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ABSTRACT Efficient power line outage identification is an important step which ensures reliable and
smooth operation of smart grids. The problem of multiple line outage detection (MLOD) is formulated as a
combinatorial optimization problem and known to be NP-hard. Such a problem is optimally solvable with the
help of an exhaustive evaluation of all possible combinations of lines in outage. However, the size of search
space is exponential with the number of power lines in the grid, which makes exhaustive search infeasible for
practical sized smart grids. A number of published works on MLOD are limited to identify a small, constant
number of lines outages, usually known to the algorithm in advanced. This paper applies the Bayesian
approach to solve the MLOD problem in linear time. In particular, this paper proposes a low complexity
estimation of outage detection algorithm, based on the classical estimation of distribution algorithm. Thanks
to an efficient thresholding routine, the proposed solution avoids the premature convergence and is able
to identify any arbitrary number (combination) of line outages. The proposed solution is validated against
the IEEE-14 and 57 bus systems with several random line outage combinations. Two performance metrics,
namely, success generation ratio and percentage improvement have been introduced in this paper, which
quantify the accuracy aswell as convergence speed of proposed solution. The comparison results demonstrate
that the proposed solution is computationally efficient and outperforms a number of classical meta-heuristics.

INDEX TERMS Line outage identification, smart grids, estimation of distribution algorithm, power
networks.

I. INTRODUCTION
Phasor measurement units (PMUs) are devices which provide
synchronized, real time, dense and highly accurate measure-
ments of current and voltage phasors [1]. PMUs are widely
used for automation and state information collection of wide-
area measurement systems [2], [3]. They have been installed
by a large number of utility companies across the globe and
help to perform key system tasks including protection, obser-
vation and control of power networks [4]. The overview of
security and privacy related issues in smart grid are discussed
in [5].

A. MOTIVATION
PMUs play a vital role in the identification of line outages
of geographically large power grids. They are installed on a
number of power system buses. One of the PMUs is taken as

a reference and the phasor measurements of other PMUs are
relative to it. When a single or multiple power lines undergo
an outage, the relative phase angles are changed and hence
the system’s power flow is disturbed. Due to overloading, the
cascaded tripping of power lines leads to a complete system
blackout [6].

Another smart grid automation technique is supervisory
control and data acquisition (SCADA) [7]. However, PMUs
have demonstrated a significant advantage over SCADA in
a number of ways including measurement resolution, state
observation capability and coverage area [8]. Some key
differences between SCADA and PMU technologies are
highlighted in Table 1. In addition to power system protec-
tion, PMUs are also used for implementing a load shedding
method that consists of simultaneous reactive and active
power to address the frequency and voltage stability issues
respectively [9]. Moreover, PMUs increase the power service
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TABLE 1. SCADA vs. PMU [8].

quality by precise analysis, automated correction and distur-
bance recording of sources of system degradation [10].

B. RELATED WORK
The state-of-the-art protection techniques for power grids can
be classified into two broad categories. Firstly, it includes
strategies which determine the optimal location and number
of PMUs to achieve a grid-wide observability. Secondly, the
techniques which exploit rich PMU data for efficient iden-
tification of power lines in outage. Some important works
are discussed as follows. The work in [11] proposes a two
step PMU placement technique. At first, linear programming
is used to obtain an optimum upper bound on the number
of PMUs. Then, a branch and bound algorithm is used to
obtain a near optimal placement solution. An integer lin-
ear programming based PMU placement is also considered
in [12]. Moreover, the work also studies the effect of a single
PMU loss or a single line outage on optimal PMUs placement.
The work in [13] proposes a probabilistic approach for PMU
placement. Twomain objectives are achieved. At first, system
observability is ensured with minimum number of PMUs.
Secondly, the multi-objective problem is solved with the help
of an augmented epsilon constraint method to achieve Pareto
optimal points. In [14], an artificial intelligence approach
based on support vector machines (SVM) is proposed. Using
the PMU data, the work trains all candidate network topolo-
gies under several loading conditions in order to detect single
line outages. In [15], PMU’s phasors and other system topol-
ogy parameters are used for optimal detection of single line
outages. This work is extended in [16], in which the pre- and
post-event information of the topology is used to solve the
double line outage identification problem.

