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ABSTRACT Mobile edge computing (MEC) has been considered as a promising technique to address the
explosively growing computation-intensive applications. Thanks to the flexibility of the unmanned aerial
vehicles (UAVs), the UAV-assisted MEC can serve mobile terminals (MTs) effectively, i.e., the computing
server installed on the UAV can flexibly change its location to serve MTs. Moreover, since non-orthogonal
multiple access (NOMA) is able to accommodate massive connectivity, the NOMA-based and UAV-assisted
MEC can provide flexible computing services for MTs in large-scale access networks (e.g., sensor networks
and Internet of Things). However, due to the diversity of the UAV’s trajectory and the interference among
MTs introduced by NOMA, the performance (e.g., energy consumption and delay) of the NOMA-based
and UAV-assisted MEC system is adversely affected. Therefore, in this paper, we formulate an optimization
problem to minimize the largest energy consumption among MTs by jointly optimizing the trajectory, task
data and computing resource allocations, and then propose an iterative algorithm to solve the optimization
problem. Furthermore, to minimize the largest energy consumption among MTs with lower complexity,
we propose a fixed point service scheme and optimize the location of the fixed point. The simulation results
show that the proposed optimization algorithms can effectively reduce the largest energy consumption among
MTs and ensure the fairness among MTs.

INDEX TERMS Mobile edge computing, non-orthogonal multiple access, unmanned aerial vehicles,
trajectory design.

I. INTRODUCTION
The past decades have witnessed a significant growth
in smart mobile applications such as face recognition,
speech recognition, and virtual reality that enrich peo-
ple’s life [1]–[3]. However, these applications are usu-
ally computation-resource hungry and energy-consumption
hungry, which however contradicts the reality that most

The associate editor coordinating the review of this article and approving
it for publication was Xiaodong Xu.

conventional mobile terminals (MTs) are constrained by lim-
ited computing-units and battery energy [4]. Thanks to allow-
ing MTs to offload computing tasks to nearby computing
servers, mobile edge computing (MEC) has been considered
as a promising technology that can help MTs to undertake
computing tasks [5]–[8].

Computing servers are traditionally deployed in the base
stations. The fixed locations of the computing servers can-
not cope with unexpected situations (e.g., base stations are
damaged and environmental awareness is needed in disaster
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areas) and satisfy the needs of temporary computing ser-
vices. To solve the problem, the flexible location deploy-
ment for computing servers is essential. Recently, unmanned
aerial vehicles (UAVs) attract a lot of attentions due to their
location-flexibility and maneuverability [9], [10]. According
to the existing studies [11]–[15], the UAV can be quickly
deployed as a platform over the air to satisfy urgent services.
Thus, inMEC systems, the computing servers can be installed
on the UAV and provide location-flexible computing services
for the MTs in a wide area.

Moreover, the MEC is also needed in some large-scale
access networks (e.g., the sensor networks and Internet of
Things). However, traditional access protocols (e.g., time
division multiple access (TDMA) and orthogonal frequency
division multiple access (OFDMA)) cannot accommo-
date massive connectivity with high spectrum utiliza-
tion. The power-domain non-orthogonal multiple access
(NOMA) [16]–[20] allows multiple MTs to reuse the
same time slot and frequency resource blocks by divid-
ing their transmit power and further exploiting the suc-
cessive interference cancellation to mitigate the co-channel
interference among them. Because of the advantages of
NOMA, NOMA-based MEC system can provide large-scale
access and complete the computing offloading services in
large-scale access networks [21]–[23].

