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ABSTRACT Fifth generation (5G) networks are expected to support a large number of devices, provide
spectral efficiency and energy efficiency. Non-orthogonal multiple access (NOMA) has been recently
investigated to accommodate a large number of devices as well as spectral efficiency. On the other hand,
energy efficiency in 5G networks can be addressed using energy harvesting. In this paper, we investigate
NOMA in 5G networks with RF energy harvesting to maximize the number of admitted users as well as
system throughput. We model a mathematical framework to optimize user grouping, power allocation, and
time allocation for information transfer and energy harvesting while satisfying the minimum data rate and
transmit power requirements of users. The proposed framework for optimization is amixed integer non-linear
programming problem. The mesh adaptive direct search (MADS) algorithm is adopted to find solution of
the proposed framework. The MADS algorithm provides an epsilon optimal solution. The exhaustive search
algorithm is used as a bench mark. Finally, the effectiveness of the proposed framework is supported by
simulation results.

INDEX TERMS 5G networks, energy harvesting, non-orthogonal multiple access (NOMA), power
allocation, time allocation, user grouping.

I. INTRODUCTION
Fifth generation (5G) networks are anticipated to support
exponential increase in mobile traffic, significant reduc-
tion in latency, diverse range of applications, and mas-
sively connected devices [1]. In addition, 5G networks are
expected to be energy-efficient and cost effective. Industrial
assessment insist that in 5G networks, the data rate should
be 10-20 times more than the peak data rate in 4G [2].
With extensive research in this direction, 5G networks are
envisioned to meet the targets for next generation wire-
less networks by 2020 and beyond [3]. However, there are
certain challenges associated with the successful deploy-
ment of 5G systems. For example, more spectrum is
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required in order to increase capacity or efficient utilization
of spectrum must be ensured by using unlicensed bands
(e.g., LTE-Unlicensed, use of TV white space through cog-
nitive radio technologies) [4]. Furthermore, spectrum should
be reused by deploying small cells or by accommodating
multiple users on the same frequency channel. Fig. 1 shows
key technologies for 5G networks for spectrum manage-
ment (e.g., non-orthogonal multiple access (NOMA) [5]–[7],
full duplex [8], spectrum sharing [9]–[11], and new wave-
form [12]), infrastructure (e.g., cloud-radio access net-
work [13] and software-defined networks [14]). In addition,
joint spectrum and energy efficient design, multi-radio access
network, and flexible and efficient physical layer can cer-
tainly enhance the performance of 5G networks [15], [16].

Channel access techniques play a pivotal role in
providing effective communication to mobile users in
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FIGURE 1. Key technologies for 5G networks.

wireless networks. For example, orthogonal frequency divi-
sion multiple access (OFDMA) proved to be beneficial in 4G
wireless networks. However, number of resource blocks put
a constraint on the maximum number of users supported [7].
Recently, NOMA is investigated to fulfill spectrum demands
of 5G networks [5]. In contrast to OFDMA, NOMA allows
multiple users on the same resource block in the same cell
while exploiting channel gain differences of multiple users.
At receiver, successive interference cancellation (SIC) is used
for decoding message signals [6]. Although NOMA provides
high spectral efficiency and better connectivity at the cost of
increased receiver complexity [7].

On the other hand, energy harvesting is considered as a
promising solution to address the energy issues in 5G net-
works. The idea of energy harvesting is to gather energy
from sources present in the surrounding including RF sig-
nals, solar, and wind [17]. In RF energy harvesting, users
can harvest from ambient RF sources such as base sta-
tion signals. Thus, allocation of time for information trans-
fer along with energy harvesting has attracted attention
of many researchers [18]. For example, Nasir et al. [19]
have implemented a energy harvesting relay which is
based on time switching and power splitting relaying.
Diamantoulakis et al. [20] investigated time allocation meth-
ods with NOMA in uplink communication system to improve
the throughput of all users. Another approach executed by
Liu et al. [21] to prepare energy harvesting relays from
NOMA users located near the base stations in order to help
the users that are at a distance.

There are certain challenges associated with the NOMA
in 5G including dynamic user grouping, power allocation and
time allocation for energy harvesting [7]. Since in NOMA,
multiple users can use the same resources simultaneously.
Hence, to reduce co-channel interference the users can be
divided into groups and NOMA is applied to each group.
The user grouping along with power allocation when done
efficiently can reduce the effect of interference and increase
spectral efficiency [22]. However, 5G also constitute energy
efficiency challenges because of the increase in number of
wireless devices. Therefore, it is important to investigate
dynamic user grouping, power allocation and time alloca-
tion jointly for NOMA with RF energy harvesting. Until
now, researchers investigated either user grouping or time
allocation for information transfer and energy harvesting,
in NOMA systems.