Mathematically, the approaches used in [15] and [16]
are combinatorial in nature. Multiple line outage detec-
tion (MLOD) problem is also a kind of combinatorial
optimization problem, which requires comprehensive infor-
mation of all possible network topologies. Therefore, due
to drastic increase in the search space, the approaches pro-
posed in [15] and [16] cannot be used. In [17], a solu-
tion is proposed which adopts a compressed sensing
technique. The solution named as least absolute shrinkage
and selection operator (LASSO) is capable to detect outage

over multiple lines. However, the accuracy of solution is
highly affected by a parameter which depends on a-priori
information about perturbed noise and outage probability.
Rubinstein and Kroese in [18] propose a cross entropy opti-
mization (CEO), a stochastic search method for detection
of multiple line outages. CEO demonstrates better detection
capability as compared to LASSO. Banerjee et al. [19] sug-
gested an approach named quickest change detection. The
authors adopted a linearized model of power system and pro-
posed a statistical method for detection and isolation of line
outages. Emami and Abur [20] propose a method which uses
internal system measurements in order to track the external
network changes. Further, integer linear programming is used
for the detection of minor and major network changes.

Bijwe et al. [21] proposed a method which uses voltage
deviation and overload performance metrics in order to rank
line outage contingencies in AC-DC systems. The work uses
Jacobian matrix to calculate current compensations for line
outages and uses a coupled AC-DC flowmodel. IEEE 14-bus
system is used to test the proposed model and compare it with
rigorous AC-DC load flowmethods. Hao et al. [22] proposed
a method based on compressive sensing to identify multiple
line outages and sudden impedance changes in power system.

The work in [23] simulates the power system state after
the event of a sudden outage of an element. The authors
adopted the AC power flow model and proposed a simple
method to determine the important parameters of the formu-
lated problem. In [24], N − 1 criterion is investigated for an
evolving power grid along with its impact on cascaded line
outages. In [25], the measurement errors in DC power flow
are identified by exploiting the singularity of the impedance
matrix and sparsity of the error vector. The proposed sparsity-
based decomposition-DC power flow approach is able to
compute themeasurement errors accurately, when themethod
is verified on the IEEE 118-bus and 300-bus systems. In [26],
the work exploits the historical weather data from NCDC,
along with the historical interruption information, and pre-
dicts the power system interruptions. A minimum variance
unbiased estimators (MVUEs) is derived in [27] for active
power based on the voltage phase at each node of the power
system. It is concluded that power system operations can
be more accurately estimated if there is lower correlation
between the noise vector elements. In [28], a power loss
minimization scheme is presented. The proposed scheme is
based on oblivious network design, and is therefore termed
as oblivious routing-based power flowmethod. The approach
can be applied for the large scale power loss minimization.

An oblivious routing economic dispatch (ORED) algo-
rithm is presented in [29], for congestion in smart power
systems. It is claimed that the proposed method works inde-
pendent of the network topology, and is therefore suitable
for large scale economic dispatch problems. The ORED
algorithm outperforms the other state-of-the-art economic
dispatch algorithms in terms of congestion management and
power loss minimization. In [30], fuzzy models are built
of overhead power line outages. In [31], Galton-Watson
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TABLE 2. Summary of some published works on power line outage detection.

branching process model is proposed in order to estimate
the load shed propagation in cascaded line outages. In [32],
PMU data is exploited in order to identify the line out-
age locations within a specified geographical area of the
power system. The proposed approach assumes PMUs to be
placed within and at the boundary of the area. The proposed
approach is unable to identify the line outages outside the
boundary of the area.

