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Abstract— This paper investigates the problem of dynamic
spectrum access for canonical wireless networks, in which the
channel states are time-varying. In the most existing work,
the commonly used optimization objective is to maximize the
expectation of a certain metric (e.g., throughput or achievable
rate). However, it is realized that expectation alone is not
enough since some applications are sensitive to fluctuations.
Effective capacity is a promising metric for time-varying service
process since it characterizes the packet delay violating probabil-
ity (regarded as an important statistical quality-of-service index),
by taking into account not only the expectation but also other
high-order statistic. Therefore, we formulate the interactions
among the users in the time-varying environment as a non-
cooperative game, in which the utility function is defined as the
achieved effective capacity. We prove that it is an ordinal potential
game which has at least one pure strategy Nash equilibrium.
Based on an approximated utility function, we propose a multi-
agent learning algorithm which is proved to achieve stable
solutions with dynamic and incomplete information constraints.
The convergence of the proposed learning algorithm is verified by
simulation results. Also, it is shown that the proposed multi-agent
learning algorithm achieves satisfactory performance.

Index Terms— Dynamic spectrum access, effective capacity,
statistical QoS, potential game, multi-agent learning, dense
networks.
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I. INTRODUCTION

DYNAMIC spectrum access (DSA) has been regarded
as one of the most important technology for future

wireless networks since it provides flexible and efficient
spectrum usage. With the significant advances in cognitive
radios in the last decade [1], [2], DSA can be implemented
in more intelligent and smart manners [3], [4]. Generally,
there are two main application scenarios [5]: open-access,
in which all users are equal to access the spectrum, and
primary-secondary access, in which the spectrum is owned
by the primary users and can be used by the secondary
users when it is idle. For decision-making, it has been shown
that the methodologies for the two scenarios are mostly
overlapped [3].

A number of existing studies, e.g., [6]–[11], have considered
intelligent spectrum access for static wireless networks in
which the channel states remain unchanged during the selec-
tion procedure. However, it has been realized that although the
assumption of static channel leads to mathematical tractabil-
ity, it is not generally true since the spectrum are always
time-varying in wireless environment [12]–[14]. To track the
channel dynamics, an instinctive approach is to reiterate the
selection algorithms in each quasi-static period. This method,
however, is off-line, costly and inefficient, and is even not
feasible for fast-varying channels. Thus, it is timely important
to develop on-line intelligent channel selection algorithms for
dynamic wireless networks.

In this article, we consider a dynamic wireless canonical
networks, in which the channel states are time-varying and
there is no information exchange among the users. In a few
existing researches for dynamic networks with time-varying
channels, e.g., [12]–[15], the commonly used optimization
objective is to maximize the expectation of a certain metric,
e.g., the expected throughput. However, only considering
the expectation is not enough for practical applications. For
example, in real-time multimedia applications, higher expected
transmission rate as well as lower fluctuation are desirable,
which implies that not only the expectation but also other
statistic, e.g., the variance, should be taken into account for
dynamic wireless networks. A promising metric is the effective
capacity, which is defined as the maximum packet arrival
rate that a time-varying service process can support while a
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statistical quality-of-service (QoS) constraint on delay
violating probability can be met [16]. Mathematically, effective
capacity takes into account the expectation and all other statis-
tics [17]; further, it degrades the expectation if the statistical
QoS index is sufficiently small. Therefore, we use effective
capacity as the optimization metric in this article.1

The considered DSA network encounters dynamic and
incomplete information constraints for the decision procedure.
Specifically, the channel states are not deterministic at each
slot and change from slot to slot, and a user can only
monitor its chosen channel and know nothing about other
users. Furthermore, the introduction of effective capacity into
dynamic cognitive radio networks leads to additional chal-
lenges. In comparison, the expectation admits additive prop-
erty in the time domain while the effective capacity does not.
In particular, an expected value can be obtained by cumula-
tively averaging the random payoffs in a long period. However,
effective capacity does not admit the additive property due to
its nonlinearity. Thus, the task of designing effective-capacity
oriented intelligent channel selection approaches for multiple
users with the dynamic and incomplete information constraints
remains unsolved and is challenging.

Since the decisions of the users are interactive, we for-
mulate the problem of dynamic spectrum access in time-
varying environment as a non-cooperative game, in which
utility function is defined as the effective capacity. We prove
that it is an ordinal potential game which has at least one
pure strategy Nash equilibrium (NE). Due to the dynamic and
incomplete information constraints, existing game-theoretic
algorithms, e.g., the best response [18], fictitious play [19],
spatial adaptive play [6] and regret learning [7], can not be
applied to the considered dynamic networks. The reason is that
they are originally designed for static systems with complete
information. It is known that users in cognitive radios are able
to observe the environment, learn from history experiences,
and make intelligent decisions [2]. Following the CODIPAS
learning techniques [17] (COmbined fully DIstributed PAyoff
and Strategy), we propose a multi-agent learning algorithm to
achieve the Nash equilibria of the formulated dynamic spec-
trum access game in time-varying environment. To summarize,
the main contributions of this article are:

1) We formulate the problem of dynamic spectrum access
in time-varying environment as a non-cooperative game,
in which the utility function of each user is defined
as the effective capacity characterized by a statistical
QoS index. In particular, the utility function takes into
account not only the expectation of the achievable trans-
mission rate but also other statistic. We prove that the
game is an ordinal potential game and hence has at least
one pure strategy NE point.

2) Based on an approximated utility function, we propose
a multi-agent learning algorithm to achieve the pure
strategy NE points of the game with unknown, dynamic
and incomplete information constraints. The proposed

1It should be pointed out that the main focus of this paper is to consider both
expectation and other statistic in dynamic wireless networks. Thus, except for
the used effective capacity, other forms of optimization metric can also be
used. We will explain this more specific later.

algorithm is fully distributed and autonomous, since it
only relies on the individual information of a user and
does not need information about other players. Simula-
tion results show that the proposed learning algorithm
achieves satisfactory performance.

Note that there are some previous work which also consid-
ered effective capacity in dynamic spectrum access/cognitive
radio networks, e.g., [20]–[23]. The main differences in
methodology are: i) most existing studies considered optimiza-
tion of effective capacity in a centralized manner, while we
consider it in a distributed manner, ii) we consider the interac-
tions among multiple users and propose a multi-agent learning
algorithm to achieve stable solutions, and iii) the effective
capacity can not be obtained by cumulatively averaging the
random payoffs in a long period due to its nonlinearity, which
brings new challenges for the learning solutions.