A. CONTRIBUTIONS
This paper focuses on developing user grouping and power
as well as time allocation for NOMA systems with RF
energy harvesting. Following are the main contributions of
this paper:
• Wemathematically model a framework for NOMAwith
energy harvesting capability. The mathematical model
includes grouping of users in their respective resource
blocks, an optimized power, and time allocation to
achieve maximum system throughput.

• The proposedmathematical model ensures theminimum
throughput of each admitted user and optimal user power
in each resource block.

• The proposedmathematical framework belongs to a type
of optimization problem, calledmixed integer non-linear
programming (MINLP) and this type of problems are
generally NP-hard. To get optimal solution, we need
to enumerate all possible assignments of users in their
respective resource blocks which is computationally
very expensive. Moreover, computational complexity
increases exponentially with the number of users and
resource blocks. Thus, we adopted mesh adaptive direct
search (MADS) algorithm which provides epsilon opti-
mal solution.

• Finally, we evaluate the performance of joint user group-
ing, power allocation and time allocation for NOMA
with RF energy harvesting usingMADS algorithm. Sim-
ulation results using MADS algorithm are compared
with the optimal solution obtained by exhaustive search
algorithm (ESA).

The organization of remaining paper is as follows.
Section II briefly reviews related works. System model
and problem formulation is presented in Section III. Then,
we present ESA and MADS algorithms in Section IV. Simu-
lation results are presented in Section V. Finally, conclusion
is drawn in Section VI.

II. RELATED WORKS
Here, we briefly review the related working in the area of
user grouping and power as well as time allocation for energy
harvesting in NOMA systems.

A. USER GROUPING AND POWER ALLOCATION IN NOMA
Ali et al. [6], authors maximized cell throughput while sat-
isfying uplink and downlink transmission power. Authors
proposed a two step methodology that comprises of user
grouping followed by optimized power allocation for each
group. Ali et al. [22] proposed a dynamic user grouping and
power allocation for NOMA with SIC in downlink MIMO
cellular systems. The objective is to maximize overall cell
capacity subject to the constraints on transmit power, data
rate requirement, and received power. For both [6], [22],
simulation results are presented to highlight the advantages
of NOMA in terms of spectrum efficiency. A joint sub-
carrier and power allocation scheme with an objective to
maximize energy efficiency is proposed for heterogeneous
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network with one macro base station and multiple small base
stations [23]. Authors applied an optimal approach based on
monotonic optimization. The objective of this work (maxi-
mizing energy efficiency) is different compared to our work
(maximizing number of admitted users and system through-
put). Zhang et al. [24] proposed a user grouping scheme
based on their location to minimize interference in visible
light communication based 5G network. Further, authors
optimized power allocation for each cell to maximize sum
rate subject to the constraint on quality of service (QoS).
A multi-user grouping with low-complexity and a power
allocation scheme is presented in [25] to enhance the per-
formance of group users. It is concluded that for the pro-
posed scheme there exists a trade-off between computational
complexity and user fairness. Wang et al. [26] proposed a
cooperative game theoretic approach for user grouping in
order to enhance sum rate. This scheme divides the users
into several groups and then assigns the time slots to each
group resulting in notable improvement in sum rate. Al-
Abbasi and So et al. [27] formulated a problem for sum
rate maximization over frequency selective fading channel
by pairing users corresponding to their channel powers.
In addition, a divide-and-allocate approach is proposed for
power allocation where users are divided in two groups to
apply closed form power allocation solution and this pro-
cess continues until power is allocated to all users. In [28],
a user grouping scheme is proposed for downlink NOMA
while considering the channel correlation between users and
the channel gain. Further, precoding matrix is optimized to
maximize the sum-rate. Yakou and Higuchi [29] proposed
a user grouping scheme and decoding order setting in SIC
for downlink NOMA. The objective is to schedule multiple
users per resource block optimally. The proposed scheme
offers low complexity for the SIC process as the number of
decoding signals are equal to the number of users in each
group. However, achievable throughput is also decreased,
because the proposed scheme considers instantaneous fading
conditions during user grouping process.