Table 2 presents a summary of published solutions for line
outage detection (LOD). Broadly, the published solutions are
categorized on the basis of line outage detection flexibility.
In the first column, there are solutions which are limited to
detect only single line outage. In the second column, there are
solutions with multiple line outage detection (MLOD) capa-
bility. However, they are named as fixed MLOD solutions
as they are limited to identify only a fixed (usually small)
number of line outages. Almost all publishedworks on outage
detection fall in to the first two categories.

C. CONTRIBUTIONS
In this work, we have proposed a solution based on a proba-
bilistic Bayesian approach which solves the MLOD problem
in linear time. The proposed solution is named as estimation
of outage detection (EOD) and based on estimation of distri-
bution algorithm (EDA). The main contribution of this work
are:

• The proposed EOD solution has capability to detect and
identify any combination and number of lines in outage.

• An efficient thresholding routine is applied to update
the probability distribution of candidate solutions. This
helps to avoid the local optima. The EOD algorithmwith
thresholding is thus named as EOD-Threshold.

• The proposed algorithm is simulated for several IEEE
bus systems with random line outage combinations.

FIGURE 1. Schematic overview of the paper.

The comparison results show that the proposed EOD
solution outperforms a number of other meta-heuristics
in terms of success and convergence rates.

D. PAPER ORGANIZATION
In Fig. 1, the schematic overview of the paper is
shown. The rest of this paper is organized as follows.
In Section II, systemmodel is described withMLOD problem
formulation. Section III discusses the basics of EDA along
with the proposed EOD and EOD-Threshold algorithms.
Section IV discusses the simulation results and comparisons.
Finally, the conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM DEFINITION
A. LINEAR DC POWER FLOW MODEL
Consider a power network consisting of L transmission lines
and N buses. This network can be modelled in the form of a
directed graph G = {N , E}, where N = {1, 2, ...,N } is the
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FIGURE 2. Transmission line network (a) interconnect grid system and
(b) power flow model.

set of nodes (buses) and E = {(m, n)} ⊆ N ×N } denotes the
set of possible edges. The incident matrix of G is a matrixM
of size N ×L. An entry at row n ∈ {1, 2, · · · ,N } and column
l ∈ {1, 2, · · · ,L} of M is given by:

Mnl =


1, if line l originates from bus n
−1, if line l terminates at bus n
0, otherwise.

(1)

Fig. 2(a) shows an example of a network with L = 5 lines
and N = 4 buses . For this network, the matrixM is obtained
as:

M =


1 0 0 −1 1
−1 1 0 0 0
0 −1 1 0 −1
0 0 −1 1 0

. (2)

This work adopts a linear DC power flow model [17]. The
conservation of power must be satisfied i.e. for each bus, the
total power inflow must be equal to the sum of all power
outflows. Mathematically,

Pn =
∑

m∈N (n)

Pnm, (3)

where Pn denotes the power flowing in to bus n, Pnm is the
power flowing out from bus n to bus m and N (n) denotes
the set of all buses which have direct connection with bus n.
Moreover,

Pnm =
1
xmn

(θn − θm) , (4)

where, xnm = xmn is the reactance of line between buses n and
m and θn and θm are their respective voltage phasor angles.
With real power injections p = [p1, · · · , pN ]T ∈ RN and
voltage phasor angles θ ∈ [θ1, · · · , θN ]T ∈ RN , the above
equations can be stacked in vector notation as

p = Bθ , (5)

where B = [Bnm] ∈ RN is an N × N matrix with entry at
m-th row and n-th column given by,

Bmn =


−x−1mn , if (m, n) ∈ E∑
n∈N (m)

x−1mn , if m = n

0, otherwise.

