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ABSTRACT In high-speed digital wireless communication applications, the intersymbol interference chan-
nel may have spectral nulls or erasures, which may degrade the orthogonal frequency division multiplexing
(OFDM) bit error rate (BER) performance. In this paper, we prove that the BER performance of the OFDM
system is considerably refined if the erased symbols in erasure channel (or received symbols on the deep-
faded subcarriers in Rayleigh fading channel) are estimated based on the rest symbols in each OFDM
signal. Also, an oversampled OFDM scheme which is a particular form of the pre-coded OFDM schemes
is considered to guarantee high enough sampling rate. Furthermore, a new iterative receiver is proposed
for perfect symbol recovery. A comprehensive Monte Carlo simulation study is performed to validate the
theoretical results and affirm the superior performance of the oversampled OFDM scheme with the iterative
receiver, compared with the typical detector for the OFDM scheme.

INDEX TERMS Orthogonal frequency division multiplexing (OFDM), intersymbol interference (ISI),
erasure channel.

I. INTRODUCTION
Diverse wireless applications draw a lot of attention to
orthogonal frequency division multiplexing (OFDM) tech-
nique for its straightforward digital accomplishment with
IFFT/FFT pairs, and for its endurance against frequency
selectivity in wireless channels [1]–[5]. Frequency selective
channel in OFDM schemes interchanges into a set of flat
fading channels, which can be counteracted by easily apply-
ing a one tap equalizer in the frequency domain. However,
in more generic linear channels, the precondition for sym-
metric convolution is not fulfilled and the channel cannot
be simply compensated by simple single-tap equalizers, e.g.
when the channel has nulls [6], [7] and thus, trustworthy
detection of symbols on these subchannels would be severe.
This work investigates the issues on detection of symbols on
the presence of channel spectral nulls and the erasure channel.

A. LITERATURE REVIEW
Several methods of OFDM symbol recovery and channel
estimation have been proposed [8]–[11]. One approach is
the data-aided framework, where pilot signals are uniformly

interleaved among information symbols and used to estimate
channel frequency response at pilot subcarriers [12]–[15].
Another approach is the adaptive bit loading [16]–[18],
in which symbols are adaptively transmitted on the subcar-
riers with high SNRs. The need for feedback at the transmit
side confines the adaptive loading efficiency in empirical
applications. Subspace detection technique for single carrier
transmission with unique words (UW) has been proposed
in [19]. Based on the UW structure, the noise subspace
is compensated by known training sequences, simplifying
data recovery without feedback from the receiver to the
transmitter. A multicarrier system with message-driven idle
subcarriers (MC-MDIS) has been introduced in [20] for
power efficiency and higher spectral compared with OFDM.
Alternatively, coded-OFDM (COFDM) [21]–[23] has been
proposed to combat channel nulls. The critical dilemma in
coding for an OFDM scheme with a large number of sub-
carriers is that it, either encounters design difficulties or the
coding rate becomes prohibitively low. Fundamentally, there
are three kind of OFDM-based transmission systems: zero
padding OFDM (ZP-OFDM) [24], cyclic prefix OFDM
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FIGURE 1. Oversampled OFDM system model.

(CP-OFDM) [25], and time domain synchronous OFDM
(TDS-OFDM) [26], [27]. TDS-OFDM surpasses ZP-OFDM
and CP-OFDM in spectral efficiency. However, the main
impediment of TDS-OFDM is that the OFDM data blocks
will result in inter block interference (IBI). In this paper,
our proposed OFDM scheme uses cyclic prefix instead of
zero padding since the CP allow greater resistance for timing
errors than the ZP [28].

B. OUR CONTRIBUTION
Oversampled CP-OFDM scheme, a particular one of the
redundant pre-coded OFDM schemes [29]–[31] is utilized
in this paper. Oversampled CP-OFDM scheme [32]–[36] is
acquired by putting some zeros at the tail end of the mod-
ulated symbols block, just before the IFFT function at the
OFDM transmitter. The first implementation of oversampling
for reconstruction of damaged symbols in each CP-OFDM
signal has been proposed in [34], where no systematic results
have been given in the matter of the error-rate performance
and the detection method. Furthermore, unreal Rayleigh
channelmodel conditions have been considered for simplicity
in [35] and [36]; however, simulation results and analysis for
the erasure channel have not been presented.

The oversampling has other advantages as well, such as
enhancing the performance of linear equalizers [32], [37],
[38], decreasing OFDM edge effects [39], [40], increasing
the time resolution in DFT-based schemes [41], easing the
DAC design [33], achieving blind carrier-frequency-offset
recovery [42], detection and channel estimation [43], [44],
and clipping noise suppression [45].

In this paper, we employ the oversampling to repair the
impaired symbols in each OFDM signal from the remaining
symbols of the signal, as long as the average rate of the
remaining symbols stays above the Nyquist rate. To recon-
struct the missing samples from the remaining ones differ-
ent schemes have been proposed. Some of these schemes
use techniques such as convex optimization algorithms [46],
a series of filtering process [47], canonical transform [48],
matrix-based projections [49], and compressive sensing [50].
For reconstruction of weak symbols in this paper, a novel
iterative receiver for OFDM symbol estimation is proposed.
The recommended iterative receiver comprises three blocks,
namely, non-uniform sampling, low pass filtering, and itera-
tive reconstruction. Furthermore, the closed form end-to-end
formulation of the oversampled OFDM scheme employing
the iterative reconstruction algorithm is obtained in this paper.
Also, the symbol error rate (SER) of our proposed scenario is
analytically presented.

The reminder of this paper is arranged as follows.
In Section II, the oversampled OFDM scheme that uses
standard equalizer in frequency domain is reviewed. The
oversampled post-coded OFDM scheme is described in
Section III. In this section, erasure subcarriers are modelled
in each OFDM frame via the time domain post-coding.
To reconstruct the impaired symbols in each OFDM sig-
nal, the iterative receiver working based on the non-uniform
sampling theorem is described in Section IV. Section V
consists of the error probability analysis for the iterative
receiver. Section VI gives simulation results, and the paper
is concluded in Section VII.
Notation: Throughout this paper, boldface letters denote

matrices and column vectors; 0 denotes the zero matrix
of arbitrary size; FN denotes the N × N discrete Fourier
transform (DFT) matrix whose (n + 1, k + 1)th entry
is exp(−j2πnk/N )/

√
N ; (.)−1, (.)H , (.)T , (.)†, and ‖.‖p

denote the matrix inversion, conjugate transpose, transpose,
Moore-Penrose matrix inversion, and lp norm operation,
respectively; ak,j denotes the (k, j)th entry of the matrix A;
Finally, Tr{.} and E{.} are trace and expectation operators,
respectively.