Also, it should be pointed out that the presented game model
is motivated by the risk-sensitive game proposed in [17], which
admits the same utility function. The key differences in this
paper are: (i) the effective capacity has physical meaning
in wireless communications, i.e., it implies statistical QoS
provisioning, and (ii) we show that the dynamic spectrum
access game with effective capacity optimization is an ordinal
potential game.

The rest of the article is organized as follows. In Section II,
we give a brief review of related work. In Section III,
we present the system model and formulate the problem.
In Section IV, we present the dynamic spectrum access
game and investigate the properties of its NE, and propose
a multi-agent learning algorithm for achieving stable solu-
tions. In Section V, simulation results are presented. Finally,
we present discussion and draw conclusion in Section VI.

II. RELATED WORK

The problem of dynamic spectrum access in both open-
access and primary-secondary access scenarios has been
extensively investigated in the context of cognitive radio,
e.g., [6]–[11], [24]–[26]. These work mainly focused on static
networks, in which the channel states remain unchanged dur-
ing the learning and decision procedure. However, it has been
realized that the assumption of static channel is not always true
in practice. Recently, the problem dynamic spectrum access
with varying channel states began to draw attention, using
e.g., Markovian decision process (MDP) [13], online learning
algorithms for multi-armed bandit (MAB) problems [15],
and game-theoretic learning [12], [14]. The commonly used
optimization metric in these work is to maximize the expected
achievable transmission rate, which does not consider the QoS
requirement in the packet delay. In addition, the algorithms
in MDP and MAB models are mainly for scenarios with
single user. Compared with those existing studies, this work
is differentiated in that a statistical QoS requirement in packet
delay is considered for a multiuser DSA network with time-
varying channels.

It is noted that multi-agent learning algorithms for game-
theoretic solutions in wireless networks have been an active
topic. Specifically, stochastic learning automata [27] based
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algorithms for wireless communications can be found in the
literature, e.g., distributed channel selection for opportunistic
spectrum access [12], [14], distributed power control [28],
precoding selection for MIMO systems [29], spectrum man-
agement [30] and cooperative coordination design [31] for
cognitive radio networks. Furthermore, Q-learning based
dynamic spectrum access was reported in [32]–[34], various
combined fully distributed payoff and strategy-reinforcement
learning algorithms for 4G heterogeneous networks were
studied in [35], a trial-and-error learning approach for self-
organization in decentralized networks was studied in [36],
and several variations of logit-learning algorithms were studied
in [10] and [11]. In methodology, all of the above men-
tioned algorithms are originally designed for maximizing the
expectation and hence can not be applied. We consider a
new optimization metric that takes into account not only the
expectation but also other high-order moments.

The most related work is [37], in which a game-theoretic
optimization approach for effective capacity in cognitive fem-
tocells was studied. The key difference in this work is that
we focus on formulating the game model as well as designing
multi-agent learning with dynamic and incomplete information
constraints. Nevertheless, Lien et al. [37] only focused on
game formulation and analysis. Another related work is [38],
in which a satisfaction equilibrium approach is proposed for
QoS provisioning in decentralized networks. Note that a part of
this work with some preliminary results can be found in [39].

Note that NE may be inefficient due to its inherent non-
cooperative nature. There are some other solutions beyond
NE to improve the efficiency, e.g., pricing [40], auction [41],
Nash bargaining [42], and coalitional games [43], [44]. The
key difference in this paper is that the proposed solution does
not need information exchange while these solutions need
information exchange among users, which may cause heavy
communication overhead.

III. SYSTEM MODELS AND PROBLEM FORMULATION

A. System Model

We consider a distributed canonical network consisting of
N users and M channels. A user in canonical networks is
a collection of multiple entities with intra-communications
and there is a heading managing the whole community [45].
Examples of users in canonical networks given by, e.g.,
a WLAN access point with the serving clients [46], a small
cell base station with its mobile terminals [47], and a cluster
head with its belonged members. For presentation, denote the
user set as N , i.e., N = {1, . . . , N}, and the channel set as M ,
i.e., M = {1, . . . , M}. Due to fading in wireless environment,
the transmission rate of each channel is always time-varying.
To capture the rate fluctuations, the finite rate channel model is
applied [48]. In particular, the rate set of channel m is denoted
as Sm = {sm1, sm2, . . . , smK }, where smk indicates that the
channel can support certain transmission rate (packets/slot).
The corresponding rate-state probabilities are given by �m =
{πm1, . . . , πmK } and the expected transmission rate of channel
m is given by s̄m = ∑

k πmksmk . The users do not know the
rate distribution of the channels.

We assume that time is divided into slots with equal length
and the transmission rate of each channel is block-fixed in
a slot and changes randomly in the next slot. Specifically,
the achievable transmission rate of channel m for user n in
slot i is denoted as rnm(i), which is randomly chosen from
the rate set Sm . We consider heterogeneous spectrum in this
article, i.e., the transmission rate set and the corresponding
probability set vary from channel to channel.2

The task of each user is to choose an appropriate channel to
access. Without loss of generality, we assume that the number
of users is larger than that of the channels, i.e., N > M .
When more than one user chooses the same channel, they
share the channel using some multiple access mechanisms,
e.g., TDMA or CSMA. There is no central controller and no
information exchange among the users, which means that the
users should choose appropriate channels through learning and
adjusting.

Denote an as the chosen channel of user n, i.e., an ∈ M .
In the following, we analyze the achievable transmission rates
of the users for different multiple access mechanisms [39]:

1) If perfect TDMA is applied to resolve contention among
the users, the instantaneous achievable transmission rate
of user n is determined as follows: all the users share
the channel equally. Thus, the instantaneous achievable
rate of user n is as follows:

rn(t) = san (t)

1 + ∑

i∈N ,n �=i
I (an, ai )

, (1)

where san (t) is the instantaneous transmission rate of
channel an in time t , and I (an, an′) is the following
indicator function:

I (an, an′) =
{

1, an = an′

0, an �= an′
(2)

2) If perfect CSMA is applied, the instantaneous achievable
transmission rate of user n is determined as follows: only
a user can transmit successfully and all other users on the
same channel must stay silent. Thus, the instantaneous
achievable rate of user n is as follows:

rn(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

san (t), w.p.
( 1

1 + ∑

i∈N ,n �=i
I (an, ai )