(6)

The above equation shows that B is dependent upon the
network topology as well as line reactance values xmn. The
topological changes in network as a result of line outages
affect the voltage phasor angle vector θ in (5). This topolog-
ical effect can be modelled by expressing B as a Laplacian
matrix of weighted graph G and representing it as [17]

B =MDxMT
=

L∑
l=1

(
1
xl
mlmT

l

)
, (7)

where the diagonal matrix Dx has line reactance x−1l as its
l-th diagonal entry. For the power network for Fig. 2 (a), the
power flow graph is represented in Fig.2 (b) The matrix B
takes the form

B =



1
a
+

1
d
+

1
e

−1
a

−1
e

−1
d

−1
a

1
a
+

1
b

−1
b

0

−1
e

−1
b

1
b
+

1
c
+

1
e

−1
c

−1
d

0
−1
c

1
c
+

1
d


(8)

where real numbers a, b, · · · , e denote respectively, the reac-
tance of the lines 1 to 5.

Table 3 lists all notations used in this section.
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TABLE 3. Description of main notations used in the system model.

B. LINE OUTAGE MODEL
Given a linear model of DC power flow (5), vector p of
real power injections and vector θ of pre-event phase angles
are related to each other by the topology dependent suscep-
tance matrix B. As a result of network topological changes
caused by an outage over one or multiple lines, the pre-outage
directed graph G = {N , E} is transformed into a post-outage
directed graph G′ =

{
N , E ′

}
, where E ′ = E\Ẽ is the set

of lines in outage. The post outage directed graph remains
connected and grid is assumed to be in quasi-stable state. The
DC power flow following the outage event is expressed as

p′ = B′θ ′ = p+ η, (9)

where B′ is the post outage susceptance matrix, θ ′ is the post
outage phasor vector and η is the noise vector which contains
perturbations between p and p′ . The value η contains the
DC approximation errors and is usually modeled a vector of
Gaussian distribution with covariance matrix σ 2

η I and zero
mean [33]. Substituting (5) in (9) yields

Bθ + η = B′θ ′ = Bθ ′ − B̃θ ′, (10)

where B̃ = B−B′, is the weighted Laplacian of outaged lines
in Ẽ and expressed as,

B̃ =
∑
l∈Ẽ

1
xl
mlmT

l =MDx {b}MT , (11)

where b is an L-dimensional binary vector whose element bl
can be written as:

bl =

{
1, l ∈ Ẽ
0, otherwise.

(12)

Considering the phase angle change vector θ̃ , θ ′− θ and
substituting in difference model (9) yields

y , Bθ̃ = B̃θ + η. (13)

Substituting (11) into (13) and applying the equality
{b}MT θ ′ =

{
MT θ ′

}
b yields

y = MDxdiag
{
MT θ ′

}
b+ η, (14)

Defining the notation

Aθ ′ , MDxdiag
{
MT θ ′

}
. (15)

yields the following equation.

y = Aθ ′b+ η, (16)

where the matrix Aθ ′ ∈ RN×L depends on θ ′. It turns out
that, if the pre-event network topology (i.e. M and Dx) and
the post-event phasor angle vector θ ′ are given, then Aθ ′ can
be computed via (15).

C. LINE OUTAGE IDENTIFICATION PROBLEM
Given the noisy observation y in (14), the objective of opti-
mization problem is to obtain the vector b i.e. identify the
lines that belong to Ẽ . Formally, the optimization problem for
power line outage identification can be formulated as,

P1: b̂ = argmin
b∈{0,1}L

F1(b; y,Aθ ′ ), (17)

where F1 is the objective function of b in the model (16)
which is defined as

P1: b̂ = argmin
b∈{0,1}L

||y− Aθ ′b||22. (18)

The above objective function is evaluated on the basis of
l2 norm of least square criterion. For a network consisting of
L lines, the number of possible combinations of line outages
is 2L . Hence, exhaustive enumeration of all possible line
outages is not feasible for practical sized networks. In order
to solve this problem in linear time, this work considers the
probabilistic Bayesian evolutionary approach which is meta-
heuristic in nature and computationally efficient as compared
to exhaustive search.