A. RELATED WORK
The existing studies have recently investigated the
UAV-assisted MEC systems. In [24] and [25], the authors
used the effective alternative algorithm to solve the
minimization problem of energy consumption and the max-
imization problem of computing rates in UAV-enabled
wireless-powered MEC systems, respectively. In [26],
the authors formulated a novel optimization framework for
the utility maximization problem by jointly optimizing the
transmit power of vehicle and the trajectory of UAV. In [27],
the authors considered joint offloading and trajectory design
for UAV-enabled MEC systems and aimed at minimizing
the sum of the largest delay among users. In [28] and [29],
the authors considered both uplink and down link in the
system and minimized the sum of users’ energy consumption
by optimizing the bit allocation and path planning. However,
the above studies do not consider the demand of large-scale
access in the MEC system.

Moreover, the NOMA-based MEC systems have been
recently studied. Specifically, some existing studies focus
on the delay minimization. In [30], the authors studied the
NOMA-enabledmulti-accessMEC system and aimed at opti-
mizing the offloading tasks, the uploading and downloading
durations to minimize the overall delay of the users. In [31],
the authors proposed a social trust-based and cooperative
computing offloading algorithm to minimize the comple-
tion delay of the system. Moreover, there are studies which
focus on the energy consumption minimization. In [32],
the authors proposed an edge computing aware NOMA
technique and minimized the energy consumption of users.

In [33], the authors optimized the task partitions, power and
offloading rates to minimize the weighted sum of the energy
consumption for all users. In [34], a distributed scheme has
been proposed for multi-user NOMA assisted multi-access
MEC by jointly optimizing the users’ offloaded workloads
and the NOMA transmission-durations. However, the above
studies do not consider the demand of urgent computing
offloading services.

Different from the above existing studies, we consider the
NOMA-based and UAV-assistedMEC system, which enables
MEC to adapt to future scenarios requiring large-scale access
and emergency deployment. To the authors’ best knowl-
edge, our paper is the first work which investigates the
NOMA-based and UAV-assisted MEC system.

B. CHALLENGES AND CONTRIBUTIONS
In the NOMA-based and UAV-assisted MEC system, MTs
upload their task data to the moving UAV with the NOMA
protocol, and the results are then returned to MTs after their
tasks are completed by the UAV. The UAV’s dynamic trajec-
tory determines the channel gain between the UAV and MTs,
which yields a significant impact on MTs’ energy consump-
tions. The NOMA protocol introduces interference among
MTs, and random task data allocation may cause strong
interferences among MTs (especially, when the amount of
the uploaded task data is large), thereby increasing the MTs’
energy consumptions. Moreover, the allocation of computing
resources directly affects the computing delay. Under the
fixed task time tolerance and transmit power, the allocation
of computing resources also has an impact on MTs’ energy
consumptions.

Therefore, in this paper, we propose an iterative algorithm
that jointly optimizes trajectory, task data and computing
resource allocations to minimize the largest energy consump-
tion among MTs. Furthermore, to design a low-complexity
algorithm for minimizing the largest energy consumption
among MTs, we propose a fixed point service scheme. In the
considered fixed point scheme, the UAV only needs to hover
at a fixed point to provide computing services, which thus
reduces the complexity compared to the previous moving
scheme providing a large number of service points. Regarding
this low-complexity algorithm, we further optimize the loca-
tion of the fixed point. The main contributions of the paper
are summarized as follows.

1) First, we introduce the NOMA and UAV into MEC
systems to meet the demand of urgent and large-scale
access computing offloading services. On the one hand,
the UAV can provide urgent computing offloading ser-
vices. On the other hand, the NOMA can improve
the number of accesses. Moreover, to ensure fairness
and energy saving, we analyze the factors that influ-
ence MTs’ energy (e.g., the interferences among MTs,
the computing resource allocation strategy and the
dynamic trajectory of the UAV) in the NOMA-based
and UAV-assisted MEC system, and formulate a
min-max problem of MTs’ energy consumptions.
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2) Next, we jointly optimize the trajectory, task data and
computing resource allocations to solve the min-max
problem (i.e., minimizing the largest energy consump-
tion among MTs). The optimization problem is chal-
lenging due to the uncertainty of UAV’s trajectory
and the interference among MTs introduced by the
NOMA protocol. We introduce auxiliary variables and
utilize the structural characteristics of the optimization
problem to transform it to convex sub-problems, and
propose an iterative algorithm to effectively solve these
sub-problems.