)

0, w.p.
(

1 − 1

1 + ∑

l∈N ,n �=l
I (an, al)

) (3)

B. Preliminary of Effective Capacity

Since the channel transmission rate are time-varying, one
candidate optimization matric is to maximize the expected
transmission rate of user n, i.e., max E[rn(t)]. It is noted that
such an objective is not enough since the rate fluctuation may

2The feature of heterogeneous spectrum is caused by the flexible spectrum
usage pattern in current wireless communication systems. Examples are
given by: (i) in cognitive radio networks, the channels are occupied by the
primary users with different probabilities and (ii) in heterogeneous networks,
the channels belong to different networks have different rate sets.
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cause severe delay-bound violating probability whereas the
expected rate cannot reflect this event. To study the effect of
time-varying transmission rate, one would take into account
not only the expectation but also the variance and other higher-
order the moments. Among all possible solutions, the theory of
effective capacity of time-varying service process is a promis-
ing approach. Therefore, we use effective capacity to study
the problem of opportunistic channel access in heterogeneous
spectrum.

Using the large deviations theory [49], it was shown in [50]
that for a dynamic queuing system with stationary arrival and
service processes, the probability that the stationary queue
length L(t) is large than a threshold l is given by:

lim
l→∞

[ log Pr{L(t) > l}
l

]
= −θ, (4)

where θ serves as the exponential decay rate tail distribution
of the stationary queue length. Therefore, for sufficiently large
l, the queue length violating probability can be approximated
by Pr{L(t) > l} ≈ e−θl . It is shown that larger θ corresponds
to strict QoS requirement while small θ implies loose QoS
requirement. Furthermore, for a stationary traffic with fixed
arrival rate α, the delay-bound violating probability and the
length-bound violating probability is related by:

Pr{D(t) > d} ≤ c
√

Pr{L(t) > l}, (5)

where c is some positive constant and l = αd . From the
above analysis, it is seen that both the queue length violating
probability and delay-bound violating probability are deter-
mined by the exponential decay rate θ , which specifies the
QoS requirement. Thus, we will pay attention to θ in this
article.

For a time-varying service process with independent and
identical distribution (i.i.d.), the effective capacity is defined
as follows [50]:

C(θ) = − 1

θ
log

(
E[e−θx(t)]), (6)

where x(t) is the time-varying service process, and θ is the
statistical QoS index as specified by (4). The properties of
effective capacity is analyzed as follows [17]:

• For a given time-varying service, it is a decreasing
function with respect to θ , i.e.,

0 < θ2 < θ1 ⇒ C(θ1) < C(θ2). (7)

• For each θ > 0, the effective capacity is always less than
the expected capacity, i.e.,

C(θ) < E[x(t)], ∀θ > 0, (8)

which can be proved by Jensen’s inequality [51].
• As θ approaches zero, the effective capacity degrades to

the expected capacity, i.e.,

lim
θ→0

C(θ) = E[x(t)]. (9)

• If θ is sufficiently small, by performing Taylor expansion,
we have:

C(θ) = E[x(t)] − θ

2
var[x(t)] + o(θ), (10)

where var[x(t)] is the variance of x(t), and o(θ) is the
infinitely small quantity of higher order.

From (7) to (10), it is seen that the effective capac-
ity takes into account not only the expectation but also
other moments (including the variance and other high-order
moments) to capture the fluctuation in the time-varying service
rate.

C. Problem Formulation

For the considered dynamic spectrum access system, we use
the effective capacity as the optimization metric. Specifically,
denote θn as the statistical QoS index of user n, then the
achievable effective capacity of user n is given by

Cn(an, a−n, θn) = − 1

θn
log

(
E[e−θnrn (i)]), (11)

where rn(i) is the instantaneous transmission rate as specified
by (1) or (3), and a−n is the channel selection profile of all
the users except user n.

For each user, the optimization objective is to choose a chan-
nel to maximize the effective capacity.3 It has been pointed out
that information is key to decision-making problems [3]. For
the considered dynamic spectrum access with statistical QoS
provisioning, the information constraints can be summarized
as follows:

• Dynamic: the instantaneous channel transmission rates
are not deterministic, and the event of successfully access-
ing a channel in a slot is random. Furthermore, the instan-
taneous channel transmission rate is time-varying.

• Incomplete: the rate-state probabilities of each channel
are unknown to the users, and a user does not know
the QoS index of other users. Moreover, there is no
information exchange among the users.

Due to the above dynamic and incomplete information
constraints, it is challenging to achieve desirable solutions even
in a centralized manner, not to mention in an autonomous
and distributed manner. Learning, which is core of cognitive
radios [1], would achieve satisfactory performance in complex
and dynamic environment. In the following, we propose a
multi-agent learning approach to solve this problem.

IV. MULTI-AGENT LEARNING APPROACH

Since there is no central controller, the users behave
autonomously and selfishly, i.e., each user optimizes its indi-
vidual effective capacity. In addition, there is no information
exchange between the users, which means that cooperation is
not feasible in this scenario. This motivates us to formulate
a non-cooperative game to capture the interactions among

3Since the main concern of this paper is to consider both expectation and
other-order statistic for dynamic OSA networks, other forms of optimization
metric can also be used. For example, one may use the following objective:

O1 = α1E[x(t)] − α2var[x(t)],
where α1 and α2 are the weighted coefficients determined by the specific
practical applications. The reasons for using effective capacity as the opti-
mization goal in this paper are twofold: (i) effective capacity takes into both
expectation and other statistic into account, and (ii) it has physical meanings
related to QoS provisioning for time-varying OSA networks.
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users. The properties of the formulated game are investi-
gated. However, due to the dynamic and incomplete infor-
mation constraints, most existing game-theoretic algorithms
can not be applied. Therefore, we propose a multi-agent
learning approach for the users to achieve desirable solutions
autonomously and distributively.

A. Dynamic Spectrum Access Game With QoS Provisioning

The dynamic channel access game with QoS provisioning is
denoted as G = {N , θn, An, un}, where N is the player (user)
set, An is the action space of player n, θn is the QoS index
of player n and un is the utility function of player n. The
action space of each player is exactly the available channel
set, i.e., An ≡ M , ∀n ∈ N . In this game, the utility function
is exactly the achievable effective capacity, i.e.,

un(an, a−n) = − 1

θn
log

(
E[e−θnrn (i)]), (12)

In non-cooperative games, each player maximizes its individ-
ual utility. Therefore, the proposed dynamic spectrum access
game with QoS provisioning can be expressed as:

G : max un(an, a−n), ∀n ∈ N (13)

For a channel selection profile (an, a−n), denote the set of
users choosing channel m as Cm , i.e., Cm = {n ∈ N : an = m},
then the number of users choosing channel m can be expressed
as cm(an, a−n) = |Cm |=1 + ∑

i∈N ,n �=i
I (an, ai ).