II. OVERSAMPLED OFDM SCHEME WITH FREQUENCY
DOMAIN EQUALIZATION
A. TRANSMITTER
In oversampled OFDM scheme shown in Fig. 1, each block
of 2g modulated symbols in parallel form with size K ,
c(n) = [c1(n), c2(n), . . . , cK (n)]T , zero-padded by inserting
(L − 1)K zeros at the end of the primary block c(n) for
oversampling before taking IFFT at the transmitter where g
is the log2 of the constellation size in each 2g modulated
symbol, such as 16PSK, 64QAM, etc, and c(n) is a K × 1
complex column vector in the frequency domain with n as
the block index. The mth symbol in the OFDM block that
is obtained after utilizing an N−point IFFT to c′(n) =
[c1(n), c2(n), . . . , cK (n), 0, . . . , 0]T , is:

sm(n) =
1
√
N

N∑
k=1

ck (n)ej2πk(
m
N ) m = 1, 2, . . . ,N , (1)

in which s(n) = [s1(n), s2(n), . . . , sN (n)]T is a DFT coded
form of c(n). It is proved, see [51], [52], that the oversampling
in the DFT domain is a Reed-Solomon code capable of cor-
recting (L − 1)K = N −K erasures in real field. Note that L
is the oversampling factor and regarding the standard OFDM
scheme, L = 1, is akin to the Nyquist symbol rate. The
relationship between the oversampling factor and the out of
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band leakage. Also, the out of band leakage, a serious issue in
practical systems, decreases when more oversampling factor
is considered.

B. RECEIVER
The DFT code, s(n), is transmitted via a channel after sticking
a CP with length no shorter than the channel order. The
assumed channel is quasi-static frequency selective Rayleigh
fading, therefore the index n can be ignored. Also, N × 1
additive white Gaussian noise (AWGN) vector of v =
[ν1, ν2, . . . , νN ]T is added to the signal at the receiver. After
discarding the samples of the CP, the signal at the receiver
after N−point FFT demodulator is:

y′ = 0c′ + FNv = 0c′ + ṽ, (2)

in which 0 = diag(FNh) = diag(01, 02, . . . , 0N ), is the
channel in the frequency domain a diagonal matrix with diag-
onal elements 01, 02, . . . , 0N . The connection of Lh channel
taps, {h(l)}Lhl=1, and N − Lh zeros results in the h. Also, the ṽ
and v are N × 1 AWGN noise vectors after and before the
FFT process at the receive side, respectively. The estimation
of ĉ′ on c′ using the Zero Forcing (ZF) scheme for the symbol
recovery is

ĉ′ = 0−1y′ = c′ + 0−1̃v = c′ + n. (3)

1) SYMBOL RECOVERY IN NOISELESS CHANNEL
Assuming that the perfect channel state information (CSI) is
known only to the receiver, the recovery of (L−1)K erasures
per OFDM symbol in noiseless channel is guaranteed by (3).

2) SYMBOL RECOVERY IN NOISY CHANNEL
From (2) and (3), n = 0−1̃v = 0−1FNv =

0−1FN [vnoise verasure]T , in which vnoise is 1 × K vector
where each element is zero mean AWGN noise with variance
σ 2
ν and verasure is 1 × (N − K ) erasure vector associated to

the zero padded positions of oversampled OFDM signal, c′.
verasure can be set to zero at the receive side and we have v′ =
[vnoise 0]T . Therefore, the noise would be n′ = 0−1FNv′

with mean 0 and the correlation matrix that can be obtained
from

E{n′n′H }

= 0−1FNE{v′v′H }FHN
(
0−1

)H
= 0−1FNdiag

(
σ 2
ν , σ

2
ν , . . . , σ

2
ν , 0, . . . , 0

)
FHN

(
0−1

)H
.

(4)

Proposition 1: The mth subchannel noise variance of n,
an approximated version of n′, is given as

E{([n]m)2} ≈
Kσ 2

ν

N |0m|2
m = 1, 2, . . . ,N . (5)

Proof: The proof is provided in Appendix A. �
Themth entry of n′ would be amplified to infinity if channel

has spectral nulls, i.e., |0m| ≈ 0. Therefore, from (3) all
symbols in ĉ′ could not be recovered when channel has nulls.

C. SYMBOL ERROR RATE ANALYSIS OF THE
OVERSAMPLED OFDM SCHEME WITH
ZF EQUALIZATION
Supposing the modulation scheme QPSK, and modulation

symbols ck = ±
√
εc
/
2± j

√
εc
/
2 with symbol energy εc, and

L = 1 that means the standard OFDM scheme, the SER of
the mth subchannel without oversampling is given by [53]:

PSER(m) =
1
2

1−

[
1− Q

(√
εc

σ 2
νm

)]2 , (6)

where σ 2
νm

is the noise variance of the mth subchannel for the

standard OFDM scheme, Q(y) = 1
√
2π

∫
∞

y e
−x2
2 dx, y > 0 is

the Gaussian Q-function. Hence, the average SER is

PSER =
1
2K

K∑
m=1

1−

[
1− Q

(√
εc

σ 2
νm

)]2. (7)

Similar to the steps in obtaining equation (7), the SER for the
oversampled OFDM scheme with respect to the variance of
n in (5) becomes

PSER ≈
1

2LK

LK∑
m=1

1−
1− Q

√εcL |0m|2
σ 2
ν

2
. (8)

III. OVERSAMPLED OFDM SCHEME IN
ERASURE CHANNEL
The OFDM symbol recovery in the presence of the erasure
channel is possible if we use the iterative reconstruction algo-
rithm. In order to understand the performance improvements
achieved from the iterative receiver, erasures are assumed to
be inserted in each OFDM symbol by means of a simple
diagonal matrix. By time domain puncturing of each OFDM
symbol, this diagonal matrix results in a channel with spectral
nulls. The creation of erasure channel via the simple N × N
puncturing matrix Gt = diag(gt1, . . . , gt N ), gt i ∈ {0, 1}
at the transmitter of Fig. 2, left bottom, is depicted. Hence-
forth, we show that the time domain puncturing matrix can
be modelled as a part of a channel with spectral nulls. For
this modelling, we first transform the matrix of Gt into the
frequency domain form and then the effect of this frequency
domain version of Gt in channel model will be precisely
described.