B. ENERGY HARVESTING AND WIRELESS POWER
TRANSFER IN NOMA
A survey of cognitive networks with NOMA is presented
in [30], where energy harvesting is highlighted as an
important technique to maximize energy-transfer efficiency.
Yang et al. [31] have considered a cooperative NOMA net-
work in which energy harvesting relay is utilized as a medium
of communication between users. Fixed power allocation
NOMA and cognitive radio based NOMA are studied for
their impact on simultaneous information and power transfer.
It is concluded that two NOMA power allocation policies
have trade-off among reliability, user fairness, and system
complexity. Authors in [32] have proposed two cooperative
spectrum sharing algorithms while utilizing the concept of
both time-switching and power-splitting based energy har-
vesting. A set of secondary transmitters which are energy con-
strained are dependent on energy harvesting. The secondary
transmitter acts as a relay to forward primary user symbol

and also get access to channel according to the concept of
NOMA simultaneously with a primary user. Authors studied
optimal energy harvesting ratio that maximizes the sum data
rate of both protocols. Sun et al. [33] considered an energy
harvesting-based cooperative NOMA. It is considered that
the link between source node and weaker node is not able
to satisfy the QoS requirements. Therefore, the stronger node
acts as an energy harvesting relay for the weaker node as it has
prior knowledge about it based on the NOMA approach. The
objective is to maximize rate subject to the constraints on
QoS and power. A NOMA scheme for the uplink of wire-
less powered communication networks is proposed in [34].
Authors jointly optimize transmit power of base station and
duration of energy harvesting/data transfer to maximize the
rate region. The proposed approach achieved higher data
rates compared to fixed power NOMA in addition to keeping
the high level of fairness. Diamantoulakis et al. [35] have
investigated wireless power transfer with NOMA in order
to optimize data rate and increase fairness. Liu et al. [21],
[36], authors have investigated a NOMAwith wireless power
transfer. A protocol is designed in a way that the NOMA
users in the vicinity of source act as a energy harvesting
relays to charge users at distance. NOMA users which are
close to the source act as energy harvesting relays to pro-
vide power to users at distance. Authors proposed three user
selection schemes while considering users distance from the
base station and compared their results in terms of outage
probability and throughput. Zhou et al. [37] proposed a
secure cognitive beamforming with an objective to minimize
power for cooperative multiple-input single-output (MISO)-
NOMA using wireless power transfer. A non-linear energy
harvesting model is used for analysis. Same model is used
by Zhou et al. [38] to propose resource allocation with an
objective to minimize total transmit power for secure MISO-
NOMA based on artificial noise-aided cooperative jamming
scheme. The non-linear energy harvesting model is more
practical. However, we consider linear energy harvesting
model which is vastly investigated in literature as the focus
of our work is resource allocation (joint user grouping, power
allocation, and time allocation). An enhancement in physical
layer security for powerminimization inMISO-NOMAusing
wireless power transfer is presented in [39]. To be precise,
none of the above schemes considered user grouping in addi-
tion to energy harvesting.

Table 1 presents a summary of existing user grouping
schemes. However, it is evident that existing schemes do
not consider joint user grouping and power as well as time
allocation for NOMA to improve the performance of 5G
networks. Unlike these works, we propose a mathematical
framework to optimize user grouping, power allocation, and
time allocation for NOMA with RF energy harvesting.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
NOMA is one of the technologies considered for channel
access in 5G and beyond networks. The 5G architecture
consists of multiple networks with different number of
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TABLE 1. Related work on NOMA with wireless power transfer.
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FIGURE 2. An illustration of network that consists of K users and N
resource blocks for NOMA with RF energy harvesting.

available resource blocks. However, for the sake of simplicity
and analysis, we assume a network that consists of K users
and N resource blocks in one cell as shown in Fig. 2. It is
assumed the number of users is greater than the number of
resource blocks, i.e.,K > N . We assume that each framewith
length one is divided into two time slots [35]. In the first time
slot, the base station transmit power beacon to the users such
that the users can harvest energy for uplink transmission. This
is mainly because we consider that each user is equipped with
a single antenna. Thus, each user can only transmit or harvest
at a particular time [17], [40]. The amount of time for energy
harvesting is set to 1− T and time for information transfer is
set to T such that 0 ≤ T ≤ 1. It is challenging to associate
resource block to the users and determine the time sharing
between energy harvesting and information transfer such that
their required rate is satisfied. Therefore, we use NOMA to
accommodate K users in N resource blocks while satisfying
user rate requirements. Let gk , and η be the channel power
gain of the k-th user to the base station and energy harvesting
efficiency, respectively. It is important to note that η is con-
sidered constant for all users for the sake of illustration. The
structure of the proposedmathematical model will not change
by using different values of η for each user. The channel
power gain is gk = |hk |2, where hk is the amplitude channel
gain. We consider amplitude of channel gain hk as Rayleigh
distribution in our system model.

