 40 100 40 70

interference created by the j SU is the same for all the
channels of a particular network m. The interference caused

by the SU when it joins a particular primary network m is
given in Table 4 for both scenarios.

B. RESULTS FOR COMPARISON OF

PSO AND MODIFIED GA

This section describes the results of the simulations
performed to gain insight into the performance of PSO
and GA implementations for the network selection prob-
lem in 5G heterogeneous networks. Two network selection
scenarios with different network constraints, as well as the
SUs’ requirements and conditions described in Section V-A,
were used to test the effectiveness of the proposed methods.
Among the differences in both scenarios, the major difference
is the price which SUs are willing to pay. In scenario 1,
each SU can join any network because the price each SU is
willing to pay is higher than the maximum cost of joining
any primary network. In scenario 2, a SU may be unable
to join a network owing to cost constraints. For example, in
scenario 2, the 6" SU can join only the 67 and 7" networks
because the price it is willing to pay is less than the cost
of joining the other networks. The objective function of the
particle or chromosome that has the highest fitness value was

TABLE 4. SU’s interference hj;, to PUs of a particular network m for scenarios 1 and 2.

SU m=1 m=2 m=3 m=4 m=5 m=6 m=7
j 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 2 1 1 3 3 1 1 2 2 1 1 2 2
2 1 2 2 1 1 2 4 4 3 2 1 2 1 1
3 4 4 1 1 1 1 3 3 1 1 1 1 2 3
4 1 3 2 2 1 2 2 2 2 2 1 1 1 1
5 1 1 2 2 3 3 2 2 1 1 1 1 1 1
6 1 2 2 3 1 1 3 3 1 2 1 2 1 1
7 1 1 2 2 1 1 3 1 1 1 2 2 2 2
8 4 4 1 1 2 2 1 1 2 2 1 1 3 1
9 1 3 2 3 2 1 1 1 3 3 1 1 4 3
10 1 1 1 1 2 2 2 2 1 1 1 1 3 3
11 3 3 1 1 2 1 1 1 1 1 1 2 3 3
12 1 2 2 2 1 1 1 1 2 2 1 1 2 2

TABLE 5. Objective values: GA versus PSO.
Iterations Scenario 1 Scenario 2
GA PSO GA PSO
100 0.001623 0.0014437 0.001646 0.001601
500 0.001769 0.0014736 0.001691 0.001626
1000 0.001783 0.0014968 0.001701 0.001634
1500 0.001795 0.0015050 0.001708 0.001642
2000 0.001800 0.0015180 0.001708 0.001652
2500 0.001806 0.0015230 0.001709 0.001656
3000 0.001813 0.0015290 0.001709 0.001660
Standard Deviation 5.386 x10~° 2.5727 x10~° 2.05 x1075 1.353 x10~°
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FIGURE 6. Performance comparison in terms of average objective value: GA versus PSO (a) scenario 1 and (b) scenario 2.
TABLE 6. Network allocations for SUs in scenario 1. TABLE 7. Network allocations for SUs in scenario 2.
J GA PSO J GA PSO
m I fjm hjm m I fjm hjm m I fjm hjm m I fjm hjm
1 6 4 40 1 7 7 60 2 1 6 3 40 1 7 7 50 2
2 2 1 50 2 6 3 40 1 2 6 1 40 2 5 3 70 2
3 2 4 50 1 1 1 90 4 3 6 7 40 1 6 5 40 1
4 6 5 40 2 6 5 40 1 4 7 4 50 1 1 1 80 3
5 6 6 40 1 2 1 50 2 5 7 7 50 1 6 6 40 1
6 6 7 40 1 2 1 50 2 6 7 5 50 1 7 6 50 1
7 7 6 60 2 4 7 95 3 7 7 2 50 2 7 5 50 2
8 2 5 50 1 6 1 40 1 8 7 6 50 1 6 1 40 1
9 6 3 10 1 6 7 40 1 9 6 6 40 1 6 3 40 1
10 6 1 40 1 3 1 70 2 10 7 1 50 3 6 2 40 1
11 2 6 50 1 4 5 95 1 11 2 3 60 1 4 3 60 1
12 6 2 40 1 6 2 40 1 12 4 1 60 1 7 4 50 2
Accumulative Accumulative Accumulative Accumulative