At the transmitter, shown in Fig. 2, we have a post-coded
OFDM scheme [54] withGt as its post-coder. Note that Shah
and Tewfik [54] limit the structure design of Gf based on
the bandwidth efficiency, Euclidean distance, and low com-
putational complexity criteria. It is straightforward to show
that the post-coding scheme (Fig. 2, left bottom) is equivalent
to a pre-coding scheme (Fig. 2, left top) by selecting Gf as
follows:

s = GtFHN c
′

s = FHNGf c′

}
⇒ Gf = FNGtFHN , (9)
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FIGURE 2. The traditional, and the iterative receiver OFDM schemes including post-coded and its equivalent pre-coded transmitter.

TABLE 1. computational complexity for various functions in post-coded and precoded OFDM systems.

whereGf is a frequency domain pre-coding matrix. Note that
Gf is a circulant matrix due to the FFT processing on the diag-
onal matrix Gt [55]. Also, Gf is a singular matrix due to the
special structure of the diagonal matrix Gt with entries gt i ∈
{0, 1}.Gt in modelling of erasure channel in this paper is one
of the realization of spreading codes Gt = diag(FHN c) (see
[54, eq. (17)]) with bandwidth efficiency, constant Euclidean
distance, and low computational complexity in practical wire-
less communication systems. This means that transmitting an
OFDM symbol in erasure channel can be simply modelled
with a post-coded OFDM with ↑ L = 1. Therefore, for the
first time we could model an erasure channel with a simple
post-coded OFDM system with upsampling1 ↑ L = 1, in this
paper. The computation complexity of the system proposed
in [54] and our system is compared in Table 1. In pre-coded
OFDM partial spreading, the data symbols are spread across
Q distinct groups of M subcarrier. Note that our proposed
OFDM system has the lower implementation cost.

Considering the transmitting block of Fig. 2, left top (or
equivalently the block Fig. 2, left bottom) and the traditional
receiver in Fig. 2, right top, the signal after N−point FFT

1In [54] upsampling comes from repetitive coding happens due to the
smaller size of IFFT process in post-coded OFDM, that is different from the
oversampling process in this paper. Oversampled OFDM scheme is acquired
by inserting some zeros at the end of the block of the modulated symbols,
before the IFFT function.

demodulator is

y′ = 0Gf c′ + FNv. (10)

Note that the term 0Gf in (10) can be considered as the
overall channel model, between c′ and y′, with spectral nulls
due to the singular matrix Gf . Due to CP insertion between
adjacent information blocks at the transmitter, 0 is a diagonal
matrix and its effects can be removed via a simple matrix
inversion in ZF block as follows

ŝ = Gf c′ + 0−1FNv. (11)

The issue to be addressed is determining the inverse of the
system, i.e., to find the input c′ on spectral nulls given the
output signal Gf c′. The zero-forcing (ZF) equalizer, G†

f ,
is cascaded at the end of the traditional receiver Fig. 2,
as a simple solution for this problem. Unluckily, N × N
matrix inverse of Gf is necessary for the direct ZF scheme
and the computational complexity grow awfully high when
N is large. In stark contrast, iterative schemes that are less
sensitive to numerical errors, could be useful in manipulating
large matrices as mentioned in literature. Henceforth, based
on the non-uniform sampling theory, we propose a scheme to
discard the damaged symbols in each OFDM signal and iter-
atively recover the missing symbols from the remaining ones.
It will be analytically proved that the proposed scheme would
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converge to theG†
f . This shows that the OFDM symbol recov-

ery would be possible in iterative reconstruction algorithm
if the non-uniform sampling theorem is guaranteed. Also,
note that since Gf is circulant, it will cause energy leakage
across subcarriers. This interference is compensated using the
proposed iterative technique as proved in Appendix C.

IV. ITERATIVE RECEIVER
The proposed receiver has three stages: non-uniform sam-
pling, low-pass filtering, and iterative recovery scheme.
Fig. 2, right bottom, reveals the iterative receiver for the
oversampled OFDM scheme.

A. NONUNIFORM SAMPLING
The input vector of the non-uniform sampling block in Fig. 2
is given in (11). This is obtained through discarding the
interference between different symbols via the traditional ZF
equalization and de-rotation channel phases in the received
OFDM symbol y′. Note that samples in ŝ may be ampli-
fied and cause a high level of noise 0−1FNv. To alleviate
0−1FNv, symbols in places deliberately set to zero in ŝ can be
discarded and these missing symbols can be recovered from
the remaining symbols in each OFDM signal. Note that due to
the puncturing matrix Gt , introduced in section III, the posi-
tions of time domain punctured samples are known at the
receiver. Discarding these punctured samples in each OFDM
signal results in a non-uniform sampled version of OFDM
signal and perfect signal recovery would be possible as long
as the average rate of this signal stays above the Nyquist
rate, as the sampling theorem declares. For this, the frequency
domain signal ŝ is transferred to the time domain through
the IFFT processing. Then, the puncturing matrix of Gt
is multiplied by FH

N̂s. Non-uniform sampling stage can be
briefly expressed as:

9 = GtFHN ŝ, (12)

B. LOW-PASS FILTERING
To remove a part of high level of noise 0−1FNv, low-pass
filtering (LPF) process (LPF block in Fig. 2) can be applied.
Low pass filtering removes erasures known at the receiver,
by using the (N ,K ) DFT code, expressed as follows. After
non-uniform sampling in (12), the signal is processed through
FFT operation which provides the below frequency domain
signal

9 ′ = FN9 =

9 ′1, 9 ′2, . . . , 9 ′K , 9̂ ′K+1, . . . , 9̂ ′N︸ ︷︷ ︸
Erasures


T

. (13)

putting erasures which are known at the receiver to zero,

we have 9̃ ′ =

9 ′1, 9 ′2, . . . , 9 ′K , 0, . . . , 0︸ ︷︷ ︸
Erasures

T , that dimin-

ishes a part of high level of noise 0−1FNv. After that,

the IFFT process is performed

9̃ = FHN 9̃
′
= [9̃1, 9̃2, . . . , 9̃N ]T . (14)

where 9̃ is a N × 1 complex column vector, with non zero
elements.

Equation (14) can be concisely written as:

9̃ = FHNEFN9, (15)

where E = diag([IK 0N−K ]), is the erasure matrix. The
overall process can be summarized as:

9̃ = FHNEFNGtFHN ŝ = G̃tFHN ŝ, (16)

where G̃t is the low-pass filtered version of the time domain
puncturing matrix Gt .