We assume that the total energy harvested in 1−T duration
for the k-th user is the energy that is used for transmission in
time T. Let PBS be the amount of base station transmission
power at the first time slot then the harvested energy by the k-
th user will be Ek = ηgkPBS (1−T ). Then, the uplink transmit
power of the k-th user is

Pk =
Ek
T
= 1gkηPBS , (1)

where 1 = 1−T
T and Ek is the energy harvested by the k-th

user.

The base station will use SIC for decoding. Rate of each
user depends on its decoding order. We assume that users are
sorted according to their channels such that g1 > g2....... >
gk . Let there be only one resource block and K users then the
rate for first user will be

R1 = T log2

(
1+

P1g1
N0 +

∑K
i=2 Pigi

)
, (2)

where N0 is the noise spectral density. It can be written as
(See Appendix ?? for details):

R1 = T log2

(
1+

1ρg21
1+1ρ

∑K
i=2 g

2
i

)
, (3)

The rate for k-th user can be written as,

Rk = T log2

(
1+

1ρg2k
1+1ρ

∑K
i=k+1 g

2
i

)
, (4)

where ρ = ηPBS
N0

. It is evident from (2) and (4) that the user 1
will face interference from all otherK−1 users. The k-th user
will perform SIC to cancel interference from K-k users and
so on. For example, if we have three users than user 1 will
perform SIC to cancel interference from users 2 and 3. While
user 2 will perform SIC to cancel interference from user 3.
On the other hand, user 3 will not cancel interference from
users 1 and 2, although user 3 will be interfered by them [6].
Thus, the rate of user K can be written as

RK = T log2
(
1+1ρg2K

)
. (5)

A detailed list of symbols and their description is provided
in Table 2.

TABLE 2. Symbols and their description used in the model.

B. PROBLEM FORMULATION
In this paper, the goal is to maximize both the number of
admitted users and system throughput. It is important to note
that total throughput can be maximized without considering
the minimum data rate requirement of individual users. Thus,
there must be a constraint on minimum data rate requirement
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of individual users. An individual user can use r-th resource
block for data transmission. We define a binary indicator
function xkr that defines usage of k-th user for r-th resource
block. xkr = 1 in case, when k-th user is using r-th resource
block and 0 otherwise. This can be represented as:

xkr =

{
1, if k-th user is using r-th resource block
0, otherwise.

(6)

The individual user can either selected for data transmis-
sion or not. A binary indicator function yk defines user selec-
tion where yk = 1 when k-th user is selected and 0 otherwise.
This can be written as:

yk =

{
1, if k-th user is selected
0, otherwise.

(7)

The objective is to maximize both admitted users and the
data rate by optimizing the X , Y , Tr , and PBS,r , where X
is the assignment matrix which consists of xkr ∀ k and r ,
Y is the user selection vector that consists of yk ∀ k , Tr is
the time sharing in each resource block, and PBS,r is the
power in each resource block. The data rate of each user must
meet a minimum data rate requirement, i.e., Rmink in order
to meet QoS requirements. However, practically it may not
be possible to meet rate requirement due to transmit power
constraint. In this paper, we maximize system throughput and
number of admitted users by dynamic user grouping, power
allocation, and time allocation while satisfying constraints
on user throughput and power in each resource block. The
data rate maximization problem for NOMA with RF energy
harvesting can be stated as follows:

Given:
• Total number of users (K )
• Total number of resource blocks (N )
• Minimum QoS requirement of k-th user (Rmink )
• Maximum base station power PMAXBS
Objective:
• Maximize both number of admitted users and system
throughput

Determine:
• Assignment matrix X
• User selection vector Y
• Time sharing for all r-th resource blocks Tr
• Power in r-th resource block PBS,r

The utility function for the proposed framework for
NOMA with RF energy harvesting can be formulated as

in (8), as shown at the bottom of this page. The data rate
maximization problem can be formulated as:

max
X ,Y ,Tr ,PBS,r

: U ,

Subject to C1 :
N∑
r=1

xkr ≤ 1,∀k︸ ︷︷ ︸
User resource block assignment

C2 :