B. Analysis of Nash Equilibrium (NE)

In this subsection, we present the concept of Nash equi-
librium (NE), which is the most well-known stable solution
in non-cooperative game models, and analyze its properties.
A channel selection profile a∗ = (a∗

1 , . . . , a∗
N ) is a pure

strategy NE if and only if no player can improve its utility
function by deviating unilaterally [19], i.e.,

un(a
∗
n , a∗−n) ≥ un(an, a∗−n), ∀n ∈ N , ∀an ∈ An (14)

To investigate the properties of the formulated game, we first
present the following definitions [18].

Definition 1: A game is an exact potential game (EPG) if
there exists an exact potential function φe : A1×· · ·×AN → R
such that for all n ∈ N , all an ∈ An , and a′

n ∈ An ,

un(an, a−n) − un(a
′
n, a−n) = φe(an, a−n) − φe(a

′
n, a−n) (15)

In other words, the change in the utility function caused by an
arbitrary unilateral action change of a user is the same with
that in the exact potential function.

Definition 2: A game is an ordinal potential game (OPG)
if there exists an ordinal potential function φo : A1 × · · · ×
AN → R such that for all n ∈ N , all an ∈ An , and a′

n ∈ An ,
the following holds:

un(an, a−n) − un(a′
n, a−n) ≥ 0

⇔ φo(an, a−n) − φo(a
′
n, a−n) ≥ 0 (16)

In other words, if the change in the utility function caused by
an arbitrary unilateral action change is increasing, the change
in the ordinal potential function keeps the same trend.

According to the finite improvement property [18], both
EPG and OPG admits the following two promising features:
(i) every EPG (OPG) has at least one pure strategy Nash
equilibrium, and (ii) an action profile that maximizes the
exact (ordinal) potential function is also a Nash equilibrium.

Theorem 1: The dynamic spectrum access game with effec-
tive capacity serving as the utility function is an OPG, which
has at least one pure strategy Nash equilibrium.

Proof: For presentation, we consider the scenarios that
TDMA is applied. To begin with, we omit the logarithmic
term in the utility function in (12) and denote:

vn(an, a−n) = E[e−θnrn (i)]. (17)

For an arbitrary player n ∈ Cm , we have:

vn(an, a−n) =
K∑

k=1

πmke−θn
smk
cm , (18)

where smk is the random transmission rate of channel m
and πmk is the corresponding probability. For presentation,

denote v
(k)
n (an, a−n) = πmke−θn

smk
cm , k = 1, . . . , K , which

are a family of functions. Motivated by Rosenthal’s potential
function [52], we define φ

(k)
v (an, a−n) : A1 × · · · AN → R as

φ(k)
v (an, a−n) =

M∑

m=1

cm(an,a−n)∑

l=1

πmke−θn
smk

l , (19)

and

φv(an, a−n) =
∑K

k=1
φ(k)

v (an, a−n). (20)

Now, suppose that player n unilaterally changes its channel
selection from an to a′

n (denote a′
n = m′ for presentation), the

change in v
(k)
n (an, a−n) caused by this unilateral change can

be expressed as:

v(k)
n (a′

n, a−n) − v(k)
n (an, a−n)

= πm′ke
−θn

sm′k
cm′ (a′

n ,a−n ) − πmke
−θn

smk
cm (an ,a−n ) (21)

Accordingly, the change in φ
(k)
v (an, a−n) is given by (22),

which is shown in the top of next page. The change in
the channel selection of player n only affects the users in
channel m and m′. Furthermore, we have cm′(a′

n, a−n) =
cm′(an, a−n) + 1 and cm(a′

n, a−n) = cm(an, a−n) − 1. There-
fore, (22) can be further expressed as (23), as shown at the
top the next page. Combining (21) and (23), the changes in
v

(k)
n (a′

n, a−n) and φ
(k)
v (an, a−n) are related by (24), as shown

at the top the next page. Therefore, for all n ∈ N , all an ∈ An

and a′
n ∈ An , it always holds that

vn(a′
n, a−n) − vn(an, a−n) = φv(a

′
n, a−n)−φv(an, a−n). (27)

Furthermore, due to the monotony of the logarithmic func-
tion, i.e., − log (x)

θn
is monotonously decreasing with respect

to x , the inequalities specified by (25) and (26), as shown at
the top the next page always hold. Now, define the potential
function as follows:

φu(an, a−n) = − 1

θn
log

(
φv(an, a−n)

)
, (28)
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φ(k)
v (a′

n, a−n) − φ(k)
v (an, a−n) =

M∑

m′=1

cm′∑

l=1

πm′ke−θn
sm′k

l −
M∑

m=1

cm∑

l=1

πmke−θn
smk

l (22)

φ(k)
v (a′

n, a−n) − φ(k)
v (an, a−n) =

(cm′ (an,a−n)+1∑

l=1

πm′ke−θn
sm′k

l +
cm(an,a−n)−1∑

l=1

πmke−θn
smk

l

)

= −
(cm′ (an,a−n)∑

l=1

πm′ke−θn
sm′k

l +
cm(an,a−n)∑

l=1

πmke−θn
smk

l

)

= πm′ke
−θn

sm′k
cm′ (an ,a−n )+1 − πmke

−θn
smk

cm (an ,a−n ) (23)

v(k)
n (a′

n, a−n) − v(k)
n (an, a−n) = φ(k)

v (a′
n, a−n) − φ(k)

v (an, a−n), ∀n, k, an, a′
n (24)

[
− 1

θn
log

(
vn(an, a−n)

) + 1

θn
log

(
vn(a′

n, a−n)
)][

vn(an, a−n) − vn(a′
n, a−n)

]
≤ 0, ∀an, a′

n (25)

[
− 1

θn
log

(
φv(an, a−n)

) + 1

θn
log

(
φv(a

′
n, a−n)

)][
φv(an, a−n) − φv(a

′
n, a−n)

]
≤ 0, ∀an, a′

n (26)

where φv(an, a−n) is given by (20). Also, according
to (12) and (17), the utility function can be re-written as
follows:

un(an, a−n) = − 1

θn
log

(
vn(an, a−n)

)
(29)

Then, combining (27), (25), (26), (28) and (29) yields the
following inequality:
(
un(a′

n, a−n)−un(an, a−n)
)(

φu(a′
n, a−n)−φu(an, a−n)

) ≥ 0,

(30)

which always holds for all n ∈ N , an ∈ An and a′
n ∈ An .