C. ITERATIVE RECOVERY SCHEME
Iterative recovery scheme, illustrated in Fig. 2, right bottom,
due to its fast convergence can be utilized to perfectly recon-
struct each modulated block, ĉ′, from its low pass filtered ver-
sion, 9̃. The proposed iterative recovery scheme, a modified
version of the natural ones recommended by Marvasti [51] is
as follows {̃

si = 9̃ +
(
IN − G̃t

)
s̃i−1 i > 0

s̃0 = 9̃ i = 0,
(17)

where s̃i, s̃i−1 and IN are the recovered signal in ith and
(i− 1)th iteration, and identity matrix of size N , respectively.
Iterative method used in the iterative reconstruction stage.

After a large number of iterations, we have s̃i = s̃i−1.
Therefore, the steady state value for s̃∞ is obtained from
equation (17) as follows

s̃∞ = G̃†
t s̃

0
= (FHNEFNGt )†̃s0. (18)

However, by inserting (11) in s̃0 = FHNEFNGtFHN ŝ, we have:

s̃0 = FHNEFNGtFHN (Gf c′ + 0−1FNv)

= FHNEFNF
H
NGf FNFHN (Gf c′ + 0−1FNv)

= FHNEGf c′ + FHNEGf 0
−1FNv (19)

where (19) is obtained from Gt = FH
NGf FN, FNFH

N = IN,
and also that (Gf )l = FN(Gt )lFH

N = FNGtFH
N = Gf for

l = 1, 2, ... due toGt which is diagonal with diagonal entries
of gtm ∈ {0, 1}. By substituting (19) in (18), the steady state
value is

s̃∞ =
(
FHNEFNGt

)†
s̃0 =

(
G†
t F

H
NE

†FN
)
s̃0

=

(
FHNG

†
f FNF

H
NE

†FN
)
s̃0 = FHN c

′
+ FHN0

−1FNv (20)

The iterative algorithm described in sections IV. A - IV. C is
summarized in Algorithm 1.
Finally, the complete estimation of ĉ

′

at the infinite itera-
tion can be obtained by FFT processing at the last block of
the iterative receiver in Fig. 2, as follows

ĉ′ = c′ + FHN0
−1FNv. (21)
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Algorithm 1 Iterative reconstruction algorithm
Input: ZF-equalized OFDM vector with nulls, ŝ

puncturing matrix, Gt
Output: estimates transmit vector on spectral nulls ĉ′

1: Nonuniform Sampling:
discarding samples on nulls: 9 = GtFHN ŝ

2: Low Pass Filtering:
putting erasures to zero: 9̃ = FHNEFN9

3: Iterative Reconstruction:
Initialisation : s̃0← G̃t

4: for i = 0 to∞ do
5: s̃i = 9̃ +

(
IN − G̃t

)
s̃i−1

6: end for
7: return ĉ′ = FN s̃∞

Thus, using the iterative reconstruction block in (17), an indi-
rect method for calculating the G̃†

f and therefore calculation
of ĉ′ from samples on spectral nulls of Gf c′ at the infinite
iteration is proposed.

D. CLOSED FORM RECEIVER’s SYSTEM MODEL
Proposition 2: For arbitrary iteration i, the end-to-end

relation between the input ŝ, and the output of the iterative
reconstruction block, s̃i in Fig. 2 is

s̃i =
(
IN − (IN − G̃t )i+1

)
FHN ŝ. (22)

Proof: The proof is provided in Appendix B. �
Therefore, similar to the final step for obtaining (21) from

(18) by substituting (11) in (22) and takingN -point FFT from
s̃i we have:

ĉ′ = FN
(
IN − (IN − FHNEFNGt )i+1

)
×FHN (Gf c′ + 0−1FNv) (23)

which shows the closed form input-output relationship
between the input c′, and the recovered signal of ĉ′ in
Fig. 2. Note that the all processing from (12) to (22) are in
time domain and for estimation of the transmitted frequency
domain signal c′, we should take FFT at (23). After removal
zeros block in Fig. 2, which deletes (L − 1)K zero symbols
from the end of estimated block ĉ′, the K × 1 signal ĉ is

ĉ =
{
ĉ′1, ĉ

′

2, . . . ,
ˆc′K
}
. (24)

V. SYMBOL ERROR RATE ANALYSIS OF THE FREQUENCY
DOMAIN NONUNIFORM SAMPLING BASED
ITERATIVE RECEIVER
Earlier, we obtained from equation (23) a closed relation
between input and output of the proposed oversampled
transceiver scheme with frequency domain equalizer, where
E and Gt are diagonal matrices defined in sections III.A
and IV.C, respectively. One can easily see that due to the
diagonal entries of gt i, ei ∈ {0, 1} on Gt and E, the term of
FHNEFN is a Hermitian ((FHNEFN )

H
= (FHNEFN )), normal

((FHNEFN )(F
H
NEFN )

∗
= (FHNEFN )

∗(FHNEFN )), symmetric

((FHNEFN )
T
= (FHNEFN )), idempotent ((FHNEFN )

i
=

(FHNEFN ), i = 1, 2, . . .), and circulant matrix. Also, it can

be proved that
∥∥FHNEFNGt

∥∥
p ≤ 1, where ‖A‖p = sup

x 6=0

‖Ax‖p
‖x‖p

is matrix p-norm, defined in [55]. Although the (FHNEFN )
andGt benefit from the abovementioned properties, element-
wise closed form description of (IN − FHNEFNGt )i+1 which
is necessary to obtain the SER has severe computational
complexity.

A. SIMPLIFYING THE SYSTEM MODEL
In this section, the complex term of (IN − FHNEFNGt )i+1 in
the system model of (23) is simplified.
Lemma 1: (a) If FHNEFNGt ∈ Cn×n and

∥∥FHNEFNGt
∥∥
p ≤

1, then (IN − FHNEFNGt ) is nonsingular.
(b)

IN − (IN − FHNEFNGt )i+1

=

 i∑
j=0

(
IN − FHNEFNGt

)j(FHNEFNGt

)
(25)

Proof: For 1(a) assume (IN − FHNEFNGt ) is singu-
lar. It can be concluded that (IN − FHNEFNGt )x = 0 for
some nonzero x and ‖x‖p =

∥∥FHNEFNGtx
∥∥
p implying that∥∥FHNEFNGt

∥∥
p ≥ 1, which clearly shows that a contradiction

exists. Thus, (IN − FHNEFNGt ) is a nonsingular matrix and
has an inverse function.