3) Furthermore, to solve the optimization problem with
lower complexity, we propose a fixed point service
scheme and find the optimal location of the fixed point.
Specifically, we first utilize a closer approximation to
deal with the interference in the location optimization,
and mathematically prove that this approximation can
help transform the original non-convex constraint into
a convex constraint. Based on this, we transform the
original non-convex optimization problem into a con-
vex optimization problem and solve it efficiently.

Remark: Our design features are the introduction of
NOMA and UAV into the MEC system for urgent and
large-scale access computing offloading services. In addition,
in order to ensure fairness and energy saving in the system,
the largest energy consumption among MTs is minimized by
jointly optimizing the UAV’s trajectory, task data and com-
puting resource allocations. Moreover, constraints include
the MTs’ task delay constraints, total amount of task data
constraints, and the UAV’s trajectory constraints, which will
be discussed in detail in the next section. Our proposed design
can yield a fairer optimization of MTs’ energy consumptions
while satisfying the demands of urgent and large-scale access
computing offloading services.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the opti-
mization problem. In Section III, we propose an iterative
algorithm to solve the optimization problem. In Section IV,
a fixed point service scheme is proposed and we design a
low-complexity algorithm to solve the optimization problem.
SectionV presents the numerical results. Finally, we conclude
the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig. 1, we consider a wireless communication
system where a rotary-wing UAV equipped with a com-
puting server is dispatched to serve K MTs, denoted by
K = {1, 2, . . . ,K }. Specifically, in a finite time horizon T ,
UAV provides computing services for MTs, and the task data
are bit-wise independent and can be arbitrarily divided into
different groups [1]. Moreover, the computing resources of
the UAV are divided into ftot computing resource blocks. For
the convenience of analysis, T is divided into N equal time

FIGURE 1. Illustrative scenario of NOMA-based and UAV-assisted
computing offloading.

slots δt , i.e., T = Nδt , and denote N = {1, 2, . . . ,N }, when
the δt is sufficiently small, the position of the UAV during
each time slot can be regarded as stationary. In the n-th time
slot, each MT k offloads the task Ak,n

1
= (Dk,n,Xk,n) to the

UAV in the NOMAprotocol, whereDk,n is the input-data size
of the MT k in the n-th time slot (in bits) and Xk,n represents
the computing intensity which is assigned to the MT k in the
n-th time slot (in the unit of CPU cycles per bit). We assume
that the UAV flies at a constant altitude H and construct a 3-
Dimensional Cartesian coordinate system model [25]–[27],
where the coordinate of MT k is wk = [xk , yk , 0]T ,∀k ∈ K
and the coordinate of UAV in the n-th time slot is qn =
[xq,n, yq,n,H ]T . The velocity of the UAV in the n-th time slot
is vn. By taking into account the mobility constraints for the
UAV’s movement, we impose the following constraints:

C1 :


q1 = qI ,
qN+1 = qF ,

vn =
qn+1 − qn

δt
, ∀n ∈ N ,

‖vn‖ ≤ Vmax, ∀n ∈ N ,

(1)

where qI and qF are the initial and final locations of the UAV,
respectively. Vmax is the maximum rate of the UAV, and ‖·‖
represents the norm operator. The above equations indicate
that the initial and final locations of the UAV are fixed and
show the relationship between the speed and position of the
UAV.