According to Definition 2, it is proved that the formulated
opportunistic channel access game with QoS provisioning is
an OPG with φu serving as an ordinal potential function.
Therefore, Theorem 1 is proved.4

C. Multi-Agent Learning for Achieving Nash Equilibria

Since the formulated dynamic spectrum access game is an
OPG, as characterized by Theorem 1, it has at least one pure
strategy Nash equilibrium. In the literature, there are large
number of learning algorithms for an OPG to achieve its Nash
equilibria, e.g., best (better) response [18], fictitious play [19]
and no-regret learning [7]. However, these algorithms require
the environment to be static and need to know information of
other users in the learning process, which means that these
algorithms can not be applied to the considered dynamic
system. Based on the CODIPAS learning techniques [17]
(COmbined fully DIstributed PAyoff and Strategy), we propose
a multi-agent learning algorithm to achieve the Nash equilibria
of the formulated opportunistic channel access game in the

4The presented proof is for scenarios with TDMA policy. If CSMA policy
is applied, (17) is given by:

vn (an , a−n) = 1

cm

(∑K

k=1
πmk e−θn smk

)
+ 1 − 1

cm

Then, the same result characterized by (27) can be obtained using similar
proof lines in [12]. Finally, Theorem 1 can also be proved following the same
methodology.

presence of unknown, dynamic and incomplete information
constraints.

For the formulated dynamic spectrum access game with
QoS provisioning, the utility function of player n, charac-
terized by (12), can be re-written as:

un(an, a−n) = lim
T →∞ − 1

T θn
log

(∑T

i=1
e−θnrn (i)

)
. (31)

It is seen that the utility function does not enjoy the additive
property with respect to the random payoff part rn(i). On the
contrary, it leads to multiplicative dynamic programming in
essence [17]. To cope with this problem, the following approx-
imated part can be obtained by performing Taylor expansion
of the logarithmic function [17]:

un(an, a−n) = 1 − E[e−θnrn (i)]
θn

+ o(rn(i)), (32)

where o(rn(i)) is the infinitely small quantity of higher order.
By omitting the logarithmic term, we define u′

n(an, a−n) =
1−E[e−θnrn (i)]

θn
, which is an approximation of un(an, a−n). It can

be proved that u′
n(an, a−n) has some important properties with

un(an, a−n). In particular, limθ→0 u′
n(an, a−n) = E[r(i)].

For the expected part of u′
n(an, a−n), it can be written as:

yn(T ) = 1

T + 1

∑T

i=0
e−θnrn (i), (33)

which can be further re-written in the following recursive
form [17]:

yn(T ) = (
1 − 1

T + 1

)
yn(T − 1) + 1

T + 1
e−θnrn (T )

= yn(T − 1) + 1

T + 1

(
e−θnrn (T ) − yn(T − 1)

)
(34)

Based on the above recursive analysis, we propose a multi-
agent learning algorithm, which is derived from the CODIPAS
learning techniques [17]. To begin with, we extend the for-
mulated dynamic spectrum access game into a mixed strat-
egy form. Let P(i) = (p1(i), . . . , pn(i)) denotes the mixed
strategy profile in slot i , where pn(i) = (pn1(i), . . . , pnM (i))
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Algorithm 1 Multi-Agent Learning Algorithm for Dynamic
Spectrum Access With QoS Provisioning

Initialization: set the iteration index i = 0, the initial chan-
nel selection probability vector as pn(0) = ( 1

M , . . . , 1
M ),

and the initial estimation Qnm(0) = 0,∀n, m. Let each
player n randomly select a channel an(0) ∈ An with equal
probabilities.
Loop for i = 0, 1, . . . ,

Channel access and get random payoff : with the channel
selection profile (an(i), a−n(i)), the players contend for the
channels and get random payoffs rn(i), which are determined
by (1) or (3).

Update estimation: each player updates the estimations
according to the following rules:

Qnm(i + 1) = Qnm(i) + λi I (an(i), m)
(1 − e−θnrn (i)

θn

− Qnm(i)
)
, (35)

where λi is the step factor, I (an(i), m) = 1 if an(i) = m
and I (an(i), m) = 0 otherwise.

Update channel selection probabilities: each player
updates its channel selection probabilities using the follow-
ing rule:

pnm(i + 1) = pnm(i)(1+ηi)
Qnm(i)

∑M
m′=1 pnm′(i)(1+ηi)Qnm′ (i)

, ∀n, m (36)

where ηi is the learning parameter. Based on the updated
mixed strategy, the players choose the channel selection
an(i + 1) in the next iteration.
End loop

is the probability vector of player n choosing the channels.
The underlying idea of the proposed multi-agent learning
algorithm is that each player chooses a channel, receives
a random payoff, and then updates its channel selection in
the next slot. Specifically, it can be summarized as follows:
i) in the first slot, each player chooses the channels with
equal probabilities, i.e., pn(0) = ( 1

M , . . . , 1
M ),∀n ∈ N ,

ii) at the end of slot t , player n receives random pay-
off rn(t) and constructs estimation Qnm for the aggregate
reward of choosing each channel, and iii) it updates its
mixed strategy based on the estimations. Formally, the illus-
trative paradigm of the multi-agent learning algorithm for
dynamic spectrum access with QoS provisioning is shown
in Fig. 1 and the procedure is formally described in
Algorithm 1.

The properties of the proposed multi-agent learning algo-
rithm are characterized by the following theorems. First, using
the method of ordinal differential equalization (ODE) approx-
imation, the long-term behaviors of the probability matrix
sequence P(i) and the estimation sequence Q(i) are character-
ized. Secondly, the stable solutions of the approximated ODE
are analyzed.