III. PROPOSED ESTIMATION OF OUTAGE DETECTION
(EOD) AND EOD-THRESHOLD ALGORITHMS
In order to provide a better insight into the proposed solution,
this section begins by discussing themain features of classical
EDA. The discussion is extended later to the proposed EOD
and EOD-Threshold algorithms for MLOD problem.
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FIGURE 3. Overview of estimation of distribution algorithm.

A. EDA Bayesian ALGORITHM
Estimation of distribution algorithms (EDAs) are the iterative,
population based stochastic optimization methods. They are
based on probabilistic modelling of candidate solutions to
the problem. Unlike the classical evolutionary algorithms e.g.
genetic algorithm, mutation or crossover operations are not
used to generate the new population. Instead, the individuals
of new population are generated based on sampling of proba-
bility distribution of best selected candidates of previous pop-
ulation. Moreover, while in other evolutionary algorithms,
the new candidates are generated by an implicit distribution
defined by variation variables, in EDAs the interrelations
between the candidates are expressed through an explicit
probability distribution encoded by a multivariate normal
distribution, Bayesian network or another model class.
The binary EDA is formally outlined by the following steps.

1) GENERATION OF INITIAL POPULATION
The EDA begins with a generation of an initial population,
a matrix of dimensions Ps× L, where Ps denotes the number
of candidate solutions, i.e., the population size and L denotes
the size of each individual candidate. Each candidate individ-
ual is represented by a row vector X = (x1, x2, x3, . . . , xL),
where xi ∈ {0, 1}. The initial population is represented as,

30 =


X1

X2

...

XPs

 =

x11 x12 · · · x1L
x21 x22 · · · x2L
...

...
...

...

xPs1 xPs2 · · · xPsL

 (19)

The initial population is typically obtained by sampling
over an initialization model that represents uniform (equally
likely) distribution over admissible solutions.

2) FITNESS EVALUATION
After generating the initial population, the iterative process
begins until some termination criterion is not met. During
each iteration, all individuals of current population are first
evaluated for a given objective/fitness function F . In our
MLOD problem, the fitness function is given in (18). In the
next step, the candidates of current population are sorted in
terms of their fitness values.

3) SELECTION OF HEALTHY CANDIDATES
At this step, the best Nbp = ρs × Ps individuals are selected
from the sorted current population, where ρs is the probability
of selection given as an input to the algorithm.

4) PROBABILITY MODEL ESTIMATION FOR NEXT
GENERATION
Estimate the probability distribution P (θ1, θ2, . . . , θL) on
the basis of Nbp best candidate solutions. The probability
distribution denotes the probability of ‘1’ in each column.
We denote this estimation by:

Pr1 = P
(
θ1, θ2, . . . , θL |Nbp

)
. (20)

5) GENERATION OF NEW POPULATION
New (Ps − Nbp) individuals are generated using the proba-
bility distribution Pr1. These individuals are combined with
the previous best individuals to generate a new population for
next generation (iteration).

B. ESTIMATION OF DETECTION (EOD) ALGORITHM
This section discusses in detail, the proposed solution to
MLOD problem of Section II. The proposed EOD algo-
rithm is derived from the classical EDA discussed above.
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The computational steps of proposed EOD solution are shown
in Algorithm 1 and its important variables and functions are
listed in Table 4. A graphical overview of EOD (Algorithm 1)
is shown in Fig. 3.