N∑
r=1

T log2

(
1+

xkr1rρrg2k
1+1rρr

∑K
i=k+1 x

i
rg

2
i

)
≥ ykRmin,∀k︸ ︷︷ ︸

Rate constraint of selected user

C3 :
N∑
r=1

PBS,r ≤ PMAXBS ,︸ ︷︷ ︸
Power budget constraint

C4 : xkr ≤ yk ,∀k, r,︸ ︷︷ ︸
User assignment/ selection couple constraint

C5 : yk ∈ {0, 1}, xkr ∈ {0, 1}, T ∈ [0, 1],

PBS,r ≥ 0, ∀k, r (9)

where C1 ensures one user cannot use more than one resource
block, C2 guarantees minimum data rate requirement of
selected user for all resource blocks, where 1r =

1−Tr
Tr

,
C3 ensures power of base station should be less than maxi-
mum power for all resource blocks, C4 assures that xkr should
be zero if the k-th user is not selected.
The problem in (9) is a mixed integer non-linear pro-

gramming problem (MINLP) since both utility function and
constraints have logarithmic terms. Moreover, due to discrete
variables this problem is non-convex. Thus, the problem in
(9) is MINLP, such problems are generally NP-hard. In order
to get optimal solution, we need to compute all possible
combinations of users assignment in their respective resource
blocks. However, the complexity in this case increases with
the increase in number of users and/or resource blocks. There-
fore, in this paper we adopted mesh adaptive direct search
(MADS) algorithm which is computationally efficient and
provides epsilon optimal solution.

IV. SOLUTION APPROACHES
We use two approaches to solve the problem given in (9):
1) optimal solution using exhaustive search algorithm (ESA)
and 2) MADS algorithm. We now describe the detailed oper-
ations of both approaches.

U =


Rate of network︷ ︸︸ ︷

N∑
r=1

K∑
k=1

yk︸︷︷︸
Admission control

Tr︸︷︷︸
Time sharing

log2

(
1+

xkr1rρrg2k
1+1rρr

∑K
i=k+1 x

i
rg

2
i

)
︸ ︷︷ ︸

Rate

 (8)
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Algorithm 1 Dynamic User Grouping, Time Allocation, and
Power Allocation Using Exhaustive Search Algorithm
1: Initialization:
2: K ← Number of users
3: N ← Number of resource blocks
4: Rmin← Minimum rate requirement
5: D← K + K × N // Number of discrete variables
6: BestSolution← 0
7: for i=1 to 2D do
8: Z

[
x11 , · · · , x

K
B , y1, · · · , yK

]
← getbinary(i)

9: X ← getx(Z) // Association matrix
10: Y ← gety(Z) // User selection
11: Isfeasible=IsXandYFeasible(X,Y)
12: if Isfeasible==1 then
13: Solution←Apply NLP to the optimization problem

in (9) with known x and y
14: if Solution ≥ BestSolution then
15: BestSolution=Solution
16: end if
17: end for
18: Output: BestSolution

A. OPTIMAL SOLUTION
In this section, we will provide details of optimal solution
obtained using ESA to solve (9). The steps of the ESA are
shown in Algorithm 1. This method enumerates all possible
combinations of X and Y . Hence, we achieve the optimal
solution, however, at the cost of computational complexity.

The algorithm takes number of users (K ), number of
resource blocks (N ), minimum data rate requirement (Rmin)
as an input. We initialized parameter D as number of discrete
variables which is equal toK+K×N and initial best solution
as 0, i.e., we are looking for the best solution. During the exe-
cution phase, which runs for 2D iterations all values of X and
Y are evaluated to find best solution for (9). In each iteration,
a binary vector is initiated and corresponding values are saved
in Z . In the next steps, the functions getx and gety extract
the association matrix X and user selection vector Y from the
Z and stores corresponding values in X and Y , respectively.
Then, we check the feasibility of X and Y to avoid evaluation
of objective function using infeasible solution. The pseudo
code to check feasibility of X and Y is given in Algorithm 2.
X and Y will produce infeasible solutions if 1) no user is
selected, or 2) k-th user is not selected and its corresponding
assignment variables are non-zero, or 3) k-th user is selected
and none of its corresponding variable are non-zero. For
better understanding, let K = 3 and N = 2 which results
in D = 9 discrete variables, i.e., {x11 x

2
1 x

3
1 x

1
2 x

2
2 x

3
2 y1 y2 y3}.

Then the vectors X = {x11 x
2
1 x

3
1 x

1
2 x

2
2 x

3
2 } and Y = {y1 y2 y3}.

Now X and Y will be infeasible solutions if 1) Y=[0 0
0] or 2) X=[1 1 0 0 0 0] and Y=[1 0 0] (user 2 is not
selected but its corresponding assignment variable x21 = 1, or
3) X=[0 1 0 0 0 0] and Y=[1 0 0] (user 1 is selected but none
of its corresponding variable is non-zero).