To begin with, define ωn(m, p−n) as the expected value
of u′

n(an, a−n) when player n chooses channel m while all
other players choose their channels according to the mixed
strategies, i.e.,

ωn(m, p−n)

= Ea−n [u′
n(an, a−n)]|an=m

=
∑

ak ,k �=n

u′
n(a1, . . . , an−1, m, an+1, . . . , aN )

∏

k �=n

pkak (37)

Proposition 1: With sufficiently small λi and ηi , the chan-
nel selection probability matrix sequence pnm(i) can be
approximately characterized by the following ODE:

dpnm(t)

dt
= pnm(t)

[
ωn(m, p−n)

−
∑M

m′=1
pnm′(t)ωn(m′, p−n)

]
(38)

Proof: The following proof follows the lines for proof
in [17], which are mainly based the theory of stochastic
approximation.

First, the expected changes of the estimation Qnm (i) in one
slot is as follows:

E
( Qnm(i + 1) − Qnm(i)

λi
|pn(i)

)

= pnm(i)
(1 − E[e−θnrn (i)]

θn
− Qnm (i)

)
. (39)

If the step factor λi is sufficiently small, the discrete time
process (39) can be approximated by the following differential
equalization:

d Qnm(t)

dt
= pnm(i)

(1 − E[e−θnrn (t)]
θn

− Qnm(t)
)
. (40)

Second, the changes of the channel selection probability in
one slot is as follows:

pnm(i + 1) − pnm(i)

ηi

= 1

ηi

[ pnm(i)(1 + ηi )
Qnm(i)

∑M
m′=1 pnm′(i)(1 + ηi )

Qnm′ (i)
− pnm(i)

]

= pnm(i)
∑M

m′=1 pnm′(i)(1 + ηi )Qnm′ (i)

×
[ (1 + ηi )

Qnm(i) − 1

ηi
−

M∑

m′=1

pnm′(i)
(1 + ηi )

Qnm′ (i) − 1

ηi

]
.

(41)

Using the fact that (1+ηi )
x −1

ηi
→ x as ηi → 0, and taking

the conditional expectation, the discrete time process (40)
can be approximated by the following differential ordinal
equalization:

dpnm(t)

dt
= pnm(t)

(
E[Qnm(t)]−

∑M

m′=1
pnm′(t)E[Qnm′(t)]

)
.

(42)

Furthermore, according to the asymptotic convergence of
the estimation updating process [17], we have E[Qnm(t)] →
ωn(m, p−n) for (42). Therefore, Theorem 1 is proved.
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Fig. 1. The illustrative paradigm of the multi-agent learning algorithm for dynamic spectrum access in time-varying environment with QoS provisioning.

For the proposed multi-agent algorithm, the stable solutions
of (38) and the Nash equilibria of the formulated channel
access game with approximated utility function u′

n(an, a−n)
are related by the following proposition [17], [27].

Proposition 2: The following statements are true for the
proposed multi-agent algorithm:

1) All the stable stationary points of the ODE are Nash
equilibria.

2) All Nash equilibria are the stationary points of the ODE.

Theorem 2: With sufficiently small λi and ηi , the proposed
multi-agent algorithm asymptotically converges to Nash equi-
libria of the formulated dynamic spectrum access game with
approximated utility function u′

n(an, a−n).
Proof: The proof follows the lines for proof in [12],

[17], and [27]. It is seen that u′
n(an, a−n) = 1−vn(an,a−n)

θn
,

where vn(an, a−n) is defined in (17). Therefore, there
also exists an ordinal potential function for u′

n(an, a−n).
Specifically, the potential function for u′

n(an, a−n) is
expressed as:

φu′(an, a−n) = 1 − φv(an, a−n)

θn
, (43)

where φv(an, a−n is characterized by (20).
We define the expected value of the potential function over

mixed strategy profile P as 
u′(P) and the expected value of
the potential function when player n chooses a pure strategy
m while all other active players employ mixed strategies p−n

as 
u′(m, p−n). Since 
u′(P) = ∑
m pnm
u′(m, p−n), the

variation of 
u′(P) can be expressed as follows:

∂
u′(P)

∂pnm
= 
u′(m, p−n) (44)

We can re-write the ODE specified by (38) as follows:

dpnm(t)

dt
= pnm(t)

[ ∑M

m′=1
pnm′ωn(m, p−n)

−
∑M

m′=1
pnm′(t)ωn(m′, p−n)

]
(45)

The derivation of 
u′(P) is given by (46), which is shown
in the top of next page. According to the properties of EPG
and OPG, we have:

[

u′(m, p−n) − 
u′(m′, p−n)

]

×
[
ωn(m, p−n) − ωn(m

′, p−n)
]

> 0 (47)

Therefore, we have d
u′ (P)
dt ≥ 0, which implies that 
u′(P)

increases as the algorithm iterates. Furthermore, since 
u′(P)
is upper-bounded, it will eventually converge to some maxi-
mum points, as d
u′ (P)

dt = 0. Finally, we have the following
relationships:

d
u′(P)

dt
= 0

⇒ ωn(m, p−n) − ωn(m′, p−n) = 0,∀n, m, m′

⇒ dpnm

dt
= 0,∀n, m

⇒ dP
dt

= 0 (48)

The last equation shows that P eventually converges to the
stationary point of (38). Therefore, according to Proposition 2,
it is proved that the proposed multi-agent learning algorithm
converges to Nash equilibria of the formulated opportunis-
tic channel access game with approximated utility function
u′

n(an, a−n)., which proves Theorem 2.
Remark 1: It is noted the proposed algorithm is distrib-

uted and uncoupled, i.e., each player makes the decision
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d
u′(P)

dt
=

∑

n,m

∂
u′(P)

∂pnm

dpnm

dt

=
∑

n,m


u′(m, p−n)pnm(t)
[ ∑M

m′=1
pnm′ω(m, p−n) −

∑M

m′=1
pnm′(t)ω(m′, p−n)

]

=
∑

n,m


u′(m, p−n)pnm(t)
∑M

m′=1
pnm′

[
ω(m, p−n) − ω(m′, p−n)

]

=
∑

n,m,m′
pnm(t)pnm′
u′(m, p−n)

[
ω(m, p−n) − ω(m′, p−n)

]

= 1

2

∑

n,m,m′
pnm(t)pnm′

[

u′(m, p−n) − 
u′(m′, p−n)

][
ω(m, p−n) − ω(m′, p−n)

]
(46)

autonomously and does not to know information about other
players. However, it should be pointed out that the estimation
of Q-value, which is originally derived from the recursive
equalization (34), is not equal to the expectation of effec-
tive capacity. Actually, the Q-value is used to represent the
winningness for a user choosing a particular channel. More
specifically, each user chooses a channel according to the
Q-values and then updates them based on the outcome of last
channel selections. In general, a user prefers to choose chan-
nels with high Q-values. As the users randomly change their
channel selections, the Q-values are also updated randomly in
time. Thus, the estimation is generally not equal to the actual
expectation.