Suppose that the UAV-to-ground channel is dominated
by the line-of-sight link. Therefore, similar to [11]–[14],
the channel gain between the UAV and the MT k in the n-
th slot is given by:

gk,n = β0 ‖qn − wk‖
−2 , (2)

where parameter β0 represents the channel power at the ref-
erence distance d0 = 1 m. We denote the transmit power of
MT k in the n-th time slot as pk,n. Without loss of generality,
we assume that g1,n > g2,n > · · · > gK ,n. Based on
the rules of the uplink power-domain NOMA [18], p1,n >
p2,n > · · · > pK ,n,∀n ∈ N , and the decoding order of all
MTs’ signals in the UAV should be sorted in the ascending
order of the MTs’ sequence, namely, the signal of MT 1 with
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largest channel gain is firstly decoded, and the signal of MT
K with smallest channel gain is finally decoded. Moreover,
according to the rule of successive interference cancellation
(SIC) [18], the signal decoded previously is interfered by the
signals decoded later. Thus, the transmission rate of the MT
k in the n-th slot is given by:

Rk,n = B log2

1+
pk,ngk,n

K∑
j=k+1

pj,ngj,n + σ 2

 , (3)

where parameters B and σ 2 are the channel bandwidth and
noise power, respectively. Similar to [27], [32], the energy
consumption and task delay of MT k in the n-th slot are
respectively given by:

Ek,n = pk,n
Dk,n
Rk,n

, (4a)

Tk,n =
Dk,n
Rk,n
+
Xk,nDk,n
fk,nF

, (4b)

where fk,n is the number of computing resources allocated
to the MT k in the n-th time slot, and F is the computing
rate of each computing resource (in the unit of CPU cycles
per second). The delay Tk,n includes the transmission delay
Dk,n
Rk,n

and the computing delay Xk,nDk,n
fk,nF

. It is worth noting
that since the amount of computing results can be ignored
compared to that of input data [27], [32], we do not consider
the downlink delay.

B. PROBLEM FORMULATION
To ensure min-max fairness [35] amongMTs, we aim to min-
imize the largest energy consumption among MTs by jointly
optimizing the UAV’s trajectory, task data and computing
resource allocations, where the largest energy consumption
refers to the energy consumption of the MT whose energy
consumption is the largest among MTs. The optimization
problem can be formulated as follows:

P1 : min
Dk,n,qn,fk,n

max
k

{
N∑
n=1

Ek,n

}
, (5a)

s.t. C1, (5b)

Tk,n ≤ δt , ∀k ∈ K, ∀n ∈ N , (5c)
N∑
n=1

Dk,n = Dreq
k , ∀k ∈ K, (5d)

g1,n > g2,n > · · · > gK ,n, ∀n ∈ N , (5e)

fk,n ∈ {fmin, . . . , ftot − (K − 1)fmin},

∀k ∈ K, n ∈ N , (5f)
K∑
k=1

fk,n = ftot , ∀n ∈ N , (5g)

where Dreq
k is the required amount of task data of MT k . fmin

is the minimum number of computing resources allocated to
each MT. Here, constraint (5b) represents the UAV’s mobile

capacity constraints given in (1), constraint (5c) represents
that all MTs’ task delays in each time slot cannot exceed the
length δt , constraint (5d) represents that constraint of task
data, constraint (5e) ensures that under the NOMA protocol,
all MT signals can be correctly decoded in the decoding
order mentioned above. Constraint (5f) indicates that fk,n is
an integer and cannot be lower than the minimum number
of computing resource allocation or higher than the largest
number of computing resource allocation. In addition, con-
straint (5g) indicates that the sum of the number of all MTs’
computing resources is equal to the total amount of the UAV’s
computing resources.
Moreover, denote i ∈ I 1

= {1, . . . ,K − 1} and Ji
1
= {i +

1, . . . ,K }, constraint (5e) can be rewritten as:(
2xq,n − xi − xj

) (
xi − xj

)
+
(
2yq,n − yi − yj

) (
yi − yj

)
> 0,

∀i ∈ I, ∀j ∈ Ji, ∀n ∈ N . (6)

Obviously, the left-hand-side of (6) is affine with respect
to qn. However, since the objective function and con-
straints (5c) are non-convex, the problem P1 is a non-convex
optimization problem and cannot be directly solved by the
convex optimization techniques.