Algorithm 1 Estimation of Detection (EOD) Algorithm for
MLOD Problem
1: Initialize Parameters:
2: L ← Number of Lines in Power System,
3: ρs← 0.4, Pht ← 0.85, Plt ← 0.15,
4: Ph← 0.75, Pl ← 0.25, Nth← 5,
5: Pval ← 0, �g←∞, �p←∞, Bp (1, 1 : L)← 0,
6: BG (1, 1 : L)← 0, Nc← 0
7: Nb← dρs · Pse
8: PrG (1 : G, 1 : L)← 0.5
9: Prbs(1, 1 : L)← 0
10: Pop← random (1 : Ps, 1 : L) < 0.5
11: g← 1
12: fth ∈ {0, 1}
13: Execution:
14: while g ≤ G do
15: 3g← F (Pop)
16:

[
0f 0

↑
g

]
← S

(
3g
)

17: �p← 0f (1)
18: Bp← Pop(0↑g (1), 1 : L)
19: if �p < �g then
20: �g← �p
21: BG← BP
22: end if
23: 0sg← 0

↑
g (1 : Nb)

24: Pop (1 : Nb, 1 : L)← Pop
(
0sg, 1 : L

)
25: Pop (Nb + 1 : Ps, 1 : L)← 0
26: Prbs (1, l)←

∑
Pop(1:Nb,l)

Nb
∀l = 1 : L

27: if flag then
28: Prbs←Threshold

(
Pval, �g,Nc,Nth,Prbs,Pht ,Plt

)
29: end if
30: Prpop← Rep (Ps,Prbs, 1)
31: Ptemp← random (1 : Ps, 1 : L) ∈ [0, 1]
32: Pop (1 : Ps, 1 : L)←

(
Ptemp < Prpop

)
∈ [0, 1]

33: PrG (g, :)← Prbs
34: g← g+ 1
35: end while
36: b̂← BG
37: Outputs: b̂, �g

The algorithm takes as input, the binary vector b =
{b1, · · · , bL}, which represents a possible line outage com-
bination and noise corrupted observation vector y. A zero
at bit position bi of b indicates a normal line whereas,
a one indicates an outaged line. The optimization goal is to
minimize the fitness function (18). During the initialization
phase, the main parameters of the algorithm are initialized
which include number of lines L in the system, population
size Ps, number of algorithm generations G and the best
selection probability ρs etc. The random binary population

TABLE 4. Variables description of algorithms 1 and 2.

matrix Pop of size Ps × L is generated similar to the one
represented in (19). The population is generated by sampling
the uniform distribution i.e. the probability Pr(bij = 0) =
Pr(bij = 1) = 0.5, where bij represents a bit at row i and
column j of Pop.

The second phase is the execution phase which runs for
G iterations. During each iteration, all individuals of Pop are
evaluated by applying the objective function F of (18) and
corresponding fitness values are saved in vector 3g. In the
next step, the function S sorts the fitness values of 3g in
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ascending order and the resulting sorted values are stored in
vector 0f along with their indexes in vector 0↑g . Since, the
optimization goal is minimization of objective function F
therefore, the first value of 0f is the minimum fitness value
of current population. This value is named as the population
best and denoted by�p. During each iteration, the population
best fitness �p is compared with the global best fitness �g,
if �g is greater than �p, it is replaced by �p. Next step is the
selection of Nb = dρs×Pse best individuals of Pop. To do so,
the individuals of Popwhose indexes are stored in the first Nb
entries of 0↑g are selected and stored back at first Nb rows of
Pop whereas, the remaining individuals of Pop are discarded
(i.e. set to zero). In the next step, the joint probability of best
selected candidates is obtained. For this purpose, the vector
Prbs of length L is computed such that the value at index
l = {1, · · · ,L} ofPrbs is obtained by taking the sum of binary
values in the l-th column of Pop and dividing the sum by the
number Nb.
In order to avoid the premature convergence of proposed

solution, an efficient thresholding is applied to Prbs vector
and the EOD algorithm is thus named as EOD-Threshold.
The threshold function routine is given in Algorithm 2 and
is enabled by the fth flag. The global best fitness value �g
is monitored and if it remains same for a pre-defined num-
ber of iterations Nth, then the probability values of Prbs are
investigated. If the probabilities exceed Pht , they are clipped
to Ph value. Similarly, if they go below Plt , they are clipped
to Pl . The thresholds values are obtained through extensive
simulations and are presented in the initialization phase of
Algorithm 1. After applying the threshold, the probability
matrix for the whole population is generated by applying
the replication operator Rep which generates Ps copies of
Prbs vector and cascades them in vertical order. Finally, the
next population Pop is obtained for the next generation. The
output of the algorithm are the global best individual b̂ and
its fitness value �g.