As no prior information is available in the initial stage,
the users chooses the channels with equal probabilities, i.e., the
Q-values for all the channels are set to the same. If the initial
choices are different, the algorithm still converges to a stable
solution. However, different initial parameters may result in
different stable solutions. The reasons are as follows: the
instantaneous channel rates, the channel selection profiles and
the user contentions are random, which leads to the random
payoff after each play. Then, the converging channel selection
is also not deterministic.

Remark 2: The choice of λ is to balance the tradeoff
between exploration and exploitation. In practice, the value
of λ decreases as the algorithm iterates. Specifically, in the
beginning state, the users want to explore all channels and
hence the Q-values on each channel are updated significantly.
However, as the algorithm iterates, the users want to exploit the
best channel and the Q-values are updated trivially. In practice,
we can use λ = 1/t , where t is the iteration index. Also, the
value choice of η balances the tradeoff between performance
and convergence speed. For larger value of η, it converges
rapidly but it may converge to local optimal solutions. For
smaller values, it has more opportunities to find global optimal
solutions but it may take more times. Thus, the learning
parameters should be application-dependent [12].

Remark 3: Although the above convergence analysis is for
the game with the approximated utility function u′

n , the con-
vergence for the original game can be expected. The reason is
that the approximated utility function is close to the original
utility function. In particular, its convergence will be verified
by simulation results in the next section.

V. SIMULATION RESULTS AND DISCUSSION

We use the finite state channel model to characterize the
time-varying transmission rates of the channels. Specifically,
with the help of adaptive modulation and coding (ACM),
the channel transmission rate is classified into several
states according to the received instantaneous signal-to-noise-
ratio (SNR). The state classification is jointly determined by
the average received SNR γ and the target packet error rate pe.
The HIPERLAN/2 standard [53] is applied in the simulation
study, in which the channel rate set is given by {0, 1, 2, 3, 6}.
Here, the rate is defined as the transmitted packets in a slot.
To make it more general, we consider Rayleigh fading and set
different average SNR for the channels.5 Using the method
proposed in [48], the state probabilities can be obtained for
a given average SNR and a certain packet error rate. Taking
γ = 5 dB and pe = 10−3 as an example, the state probabilities
are given by π = {0.3376, 0.2348, 0.2517, 0.1757, 0.002}.
Furthermore, the learning parameters are set to λi = 1

t
and ηi = 0.1 unless otherwise specified. The CSMA policy
is applied in the simulation study.6 We first present the
convergence behaviors of the proposed multi-agent learning
algorithm, and then investigate the effective capacity perfor-
mance.

A. Convergence Behavior

In this subsection, we study the convergence behavior of the
proposed multi-agent learning approach. Specifically, there are
eight users and five channels with average received SNR being
5dB, 6dB, 7dB, 8dB and 9dB respectively. For convenience
of presentation, the QoS indices of all the users are set
to θ = 10−2.

For an arbitrarily chosen user, the evolution of channel
selection probabilities are shown in Fig. 2. It is noted that the
selection properties converge to a pure strategy ({0,0,0,1,0})
in about 400 iterations. These results validate the convergence
of the proposed multi-agent learning algorithm with dynamic
and incomplete information. In addition, for an arbitrarily

5It is noted that such a configuration is just for the purpose of illustration.
The proposed multi-agent learning approach can applied to other scenarios.

6Due to the limited space, we only present simulation results for CSMA
policy here. Simulation results for TDMA policy can be found in [39], which
admits similar tendencies as expected.
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Fig. 2. The evolution of channel selection probabilities of an arbitrarily
chosen user (the number of users is N = 5 and the QoS indices of the users
are set to θ = 10−2).

Fig. 3. Evolution comparisons between the effective capacity and the
approximated one for small QoS index (θ = 10−2).

choosing user, the evolution of effective capacity, as char-
acterized by (12), and the approximated effective capacity,
as characterized by (32), are shown in Fig. 3-5. It is noted
from the figures that the effective capacity also converges in
about 500 iterations. The interesting results are: i) for small
QoS index, e.g., θ = 10−2, the effective capacity is almost
the same with the proposed approximation effective capacity,
ii) for moderate QoS index, e.g., θ = 5 × 10−2, there is a
slight performance gap (less than 0.05), iii) for large QoS
index, e.g., although the performance gap increases, it is still
acceptable (about 0.1). These results validate not only the
convergence of the proposed learning algorithm but also the
effectiveness of the proposed approximated formulation.

We study the convergence behavior versus the learning
parameter η for different QoS indices and the comparison
results for different parameters are shown in Fig. 6. These
results are obtained by performing 200 independent trials and
then taking the expectation. It is noted from the figure that
the convergence behaviors are different for different QoS
indices. In particular, for relatively small QoS indices, e.g.,
θ = 10−2, the final achievable performance increases as the
learning parameter η decreases. On the contrary, for relatively
large QoS indices, e.g., θ = 10−1, the trend is opposite.
Also, it is noted although it takes about 2000 iterations
for the proposed multi-agent learning algorithm to converge,

Fig. 4. Evolution comparisons between the effective capacity and the
approximated one for moderate QoS index (θ = 5 × 10−2).

Fig. 5. Evolution comparisons between the effective capacity and the
approximated one for large QoS index (θ = 10−1).

Fig. 6. The convergence behaviors versus different learning parameter η for
different QoS indices (the number of users is N = 8).

it achieves satisfactory performance rapidly (e.g., it achieves
90% performance in about 500 iterations). Thus, the choice of
the algorithm iteration is application-dependent.

As the convergence iterations is random, we study its
cumulative distribution function (CDF) in Fig. 7. It is shown
that for a given number of channels, e.g., M = 5, increasing
the number of users (for example from N = 5 to N = 12)
decreases the convergence speed. Also, for a given number of
users, e.g., N = 12, increasing the number of channels (for
example from M = 5 to M = 10) accelerates the convergence
speed. The reasons is as follows: when the number of users
increases, the spectrum becomes crowded and hence it needs
more time to converge.
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Fig. 7. The communicative distribution function (CDF) of convergence
iterations for different number of users (N ) and number of channels (M).