Algorithm 2 IsXandYFeasible(x,y)
1: Isfeasible=0
2: if

∑K
k=1 yk == 0 then

3: return Isfeasible
4: end if
5: for k=1 to K do
6: if yk == 0 &&

∑N
r=1 x

k
r > 0 then

7: return Isfeasible
8: else if yk == 1 &&

∑N
r=1 x

k
r == 0 then

9: return Isfeasible
10: end if
11: end for
12: Isfeasible=1
13: return Isfeasible

If the X and Y are feasible then we apply non-linear
programing (NLP) (we used solver of optimization toolbox
ofMATLAB) to the optimization problem in (9) with feasible
xkr and yk . Then we will update BestSolution if the solution
obtained is better than the one in previous iteration. Finally,
at the end of 2D iterations, the output of the algorithm is
BestSolution which represents the optimal solution of prob-
lem in (9).

B. MESH ADAPTIVE DIRECT SEARCH ALGORITHM
We adopted mesh adaptive direct search (MADS) algo-
rithm to obtain the sub-optimal solution of problem given in
(9) [41], [42]. The MADS algorithm is usually a solution for
non-linear optimization problems. TheMADS is an extended
version of generalized pattern search (GPS) based on polling
mechanism. Polling is the local scrutiny of objective function
in the space of optimization variables. TheMADS is a deriva-
tive free procedure and iterative in nature, where i-th iteration
consists of two steps, i.e., searching and polling. During the
search step, if it gets a better solution, then it elongates search
space and perform searching step again. When the searching
step fails to find a better solution, then polling step invokes
and narrows down the search around the current solution. This
will lead to the convergence of the algorithm.

Given an iteration i, the MADS algorithm generates a
currentmesh and finite number of trial points. In i-th iteration,
the current mesh can be defined as:

Mi =
⋃
a∈9i

{a+∇i,mDi,m}, (10)

where a is any arbitrary starting trial point in the feasible
region and 9i is the set of finite points where the objective
function is to be evaluated, ∇i,m ∈ R+ is the mesh size
parameter, and Di,m is the finite set of mesh directions.

In this paper, we consider fixed number of trial points in
current mesh which are located on the current mesh with
four directions (left, right, up, and down) scaled by ∇i,m.
Now, in the first step called searching, the objective func-
tion values are computed at four mesh points. These values
are then compared with the current value which is so far
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the best solution of objective function in (9) to find yet
better solution. If a better solution is found at any trial point
then the trial point, is called an improved mesh point and iter-
ation is considered as successful iteration. When an improved
mesh point is found then it may stop or continue searching for
better mesh points. It is worth to mention that the constraints
of (9) are evaluated to determine feasibility of the solution,
and objective function first values are then computed only
in the case when constraints are feasible. The next iteration
i + 1 will start with updated incumbent solution and mesh
parameter ∇i+1,m ≥ ∇i,m.

In the case when no improved mesh point is found, then
the polling step is invoked. Here, set of poll points is defined
as Pi with poll size parameter ∇i,p where ∇i,m ≤ ∇i,p. The
objective function is then evaluated at each poll point to
find better solution, however, ∇i+1,p is reduced in case better
solution is found and choose the improved point as incumbent
solution for next iteration. This will help to further explore
better solution in the vicinity of incumbent solution. The key
difference between the MADS and GPS is the size parameter.
In the case of MADS, ∇mi ≤ ∇

p
i ; whereas in the case of GPS

there is only a single parameter ∇i = ∇mi = ∇
p
i . The MADS

algorithm to solve optimization problem in (9) is given in
Algorithm 3.

V. PERFORMANCE ANALYSIS
We evaluate the performance of adopted ESA and MADS
algorithm using MATLAB. The ESA provides optimal solu-
tion and thus is used as a benchmark to compare results
of MADS algorithm. We consider the following four sce-
narios based on number of users (K ), number of resource
blocks (N ) and minimum data rate requirement (Rmin) for the
dynamic user grouping, power allocation, and time allocation
for NOMAwith RF energy harvesting: 1) K = 6, N = 2, and
Rmin = 125kbps, 2) K = 6, N = 2, and Rmin = 1000kbps,
3) K = 5, N = 3, and Rmin = 125kbps, and K = 5,
N = 3, and Rmin = 2000kbps. The users are uniformly
distributed within a distance of 1km radius. The channel
propagation is considered to be Rayleigh fading over log-
normal shadowing. We consider a scenario of urban area in
this paper for which pathloss exponent is 3 and antenna gain
factor 1 for simulations.