To prove 1(b),
∥∥FHNEFNGt

∥∥
p ≤ 1, and therefore for every

matrix of ‖A‖p ≤ 1,
i∑

j=0
Aj
=

IN−Ai+1
IN−A

. �

Lemma 2: FHNEFNGt ∈ Cn×n is nondefective matrix and
it can be decomposed to

FHNEFNGt = V3V−1, (26)

in which eigenvectors and eigenvalues for FHNEFNGt are
linearly independent columns in the matrix V and the matrix
3 = diag(λ1, λ2, · · · , λN ), respectively.

Proof: We can find a nonsingular V ∈ Cn×n with
the property thatV(FHNEFNGt )V−1 = diag(λ1, λ2, · · · , λN ),
therefore the matrix of FHNEFNGt is diagonalizable or non-
defective as defined in [55]. �
Lemma 3: FHNEFNGt eigenvalues are real and

eig(IN − FHNEFNGt ) = IN −3 (27)(
FHNEFNGt

)i
= V3iV−1 (28)

Proof: If A is a Hermitian matrix with λm eigenvalues,
then Tr

(
Ai
)
=
∑
m
λim, and eig(IN − cA) = 1 − cλm with

λm ∈ R, as mentioned in [56]. FHNEFNGt is Hermitian, and
thus the Lemma is proved. �
Theorem 1: For every diagonalizable Hermitian matrix

FHNEFNGt ∈ Cn×n, with
∥∥FHNEFNGt

∥∥
p ≤ 1, and

3 = eig(FHNEFNGt ), we conclude that:(
IN − (IN − FHNEFNGt )i+1

)
= V(IN −3′

i+1
)V−1, (29)

in which 3′ = IN −3.
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FIGURE 3. Noise path at the proposed iterative receiver.

Proof: From (25)- (28) we deduce that:

IN − (IN − FHNEFNGt )i+1

=

 i∑
j=0

(
IN − FHNEFNGt

)j(FHNEFNGt

)

=

V
i∑

j=0

(IN −3)jV−1

(V3V−1)

= V

 i∑
j=0

(IN −3)j3

(V−1)
= V(IN −3′

i+1
)V−1 (30)

where 3′ = eig(IN − FHNEFNGt ). �
Consequently, the proposed iterative receiver’s model for

arbitrary iteration i, is easily achieved from a diagonal term
3′

i+1
in (30) in place of the computationally complex term

(IN − FHNEFNGt )i+1 in (22).

B. SYMBOL ERROR PROBABILITY
To derive the SER of our proposed scheme, we use noise path
at the receive side. We assume that N × 1 complex circular
AWGN noise v, with variance σ 2

ν for each entry, and QPSK

modulation symbols of ck = ±
√
εc
/
2 ± j

√
εc
/
2 with εc as

the symbol energy. In the proposed iterative receiver, the N ×
1 noise e can be examined by the receiver block diagram
in Fig. 3. This graph can be validated by equation (23). It
is straightforward that the entries in n are Gaussian random
variables with variance σ 2

nj ≈
Kσ 2ν
N |0j|

2 j = 1, 2, . . . ,N . The

elements in u = FHN n are Gaussian random variables with
variance σ 2

uj = σ
2
nj , because of the unitary feature of F

H
N . Each

element in the noise p can be expressed as

pj =
N∑
m=0

[
V(IN −3′

i+1
)V−1

]∗
m,j
um. (31)

Lemma 4: The elements of noise p are Gaussian random
variables, with following approximate variance:

σ 2
p ≈ E[p̄ ◦ p] =

∥∥∥V(IN −3′i+1 )V−1∥∥∥
2
σ 2
u IN×1, (32)

inwhich σ 2
u ≈ diag(σ 2

u1 , σ
2
u2 , . . . , σ

2
uN ),A◦B is theHadamard

matrix product which is entry-wise product of two matrices
of the same dimensions [A ◦ B]i,j = [aijbij], and Ā is the
component-wise conjugate of A.

TABLE 2. BER of the proposed frequency domain iterative receiver for
different coherent modulation schemes.

Proof: The proof is provided in Appendix D. �
For each OFDM symbol, the jth subchannel noise variance

is σ 2
ej = σ

2
pj , because of the FN unitary feature at the ending

block in Fig. 3. Therefore, the SER of the proposed system
using the iterative receiver with QPSK signal constellation
can be provided by (33), as shown at the bottom of the next
page.

C. BIT ERROR RATE
We can expand the results to QAM, PSK, and PAM by using
estimates for bit error rate (BER) achieved from SER.Wewill
consider QAM modulation as an instance. The SER for each
subchannel can be obtained from the equation (34), as shown
at the bottom of the next page, assuming the system ofM−ary
QAM symbols with variance εc. BER can be approximated
from SER as PBER(m) ≈ PSER(m)

/
logM2

[53] when Gray code
is used. So, the equation (35), as shown at the bottom of the
next page, is derived.

Table 2 reveals the BER for some coherent modulation
schemes.

D. PERFORMANCE IMPROVEMENT IN RAYLEIGH
CHANNEL
Regardless of performance improvement in erasure channel,
and the known position of the sample loss and its unknown
amplitude, the iterative receiver can be used to alleviate the
Rayleigh fading channel nulls. The proposed scheme used
for combating the Rayleigh fading channel nulls, which is
simpler than the one introduced in section IV, is depicted
in Fig. 4. Consider that the CSI is known at the receiver
side. Thus, after ZF equalizer at the receiver side, we can
drop the frequency domain samples on deep faded subchan-
nels by discarding matrix O in non-uniform sampling block,
as shown in Fig. 4. Then, the lost samples from each OFDM
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frame can be recovered by the iterative reconstruction block.
The discarding matrix O = diag[O1,O2, . . . ,ON ], which
discards the deep faded symbols of each OFDM symbol, is a

N × N diagonal matrix with Oi =
{
1 |0i| ≥ θ
0 otherwise

, where θ

is the discarding threshold and 0 = diag[01, 02, . . . 0N ] is
the channel vector. Discarding threshold θ , in our proposed
scheme, is selected based on themagnitude of entries of chan-
nel vector. After dropping deep faded samples on subchannels
withmagnitude below the discarding threshold θ , the iterative
reconstruction block recovers each OFDM frame 9. Note
that in Fig. 4, 9 is the non-uniform sampled vector and O
is the discarding matrix used to produce the 9 = Ôs. Also,
the matrix O and the vector 9 should be substituted for G̃t
and 9̃ in the iterative reconstruction algorithm in Fig. 2 to
be used in Fig. 4, respectively. Hence, the iterative model
for reconstructing deep Rayleigh faded subchannels can be
written as {̃

si = 9 + (IN −O) s̃i−1 i > 0
s̃0 = 9 i = 0.