Fig. 8. The achievable aggregate effective capacity of the uses for different
statistical QoS indices.

B. Throughput Performance

In this subsection, we evaluate the throughput performance
of the proposed multi-agent learning algorithm. We study the
achievable effective capacities of the users with different QoS
indices. Furthermore, we compare the proposed multi-agent
learning algorithm with the random selection approach. Under
the dynamic and incomplete information, random selection
is an instinctive approach. For convenience of simulating,
the QoS indices of all the users are set to the same, otherwise
specified.

To begin with, the achievable effective capacities of the
users with different QoS indices are shown in Fig. 8. There are
also five channels with the average received SNR being 5dB,
6dB, 7dB, 8dB and 9dB respectively. The results are obtained
by taking 5000 independent trials and then taking expectation.
It is noted that for a given QoS index, e.g., θ = 10−2, increas-
ing the number of the users leads to significant increases in

Fig. 9. The comparison results between the proposed multi-agent learning
approach and the SLA approach for expected throughput optimization.

the aggregate effective capacity when the number of users
is small, e.g., N ≤ 11. However, it is also shown that the
increase in the aggregate effective capacity becomes trivial
when the number of users is large, e.g., N > 11. The reason
is that the access opportunities are abundant when the number
of the users is small while they are saturated when the
number of users is large. Also, for a given number of users,
e.g., N = 7, the achievable aggregate increases as the QoS
indices decrease. In particular, as the QoS indices become
sufficiently small, e.g., θ < 10−3, the achievable effective
capacity moderates. The reasons are as follows: 1) smaller
value of QoS index implies loose QoS requirements in the
packet violating probability and hence leads to larger effective
capacity, and 2) when the QoS index approaches zero, say,
when it becomes sufficiently small, the effective capacity
degrades to the expected capacity. It is noted that the presented
results in this figure comply with the properties of the effective
capacity, which were analyzed in Section III.B.

Secondly, in order to validate the proposed learning
approach for effective capacity optimization, we compare it
with an existing stochastic learning automata algorithm (SLA),
which is an efficient solution for expected throughput opti-
mization in dynamic and unknown environment [12]. Specif-
ically, the SLA algorithm is implemented for maximizing
the expected throughput explicitly rather than maximizing the
effective capacity, and then the achievable effective capacity
is calculated over the converging channel selection profile.
There are also five channels with the average received SNR
being 5dB, 6dB, 7dB, 8dB and 9dB respectively, and the QoS
indices of the users are randomly chosen from the following
set A = [0.2 × 10−1, 0.5 × 10−1, 10−1, 2 × 10−1, 5 × 10−1,
0.2×10−2, 0.5×10−2, 10−2, 10−3] and the learning step size
of SLA is set to b = 0.08. The comparison results are shown
in Fig. 9. It is noted from the figure that the performance of the
proposed learning algorithm is better than the SLA algorithm
when N > 8, which follows the fact that the SLA algorithm is
for expected throughput optimization and is not for effective
capacity optimization. However, when the number of users
is small, i.e., N < 8, the SLA approach performs better.
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Fig. 10. The comparison results between the proposed multi-agent learning
approach and random approach with fixed N/M = 2 (the QoS indices are set
as θ = 10−2).

The reasons can be analyzed as follows: (i) the competition
among users is slight in this scenario, and (ii) the SLA
approach converges to more efficient channel selection profiles
in this scenario. The presented results again validate the
effectiveness of the proposed multi-agent learning approach
for effective capacity optimization.

We also compare the proposed learning algorithm with the
random selection approach in Fig. 9. It is noted from Fig. that
the achievable performance of the approaches increase rapidly
as N increases when the number of users is small, e.g.,
N < 15, while it becomes moderate when the number of users
is large, e.g., N > 20. The reasons are: 1) when the multi-
agent learning approach finally converges to a pure strategy,
the users are spread over the channels. On the contrary,
the users are in disorder with the random selection approach,
which means that some channels may be crowded while
some others may be not occupied by any user. 2) the access
opportunities are abundant when the number of users is small,
which means that adding a user to the system leads to rela-
tively significant performance improvement. On the contrary,
the access opportunities are saturated when the number of
users is large, which means that the performance improvement
becomes small. 3) when the number of users becomes suffi-
ciently larger, the users are asymptotically uniformly spread
over the channels. Thus, the performance gap between the two
approaches is trivial.

Thirdly, considering the tendency in future wireless net-
works where the networks are dense and more resources are
available [47] (e.g. use of high frequencies), we evaluate the
proposed learning algorithm for denser networks with fixed
ratio of number of users and channels N/M = 2 in Fig. 10.
The QoS indices of the users are set to θ = 10−2, and the aver-
age received SNR of the channels are randomly selected from
[5dB, 6dB, 7dB, 8dB, 9dB, 10dB] in each trial. The results are
obtained by taking 5000 independent trials and then taking
expectation. It it noted from the figure that both approaches
increase linearly as the number of channels increases.

Also, it is noted from the figure that the proposed multi-
agent learning algorithm significantly outperforms the random
selection approach while the performance gap increases as
the number of users increases. These results validate the
effectiveness of the proposed learning algorithm in future
wireless networks.

VI. CONCLUSION

In this article, we investigated the problem of dynamic
spectrum access in time-varying environment. To capture the
expectation and fluctuation in dynamic environment, we con-
sidered effective capacity, which takes into account not only
the expectation but also other-order moments, to character-
ize the statistical QoS constraints in packet delay. We for-
mulated the interactions among the users in the dynamic
environment as a non-cooperative game and proved it is an
ordinal potential game which has at least one pure strategy
Nash equilibrium. Based on an approximated utility func-
tion, we proposed a multi-agent learning algorithm which is
proved to achieve stable solutions with dynamic and incom-
plete information constraints. The convergence of the pro-
posed learning algorithm is verified by simulation. In future,
we plan to establish a general distributed optimization frame-
work which considers the expectation and other higher-order
moments.

Due to the fact that the considered dynamic spectrum access
network is fully distributed and autonomous, NE solution is
desirable in this work. However, when information exchange
is available, some more efficient solutions beyond NE, e.g.,
the before-mentioned Nash bargaining and coalitional games,
should be developed. In future work, we also plan to develop
solutions beyond NE for spectrum management in dense
dynamic and heterogeneous networks, in which there is a
controller in charge for the users and information exchange
is feasible.
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