Detailed simulation parameters are given in Table 3.

TABLE 3. Simulation parameters.

Fig. 3 illustrates comparison for MADS algorithm and
ESA for scenario 1. Fig. 3 (a) shows resource block index

Algorithm 3 Mesh Adaptive Direct Search Algorithm
1: Initialization:
2: Set i← 0, ∇mi ≤ ∇

p
i

3: Terminate← FALSE, ImprovedFound← FALSE
4: while Terminate==FALSE do
5: // Current mesh
6: Mi =

⋃
a∈9i
{a+∇mi Dz}

7: //Step 1: Search step
8: Compute values of objective function in (9) in all

directions of mesh
9: if Improved mesh point found then
10: ImprovedFound← TRUE
11: else if Improved mesh point not found then
12: // Step 2: Poll Step
13: Pi =

⋃
z∈βi
{x +1p

i D
p
i }

14: Compute values of objective function in (9) in all
directions of mesh

15: if Improved poll point found then
16: ImprovedFound← TRUE
17: end if
18: end if
19: if ImprovedFound == TRUE then
20: 1i+1,m← 1i,m/2

m

21: else
22: 1i+1,p← 1i,p2

p

23: end if
24: ImprovedFound ← FALSE
25: i← i+ 1
26: if Termination Criterion Satisfied then
27: Terminate← TRUE
28: end if
29: end while

versus user index when the minimum data rate requirement
is 125Kbps for each user. It is evident that ESA allocates
only user 1 to resource block 1 and rest of all users to
resource block 2. On the other hand, MADS algorithm allo-
cate resource block 1 for user 1, 3, and 4 and resource
block 2 for user 2 and 6. However, user 5 is not assigned to
any of the resource block since all of the constraints are not
satisfied. Fig. 3 (b) shows the user power in dBm for each
resource block. It is obvious that the user power is a little
more in the case of resource block 2, however, there is not
significant difference when MADS algorithm is compared
with ESA. Fig. 3 (c) shows user rate for each user index.
It is clear that each user has equal or higher data rate in the
case of MADS when compared with ESA. This is because
we are not only maximizing rate rather we are doing joint
maximization of users and sum rate. It is important to note
that MADS assigned only 5 users out of total 6 users, whereas
ESA successfully assigned all 6 users. Therefore, rate of
users in the case of MADS is equal or higher compared to
ESA. Fig. 3 (d) compares MADS and ESA in terms of time
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FIGURE 3. Performance comparison of MADS algorithm versus ESA for
K=6, N=2, and Rmin=125Kbps: (a) Resource block index versus user
index, (b) user power for each resource block, (c) user rate for each user,
and (d) time sharing for each resource block.

sharing for each resource block. It is noticeable that the time
shared between transmission and energy harvesting is same
for both MADS and ESA in the case of resource block 1.
On the contrary, in the case of resource block 2, more time is
allocated for transmission when MADS algorithm is applied
in comparison with ESA. This means, in ESA, each user
has more time for energy harvesting compared with MADS
algorithm.

FIGURE 4. Performance comparison of MADS algorithm versus ESA for
K=6, N=2, and Rmin=1000Kbps: (a) Resource block index versus user
index, (b) user power for each resource block, (c) user rate for each user,
and (d) time sharing for each resource block.

Fig. 4 shows a comparison for scenario 2. Resource
block index versus user index is shown in Fig. 4 (a) where
K = 6, N = 2, and Rmin = 1000Kbps. In this case ESA
allocates user 2, 4, 5 and 6 to resource block 1 and user
1 and 3 to resource block 2. On the contrary, MADS algo-
rithm allocate resource block 1 only to user 5 and resource
block 2 to user 1, 2, and 6. User 3 and 4 are not assigned
any resource block for this case since all constraints are not

satisfied. Fig. 4(b) shows the user power in dBm for each
resource block. It is clear for both resource blocks that ESA
assigned more power to meet the data rate requirement when
compared to the power assigned by MADS. Fig. 4 (c) clearly
illustrates that each user has equal or higher user rate in the
case of MADS when compared with ESA. However like in
scenario 1, ESA was successful in assigning all 6 users to
the resource blocks whereas MADS only assigned 4 out of 6
users. Fig. 4 (d) provides a comparison for time sharing for
both approaches. For resource block 1,MADS gets more time
for energy harvesting whereas for resource block 2, MADS
allocates more time for transmission as compared to ESA.