(36)

E. DISCUSSION ON THE SAMPLING LOSS
In erasure channel, the amplitude of the sample loss is
unknown; however, its position is known. The memoryless
erasure channel is a helpful abstraction for diverse kinds of
low reliability reception or data loss, and plays a fundamental
role in information theory of noisy channels and channel cod-
ing theory. Instances of an erasure channel are themissing of a
symbol physically stored in a computer memory or the erased
information in video, text, image, and audio applications,
and the packet loss in an ATM network. As an illustrative
application, the location of the erased symbol is determined
by knowing the rest of the text if one of the symbols in a
text is erased [57]. If Pε is designated as the sampling loss
probability, then 1/1− Pε is the sampling rate essential for
errorless transmission [51]. In Rayleigh fading channel and

erasure channel, sample loss appeared in our proposed system
due to the discarding matrixO and the puncturing matrixGt ,
respectively. Note that the iterative method diverges for the
rates less than the 1

1−Pε
. The sampling loss probability at the

proposed receiver would be Pε =
n0
N , if n0 is defined as the

number of zero elements on the diagonal puncturing matrix
Gt (discarding matrix of O) in erasure channel (Rayleigh
fading channel). Hence, for error-free transmission, the sam-
pling rate of N

N−n0
should be selected at the transmit side.

For putting into practice the oversampling factor of N
N−n0

,
we can insert ( N

N−n0
− 1)K zero samples after each data

block of length K . This means that we have an (N ,K ) code,
that with the iterative method is capable of recovering the
N − K = ( N

N−n0
− 1)K lost samples. This discussion is

consistence with notes in II.A.

VI. RESULTS AND DISCUSSION
In this section the performance of the proposed schemes
are evaluated through simulation. Unless specified otherwise,
the data block’s size considering 16QAMmodulation on each
element is K = 32, the number of subcarriers is N = 128,
the oversampling factor is L = 4, and the number of iteration
performed at the iterative receiver is i = 10. Note that the
oversampling factor of L = 1

1−Pε
= 4 guarantees errorless

communication if Pε = 3
4 of samples are lost.

A. BER PERFORMANCE IN ERASURE CHANNELS
For a given probability of sampling loss, Pε , Figs. 5 - 7 show
the BER vs SNR of the proposed iterative receiver for dif-
ferent number of iterations i = 1, 10, 100, respectively. The
iterative receiver boosts the BER performance significantly as
more iterations are repeated in erasure channel. From the fig-
ures, it is clear that the numerical results match well with their
simulated counterparts, confirming the accuracy of the analy-
sis. Fig. 8 compares the BER performance of the oversampled
OFDM system, the (15, 3) Reed Solomon (RS) coded OFDM

PSER_QPSK ≈
1
N
×

N∑
m=1

1−

1− Q

√√√√√√

Nεc

Kσ 2
ν

N∑
j=1

1
/∣∣0j∣∣2

∥∥∥∥ N∑
t=1

amtbjt (1− λ
′i+1
t )

∥∥∥∥
2



2 (33)

PSER_MQAM (m) ≈ 4
(
1− 1

/
√
M
)
× Q


√√√√√√ 3

(M − 1)
Nεc

Kσ 2
ν

N∑
j=1

1
/∣∣0j∣∣2

∥∥∥∥ N∑
t=1

amtbjt (1− λ
′i+1
t )

∥∥∥∥
2

 (34)

PBER_MQAM ≈
4

logM2

(
1− 1

/
√
M
)
×

1
N

N∑
m=1

Q


√√√√√√ 3

(M − 1)
Nεc

Kσ 2
ν

N∑
j=1

1
/∣∣0j∣∣2

∥∥∥∥ N∑
t=1

amtbjt (1− λ
′i+1
t )

∥∥∥∥
2

 (35)
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FIGURE 4. The proposed iterative receiver for alleviating the Rayleigh fading channel nulls.

FIGURE 5. BER of the iterative receiver in erasure channel for
Pε =

1
4 ,

1
2 ,

3
4 and 1 iteration.

FIGURE 6. BER of the iterative receiver in erasure channel for
Pε =

1
4 ,

1
2 ,

3
4 and 10 iterations.

system, and the (511, 130) BCH coded OFDM system with
the same bandwidth. In (21) and (23), it is analytically proved
that c′ can be completely recovered from s using the con-
vergent iterative receiver. Note that if sufficient redundancy
is provided, perfect reconstruction is guaranteed. Therefore,
for the sampling loss probability Pε = n0/N = 15%,
25% or 50% assumed in Fig. 8, perfect recovery is ensured
with an oversampling factor of L = 4. Take into account

FIGURE 7. BER of the iterative receiver in erasure channel for
Pε =

1
4 ,

1
2 ,

3
4 and 100 iterations.

that the BER performance of (15, 3) RS and (511, 130) BCH
coded OFDM systems for the conditions in which 50%, 75%,
and 85% of data are transmitted do not converge to the best
condition (the curve depicted with + sign) in which 100% of
data is transmitted. In other words, the divergence between
the BER curve and the one marked with + sign showing the
BCH and RS coded OFDM schemes is increased when a
smaller amount of data is transmitted. Evidently, the code
rate for (15, 3) RS is 1/3 that is bigger than the others, 1/4,
and produces stronger code for the condition where 100% of
data is transmitted. By way of conclusion, using our proposed
receiver including channel coding techniques, e.g., RS/BCH
codes will improve the performance of our proposed over-
sampled OFDM scheme at the expense of more bandwidth
and deep interleaver.

B. A NOTE ON CONVERGENCE
It has been proved in [51] that to recover a signal from its
non-uniform samples, after a limited number of iterations the
iterative method approaches to the desired signal if the power
of error signal is lower than the power of the desired one.
In this paper, we expect to recover eachOFDMblock, c′, from
its non-uniform samples on spectral nulls, 9̃, through the
iterative receiver. Therefore, the iterative reconstruction block
converges to the desired OFDM symbol after a finite amount
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FIGURE 8. BER for (15,3) RS coded, (511,130) BCH coded, and the
oversampled OFDM system versus Eb/N0.