IV. PERFORMANCE EVALUATION
The proposed solution is implemented in Matlab. The sim-
ulations are performed for IEEE-14 and 57 bus systems.
The MatPower [34] simulation tool is used to extract the
topology information and other necessary parameters for
these systems. To compare with the proposed EOD solu-
tion, a number of other meta-heuristics are also implemented
namely; the genetic algorithm (GA), binary particle swarm
optimization (BPSO) and cross entropy optimization (CEO).
Simulation results are shown for up to five outages; however,
the EOD solution is capable to blindly identify any combina-
tion and number of line outages. The simulation results are
the average of a number of Monte Carlo runs of the above
mentioned algorithms. In each Monte Carlo iteration, the
algorithm executes its G generations and outputs its global
best solution b̂, an estimated line outage vector.

In order to quantify the results and comparison, two perfor-
mance metrics have been adopted in this work. The first one
is named as percentage improvement (PI). The PI of proposed

Algorithm 2 Threshold Function Routine
1: Inputs : Pval, �g,Nc,Nth,Prbs,Pht ,Plt
2: if Pval 6= �g then
3: Pval ← �g
4: Nc← 0
5: else
6: Nc← Nc + 1
7: end if
8: if Nc > Nth then
9: Nc← 0
10: for l = 1 : L do
11: if Prbs(l) ≥ PHT then
12: Prbs(l)← PH
13: else if Prbs(l) ≤ PLT then
14: Prbs(l)← PL
15: end if
16: end for
17: end if
18: Outputs: Prbs

algorithm over another algorithm X is defined as

PI =
SEOD − SX

SX
× 100, (21)

where SEOD and SX denote respectively the number of suc-
cesses of proposed EOD solution and another solution X .
An algorithm success occurs when the input line outage
vector b is exactly equal to the estimated line outage vec-
tor BG. A failure occurs when these vectors differ by at
least one bit. The positive value of PI indicates that the
proposed solution achieves a greater number of successes as
compared to the other solution. PI provides a good picture of
algorithm’s overall performance. However, it may be possible
that an algorithm achieves a high success rate but at the cost
of large number of generations. To account for this factor,
another metric is adopted and named as success generation
ratio (SGR). The SGR of a solution X is defined as:

SGRX =
SX/IX
ḠX/G

, (22)

where IX denotes the total number of Monte Carlo runs of
algorithm X , G denotes the generations per Monte Carlo
iteration and ḠX denotes the mean of best generations. ḠX is
defined as

ḠX =

∑
i∈{1,··· ,IX } gb(i)

IX
. (23)

For each Monte Carlo iteration i ∈ {1, · · · , IX }, the best
generation value gb ∈ {1, · · · ,G} is noted which corresponds
to the generation number beyond which the algorithm no
more converges. The mean best generation ḠX is obtained by
adding the gb values for all Monte Carlo iterations dividing
the sum by IX . The numerator of (22) corresponds to the
success rate of algorithm whereas, the denominator corre-
sponds to the convergence rate of algorithm. Smaller value
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FIGURE 4. PI of the proposed EOD-Threshold v.s. other algorithms for
IEEE-14 bus system. (a) Ps = 20,G = 50. (b) Ps = 50,G = 100.
(c) Ps = 100,G = 200.

of denominator means a fast convergence rate. A high value
of SGR means a high success rate with fast convergence rate.