Interference=20
Accumulative Cost
=700

Interference=15
Accumulative Cost
=540

Interference=18
Accumulative Cost
=610

Interference=16
Accumulative Cost
=580

recorded in each iteration, and the resulting average objective
function values over 20 simulation runs are shown in Fig. 6.
The exact average objective function values after 100, 500,
1000, 1500, 2000, 2500, and 3000 iterations are shown in
Table 5. Fig. 6 and Table 5 show that the PSO algorithm
converges faster than the GA, however, the solution optimized
by the GA has far higher fitness values than those optimized
by the PSO. The standard deviations after 3000 iterations
over 100 runs are also given in Table 5, indicating that the
PSO algorithm is more stable than the GA.

Fig. 7 shows the impact of network selection for SUs on
the overall interference incurred by the primary networks and
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the cost SUs have to pay in order to achieve their required
QoS under both scenarios 1 and 2. It can be clearly seen
that both GA and PSO significantly reduce both the average
accumulative interference incurred by the PUs and the price
a SU has to pay to join a different network. More SUs can be
accommodated within the given PU interference limitations,
and they can receive a better QoS for a lower price. Further-
more, it is also clear that the GA is more successful than PSO
in minimizing both interference and cost for both scenarios.
For example, in case of scenario 1, the average accumulative
cost paid by SUs drops after 3000 iterations from almost
600 to 500 when the GA is used, whereas the cost paid by
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FIGURE 7. Performance comparison: GA versus PSO (a) scenario 1: average accumulative cost, (b) scenario 1: average accumulative interference,
(c) scenario 2: average accumulative cost, and (d) scenario 1: average accumulative interference.

SUs when the PSO algorithm is used drops from 680 to 630
and decreases much more in scenario 2 than in scenario 1.
In scenario 1, all SUs are able to pay; therefore every SU
is willing to pay the price of joining any available network.
In case of interference, the GA again performs remarkably
better than PSO. The results indicate that the GA performs
better as compared with the PSO in both scenarios, because
GA uses the concept of elitism in which the best indi-
vidual of each iteration is preserved during the selection
process.

Tables 6 and 7 show the solutions obtained after 3000 iter-
ations using GA and PSO for scenario 1 and 2, respectively.
It can be seen that all the results shown in Tables 6 and 7 com-
pletely satisfy all the constraints mentioned in Section V-A.
It also shows the exact value of interference caused by each
SU and the cost each individual SU has to pay. To compute
the convergence time of the PSO and the modified GA,
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we have done experiments when N = 5,p =7, and M = 12.
The experiment was conducted on a 2.93 GHz double proces-
sor PC with 4GB of memory. The result shows that average
elapsed time after 100 iterations of the PSO and the modified
GA is 0.25ms and 30ms, respectively. Hence, it is fairly
available for real-time implementation to use evolutionary
algorithms such as the PSO and the modified GA for a
number of iterations.

C. EFFECT OF VARYING PU ACTIVITY

To demonstrate the effect of varying PU activity, we con-
sider a PU associated with each available channel in the
network. The probability of PU presence on a channel varies
from 0.1 to 0.5 for each channel generated using Poisson
process. Fig. 8 shows the effect of varying probability of
PU appearance on accumulative cost for SU communication
for scenario 1. The accumulative cost for SU increases with
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increase PU activity because with more channel occupied we
remained with less possibilities to select channel for fixed
number of SUs.

VI. CONCLUSION

The emerging wireless applications with stringent QoS
requirements continue to demand more spectrum resources.
Spectrum sharing is the key solution to deal with the prob-
lem of spectrum scarcity. In this paper, we have studied the
network selection problem in 5G heterogeneous networks.
We have proposed a network selection mechanism and for-
mulated an optimization problem for network selection to
minimize the interference to primary networks and cost paid
by SUs. We then solved the optimization problem with the
PSO and modified GA in order to find near-optimal solution.
We have also designed two scenarios for performance evalu-
ation with different system settings, SU data rate demands,
and price preferences. Then the performance of proposed
mechanism for network selection was evaluated under these
scenarios. The simulation results showed that the modified
GA outperforms the PSO and achieves a higher fitness value
with less iterations in terms of both interference reduction and
SU price requirement.
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