TABLE 3. Mean-square error for proposed iterative receiver.

of iterations if the power of themissing symbols in 9̃, is lower
than the power of the symbols in c′. Note that for the iterations
with the values of i = 10 and i = 100 both BERperformances
followed a very similar trend in Figs. 6 - 7, which implies fast
convergence rate of our proposed receiver. Also, the mean
square error for the maximum number of iterations i = 10,
and with the oversampling factor of L = 4 is shown in
Table 3. Note that the worst case is Pε = 3

4 , and for 0 ≤
Pε < 3

4 with the oversampling factor of L = 4, the stopping
criterion (a small number around 1e-5) is fulfilled for the
lower number of iterations.

C. DISCARDING THRESHOLD OF θ IN OVERSAMPLED
OFDM SCHEME
The BER performance of the proposed iterative receiver
in Rayleigh fading channel is depicted in Fig. 9. This fig-
ure illustrates curves corresponding to different discarding
thresholds of θ = 0, 0.05, 0.1, 0.15, 0.2, 0.25 in Rayleigh
fading channel. Note that the probability of sampling loss,
Pε , in the Rayleigh fading channel depends on the discarding
threshold of θ . Obviously, the larger number of high-quality
samples results in better BER performance, and we have

FIGURE 9. BER for the iterative receiver for different values of θ in
Rayleigh fading channel.

FIGURE 10. BER for the traditional, the non-iterative oversampled and
the iterative oversampled with θ = 0.1, OFDM systems in Rayleigh fading
channel.

larger number of these type of samples in high SNR regime.
Therefore, in low SNR regime, a higher value for θ should be
considered to discard a larger number of low-quality samples
in each OFDM symbol. Conversely, In high SNR regime,
a smaller value for θ should be considered to discard a smaller
number of high-quality samples in each OFDM symbol.
Thus, there is a trade-off between θ and the probability of
sampling loss in different channel conditions. Also, notice at
high SNR regime in Fig. 9, the iterative receiver with θ = 0.1
achieves the best performance in Rayleigh fading channel for
the oversampling factor of L = 4. The Iterative Receiver
for oversampled OFDM system in frequency non selective
channel.

D. PERFORMANCE COMPARISON BETWEEN
TRADITIONAL RECEIVER AND THE ITERATIVE
RECEIVER IN RAYLEIGH CHANNEL
Fig. 10 compares the oversampled OFDM system BER per-
formance with both the iterative (θ = 0.1) and the traditional
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receiver versus the non-oversampled OFDM system. Note
that the proposed iterative receiver provides a better BER
performance rather than the traditional receiver. Specially,
at bit error rate 10−3, the iterative receiver achieves a 12.5 dB
gain in SNR over the traditional OFDM system. It can also
be observed at bit error rate 10−3, the iterative receiver
reaps 17.5 dB gain in SNR over the non-oversampled OFDM
system.

VII. CONCLUSIONS
An effective OFDM signal recovery method is introduced
in this paper. The oversampling is applied at the OFDM
transmitter so that the OFDM iterative receiver can perfectly
reconstruct the data on spectral nulls or the erased data in
Rayleigh fading channel or the Erasure channel, respectively.
Without any need for changing or applying extra channel
coding at the transmitter, all the processing is performed at the
receiver in our proposed system. As stated for the transmis-
sion, this can savemore bandwidth. Simulation and analytical
results show significant BER improvements for the proposed
scheme in Erasure channel and Rayleigh fading channel.
Furthermore, the need for the low number of iterations and
the rapid convergence rate are proved through simulation for
the proposed iterative receiver. The analysis of the system
in fast fading channel, and the mathematical analysis for
the trade-off between L and the sampling loss probability
in different channel conditions will be derived in our future
work.

APPENDIX A
PROOF OF THE EQUATION (5)

Proof: By expanding the (5) we have:

E{n′n′H }

= 0−1FNE{v′v′
H
}FHN

(
0−1

)H

=



σ 2
v

01 ∗ 0
H
1

K∑
j=1

f1,jf ∗1,j . . .
σ 2
v

01 ∗ 0
H
N

K∑
j=1

f1,jf ∗N ,j

...
. . .

...

σ 2
v

0N ∗ 0
H
1

K∑
j=1

fN ,jf ∗1,j · · ·
σ 2
v

0N ∗ 0
H
N

K∑
j=1

fN ,jf ∗N ,j



=


Kσ 2

v
/
N ‖01‖2 0

. . .

0 Kσ 2
v
/
N ‖0N‖2

 (37)

where the last equality is concluded fromFN×FHN = IN ⇒
N∑
j=1

fi,jf ∗i,j =
{
1 i = j
0 i 6= j

.

Note that n′ is an approximated version of n =

0−1FN [vnoise verasure]T by setting the erasure vector
verasure to zero; thus σ 2

n ≈ σ
2
n′ . �

APPENDIX B
PROOF OF THE EQUATION (22)
We obtain the input-output relation of our proposed iterative
receiver in Fig. 2 for any arbitrary iteration i as described
as follows. We define the error vector as ei = s̃i − G̃†

t s̃0.
Subtracting the equation (17) from the true solution G̃†

t s̃0,
the error at step i is derived as:

ei = (IN − G̃t )ei−1

= . . . = (IN − G̃t )ie0 (38)

⇒ e0 − ei =
(
IN − (IN − G̃t )i

)
e0

=

 i∑
j=1

(
i
j

)
(−1)j−1G̃j

t

 e0 (39)

Therefore, the closed form input-output formula for the pro-
posed iterative receiver can be derived as follows:

e0 − ei = s̃0 − s̃i =
(
IN − (IN − G̃t )i

) (̃
s0 − G̃†

t s̃
0
)

⇒ s̃i = s̃0 − (e0 − ei)

= s̃0 −
(
IN − (IN − G̃t )i

)
×

(̃
s0 − G̃†

t s̃
0
)

= s̃0 −
(̃
s0 − G̃†

t s̃
0
− (IN − G̃t )i

(̃
s0 − G̃†

t s̃
0
))

⇒ s̃i =
(
G̃†
t − (IN − G̃t )i(G̃

†
t − IN )

)
s̃0. (40)

s̃0 = 9̃ = G̃tFHN ŝ. Thus by using (15):

s̃i = FHN ŝ− (IN − G̃t )i
(
FHN ŝ− G̃tFHN ŝ

)
=

(
IN − (IN − G̃t )i+1

)
FHN ŝ

=

 i+1∑
j=1

(
i+ 1
j

)
(−1)j−1G̃j

t

FHN ŝ, (41)

For arbitrary iteration of i, this is a closed form relation
between the iterative block’s output, s̃i, and the LPF block’s
input, ŝ, in Fig. 2.