In Figs. 4 and 5, the results are plotted for IEEE-14
bus system for Ps ranging from 20 to 100 and G ranging
from 50 to 200. First, Fig. 4 plots the PI of EOD-Threshold

FIGURE 5. Success Generation Ratio (SGR) results for IEEE-14 bus system.
(a) Ps = 20,G = 50. (b) Ps = 50,G = 100. (c) Ps = 100,G = 200.

over other algorithms including the EOD without threshold-
ing. For a scenario consisting of small values of Ps = 20
and G = 50, Fig. 4 (a) demonstrates that the EOD-Threshold
achieves a very large PI over other algorithms. This is due
to the fact that EOD-Threshold achieves a very high number
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FIGURE 6. Percentage improvement of the proposed EOD-Threshold for
IEEE-57 with Ps = 500,G = 200.

FIGURE 7. Success Generation IEEE-57 with Ps = 500, G = 200.

of successes thanks to the efficient thresholding technique,
while other algorithms get stuck in local optima. Further-
more, the plots of Figs. 4 (b) and (c) reveal that although the
PI of EOD-Threshold decreases with increase in Ps and G
values, still the PI is fairly large and positive. Moreover, the
EOD-Threshold achieves a maximum PI over CEO. Overall,
the results of Fig. 4 demonstrate the advantage in terms
of accuracy of the proposed EOD-Threshold solution. The
SGR results for same scenarios are reported in Fig. 5. For
Ps = 20 and G = 50, Fig. 5 (a) reveals that maximum
SGR is obtained by EOD-Threshold. This trend changes in
Figs. 5 (b) and (c) where the SGR performance is dominated
by simple EOD algorithm, as the aim of thresholding is
to increase the accuracy (PI) of solution at the cost of a
greater number of generations. It is worth to mention here
that, by adjusting the values of thresholds PHT and PLT , one
can trade between accuracy and convergence rate of solution.
If accuracy (PI) is the prime objective, one can apply the EOD
with thresholding. Otherwise, simple EOD algorithm can be
applied to achieve a high SGR. As a matter of fact, setting
the values of PHT = 1 and PLT = 0, the EOD-Threshold
algorithm becomes the simple EOD algorithm.

For a considerably larger network such as IEEE-57 bus sys-
tem, the simulation results are demonstrated in Figs. 6 and 7.
Here, considerably large Ps and G values have been selected
and PI plot of Fig. 6 demonstrates the accuracy of EOD-
Threshold with respect to other algorithm. For all values
of lines in outage, the EOD-Threshold achieves a positive,
fairly large PI value and hence shows a better success rate
as compared to other solutions. The plot of Fig. 7 demon-
strates that the SGR performance is dominated by the simple
EOD solution. However, the EOD-Threshold also achieves
an SGR fairly larger than other solutions and comparable
to simple EOD algorithm. Therefore, for such case, the
EOD-Threshold solution is a good option in terms of accuracy
and convergence rate.

V. CONCLUSIONS
To avoid the grid-wide blackouts, an accurate and prompt line
outage identification method is required. For a system con-
sisting of L lines, the complexity of exhaustive search is 2L ,
which is clearly infeasible for practical sized smart grids.
The published works on line outage identification are limited
to identify only a fixed (usually small) number of lines in
outage. As a key contribution, this work applies the Bayesian
probability theory to solve the MLOD problem in linear time.
The proposed solution named as estimation of outage detec-
tion (EOD) is accurate to identify any arbitrary number and
combination of line outages. Moreover, the solution avoids
the local optima, thanks to an efficient thresholding routine
applied to update the probabilities of candidate solutions.
The simulations of proposed solution are carried out for
IEEE-14 and−57 bus systems. The results are comparedwith
a number of meta-heuristics. To have an unbiased compar-
ison, two performance metrics have been introduced in the
paper namely the success generation ratio (SGR) and perfor-
mance improvement (PI). Thesemetrics quantify respectively
the convergence rate and accuracy of solution. For a num-
ber of random line outage scenarios, the simulation results
demonstrate that the proposed solution achieves a better PI
and SGR as compared to other meta-heuristics. This confirms
the validity of proposed approach as well as its applicability
to practical smart grids.
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