FIGURE 5. Performance comparison of MADS algorithm versus ESA for
K=5, N=3, and Rmin=125Kbps: (a) Resource block index versus user
index, (b) user power for each resource block, (c) user rate for each user,
and (d) time sharing for each resource block.

Fig. 5 is an illustration for scenario 3. K = 5, N = 3, and
Rmin = 125Kbps are choosen for the resource block index
versus user index in Fig. 5 (a). In this case, ESA allocates user
3, 4 and 5 to resource block 1, user 1 to resource block 2 and
user 2 to resource block 3. On the contrary, MADS algorithm
allocates user 1 and 5 to resource block 1, user 2 to resource
block 2, and user 3 and 4 to resource block 3. Unlike resource
blocks 2 and 3, resource block 1 requires more power with
MADS as compared to ESA shown in Fig. 5(b). Fig. 5(c)
depicts that MADS users rate is better or very similar to
when ESA is used. Fig. 5 (d) illustrate time sharing for
each resource block. For resource block 1, unlike resource
block 2 and 3, MADS needs more time for transmission as
compared to ESA.

Fig. 6 shows a comparison for scenario 4. Where K = 5,
N = 3, and Rmin = 2000Kbps. resource block index versus
user index is shown in Fig. 5 (a). In this case, ESA allocates
user 2, 4 and 5 to resource block 1, user 3 to resource
block 2 and user 1 to resource block 3. Whereas, MADS
algorithm allocate user 1 and 3 to resource block 1, user 2 to
resource block 2, and user 5 to resource block 3. User 4 is
not allocated any resource by MADS since all the constraints
are not satisfied. Unlike resource blocks 1 and 2, resource
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FIGURE 6. Performance comparison of MADS algorithm versus ESA for
K=5, N=3, and Rmin=2000Kbps: (a) Resource block index versus user
index, (b) user power for each resource block, (c) user rate for each user,
and (d) time sharing for each resource block.

TABLE 4. Complexity comparison of ESA versus MADS algorithm.

block 3 requires more power with MADS as compared to
ESA as shown in Fig. 5 (b). It is evident from Fig. 5 (c), that
with MADS users rate is better or very similar to when ESA
is performed. Fig. 5 (d) shows time sharing between energy
harvesting and information transfer. For resource block 3,
unlike resource block 1 and 2, MADS needs less time for
transmission as compared to ESA. Which also means that
resource block 3 will get more time to harvest energy in
MADS as compared to ESA.

A. COMPLEXITY
The complexity (directly proportional to computation time)
of ESA is increased exponentially with the number of
resource blocks and users and can be written as O(2K+K×N ).
In contrast, the MADS algorithm converges to ε-optimal
solution in finite number of steps [43], [44]. Further, the con-
vergence of MADS algorithm is independent of starting
point and converges to global optimal solution with ε error
tolerance. ε = 0.001 is used as error tolerance in the simula-
tions. The complexity of MADS algorithm is O( (K+K×N )2

ε
).

Therefore, we can achieve a sub-optimal solution using the
MADS algorithm for the problem in (9) with less complexity
when compared to the ESA. Table 4 shows a complexity

comparison of ESA versus MADS algorithm for different
number of users (K ) and resource blocks (N ). It is worth to
note that complexity of MADS is high for small values of
K and N , however, MADS clearly outperforms ESA for all
other cases.

VI. CONCLUSIONS
In this paper, we presented mathematical framework for
NOMA with RF energy harvesting. This framework includes
dynamic user grouping in their respective resource blocks
power allocation and, time allocation for transmission and
energy harvesting. The objective of this framework is tomaxi-
mize both admitted users and throughput in the network while
satisfying minimum data rate requirement of each admitted
user and optimal user power in each resource block. The pro-
posed mathematical framework is mixed integer non-linear
programming (MINLP). We performed ESA which provides
optimal solution and used it as a benchmark for MADS algo-
rithm which provides sub-optimal solution. Four scenarios
based on the number of users, number of resource blocks,
and minimum data rate are considered for simulation results.
Dynamic user grouping in their respective resource blocks
is shown for each scenario. User power for each resource
block, user rate for each user, and time sharing for each
resource block are also compared for MADS algorithm and
ESA. It is shown that the performance of MADS algorithm is
near to or equal to the ESA in most of the cases, i.e., near to
optimal solution with less complexity.

Future work can involve the extension of proposed frame-
work for the heterogeneous 5G and beyond networks while
considering multiple cells and cloud radio access network.
Moreover, the proposed framework can be improved by
allowing one user to use more than one resource block.
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