APPENDIX C
PROOF OF THE COMPENSATING ENERGY LEAKAGE IN
PROPOSED ITERATIVE RECEIVER
We show how the energy leakage across subcarriers is com-
pensated using our proposed iterative receiver. In other words,
wewill show that the error vector of ẽi = s̃i−G̃†

t s̃0 = s̃i−FHN ŝ
(defined in Appendix B) decreases as the number of iteration
i increases in our proposed iterative receiver. By considering
the error vector, we can rewrite equation (17) as:{̃

ei = (IN −Gt) ẽi−1 i > 0
ẽ0 = s̃0 − FHN ŝ i = 0,

(42)
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in which, we have ẽ0 = s̃0 − FHN ŝ = 9 − FHN ŝ for i = 0.
From (42)

ẽi = (IN −Gt)
i ẽ0 = (IN −Gt)

i (9 − FHN ŝ)

= (IN −Gt)
i (GtFHN ŝ− FHN ŝ) = − (IN −Gt)

i+1 FHN ŝ.

(43)

Note that for simplicity we considered 9 and Gt instead of
9̃ and G̃t in equation (42) (i.e., E = IN ).
Thus, from (28) and (43) we have:

ẽi = −V3′i+1V−1FHN ŝ

=−V×diag
(
(1−λ1)i+1, (1−λ2)i+1, . . . , (1−λN )i+1

)
×V−1FHN ŝ (44)

where eigenvectors of Gt are the matrix V columns and
its eigenvalues is the matrix 3 = diag(λ1, λ2, · · · , λN )
and 3′

= IN − 3. It is straightforward from (43) and
(44) that the convergence of the algorithm (which compen-
sates the energy leakage) is equivalent to the convergence of
lim (IN −Gt)

i+1

i→∞
= V×
diag

(
(1− λ1)i+1, (1− λ2)i+1, . . . , (1− λN )i+1

)
i→∞

×V−1.
To assure convergence, we should have |1− λm| ≤ 1. Briefly,
it is required that ∀m : −1 ≤ 1− λm ≤ 1⇒ 0 ≤ λm ≤ 2⇔
convergence to assure compensating the energy leakage. Note
that Gt = diag(gt1, . . . , gt N ), gtm ∈ {0, 1} is a matrix with
1 and 0 entries on its diagonal that implies eigenvalues are
λm ∈ {0, 1}. Therefore, the above convergence condition is
satisfied for Gt .
Assuming Gt with eigenvalues λ1, λ2, · · · , λN so that:

0 = λ1 = λ2 = · · · = λc < λc+1 ≤ . . . ≤ λN , (45)

where c is the number of zero eigenvalues (0 ≤ c ≤ N ).
If Gt is an invertible matrix, it has no zero eigenvalues (
c = 0 in (45)) and thus for all m, |1− λm| ≤ 1. This means
ẽi → 0 as i→∞ and hence from the definition of the error
vector of ẽi = s̃i − FHN ŝ we have lim s̃i

k→∞
= FHN .ŝ. From this

equation, a perfect signal reconstruction and hence complete
compensation of the energy leakage that may occur due to
the Gf is shown. Now let us assume that Gt is not invertible
and has c zero eigenvalues. As a consequence, IN −Gt has c
eigenvalues equal to 1 and the rest have absolute values less
than 1.

(IN −Gt )i+1 = V

×diag

1, 1, . . . , 1︸ ︷︷ ︸
ctimes

, (1− λc+1)i+1, . . . , (1− λN )i+1


×V−1

⇒ (IN −Gt )∞ = lim(IN −Gt )i+1
i→∞

= Vdiag

1, 1, . . . , 1︸ ︷︷ ︸
ctimes

, 0, . . . , 0︸ ︷︷ ︸
N−ctimes

V−1

⇒ s̃∞ = lim s̃i
i→∞

= lim(IN − (IN −Gt)
i+1)FHN ŝ

i→∞

= (IN − (IN −Gt)
∞)FHN ŝ

= Vdiag

0, 0, . . . , 0︸ ︷︷ ︸
ctimes

, 1, . . . , 1︸ ︷︷ ︸
N−ctimes

V−1FHN ŝ (46)

Nowwe show that the same result is also obtained by pseudo-
inverse of Gt .

Gt = Vdiag

0, 0, . . . , 0︸ ︷︷ ︸
c times

, λc+1, . . . , λN

V−1

⇒ G†
t = Vdiag

0, 0, . . . , 0︸ ︷︷ ︸
c times

, λ−1
c+1
, . . . , λ−1N

V−1

⇒ G†
tGt = Vdiag

0, 0, . . . , 0︸ ︷︷ ︸
c times

, 1, . . . , 1

V−1

⇒ FHN ŝ = G†
tGtFHN ŝ

= Vdiag

0, 0, . . . , 0︸ ︷︷ ︸
c times

, 1, . . . , 1

V−1FHN ŝ (47)

Comparing (46) and (47), we get s̃∞ = FHN ŝ → ẽ∞ = 0.
Therefore, it is proved that when the matrix Gt is not invert-
ible, the iterative receiver converges to the solution. In other
words, the energy leakage across subcarriers is compensated.

APPENDIX D
PROOF OF THE LEMMA 4
By expanding the simplified system model in (29), we have:

V(IN −3′
i+1

)V−1

=

 a1
...

aN



1− λ

′i+1

1 0
. . .

0 1− λ
′i+1

N

 (b1, · · · , bN )

=



N∑
t=1

a1tb1t (1− λ
′i+1

t ) . . .
N∑
t=1

a1tbNt (1− λ
′i+1

t )

...
...

N∑
t=1

aNtb1t (1− λ
′i+1

t ) · · ·
N∑
t=1

aNtbNt (1− λ
′i+1

t )


,

(48)

where, aj = [aj1, . . . , ajN ], bj = [bj1, . . . , bjN ]T for
j = 1, 2, . . . ,N are rows and columns of matrix V and
V−1, respectively. It is obvious that the Hadamard matrix
product of the vectors am and bTn can be obtained from
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am ◦ bTn =
{
1 m = n
0 m 6= n

. Hence:

p

=



u1
N∑
t=1

a1tb1t (1−λ
′i+1

t )+ · · · +uN
N∑
t=1
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Thus after averaging on the Hadamard matrix product of
the vectors p̄ and p we obtain
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Hence, the jth subchannel noise variance σ 2
pj , jth entry of

vector E[p̄ ◦ p], is given in equation (50).
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