III. JOINT TRAJECTORY OPTIMIZATION AND TASK
DATA ALLOCATION
In this section, we introduce auxiliary variables to trans-
form the problem P1 into a problem which can be solved
efficiently. Firstly, we introduce the auxiliary variable e ≥

max
k

{
N∑
n=1

Ek,n

}
to simplify the objective function and relax

fk,n into a continuous number. Thus, the problem P1 can be
equivalently formulated as follows:

P2 : min
Dk,n,qn,fk,n,e

e, (7a)

s.t. e ≥
N∑
n=1

pk,n
Dk,n
Rk,n

, ∀k ∈ K, (7b)

Dk,n
Rk,n
+
Xk,nDk,n
fk,nF

≤δt , ∀k ∈K, ∀n∈N , (7c)

N∑
n=1

Dk,n = Dreq
k , ∀k ∈ K, (7d)

fmin≤ fk,n ≤ ftot−(K−1)fmin, ∀k ∈K, n∈N ,
(7e)

Constraint C1, (5g), (6), (7f)

where constraint (7c) comes from constraint (5c). Moreover,
since constraints (7b) and (7c) have the product terms of
different variables, the problemP2 is still intractable. To solve
it, we introduce the auxiliary variables tk,n ≥ 1

Rk,n
. Therefore,

constraints (7b) and (7c) can be equivalently rewritten as:

e ≥
N∑
n=1

pk,nDk,ntk,n, ∀k ∈ K, (8a)
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Dk,ntk,n +
Xk,nDk,n
fk,nF

≤ δt , ∀k ∈ K, ∀n ∈ N , (8b)

Rk,n ≥
1
tk,n

, ∀k ∈ K, ∀n ∈ N , (8c)

tk,n > 0, ∀k ∈ K, ∀n ∈ N . (8d)

Since Rk,n is non-concave with respect to qn, constraint (8c)
is non-convex. Therefore, we define the following variables:

Rlbk,n
1
= B log2

1+
pk,ngk,n

K∑
j=k+1

pj,nβ0
H2 + σ

2

 < Rk,n,

∀k ∈ K,∀n ∈ N , (9)

where Rlbk,n is still non-concave with respect to qn. Then, for
any given local point qlocaln in the feasible domain, we define
the following function:

Rk (qn)

1
= B log2

(
1+

ak,n∥∥qlocaln − wk
∥∥2 + H2

)

−

Bak,n
(
‖qn−wk‖

2
−
∥∥qlocaln −wk

∥∥2)
ln 2

((∥∥qlocaln −wk
∥∥2+H2

)2
+ak,n

(∥∥qlocaln −wk
∥∥2+H2

)) ,
(10)

where ak,n =
pk,nβ0

K∑
j=k+1

pj,nβ0
H2 +σ

2
> 0.

Theorem 2: For any qn in the feasible domain, we have
Rlbk,n ≥ Rk (qn).

Proof: We first define the function f (x) 1
=

B log2
(
1+ ak,n

x

)
, where x > 0. The first and second deriva-

tives of function f (x) are given by:

f ′(x) = −
Bak,n

ln 2
(
x2 + ak,nx

) , (11a)

f ′′(x) =
Bak,n

(
2x + ak,n

)
ln 2

(
x2 + ak,nx

)2 . (11b)

Since f ′′(x) > 0, f (x) is a convex function. Therefore,
according to the property of convex functions [35], we have
f (x) ≥ f (y)− f ′(y)(x − y),∀x, y > 0. In addition, we define
x = ‖qn − wk‖

2
+ H2 and y =

∥∥qlocaln − wk
∥∥2 + H2. Thus,

we can obtain Rlbk,n ≥ Rk (qn).
Therefore, constraint (8c) can be approximately trans-

formed into the following inequality:

Rk (qn) ≥
1
tk,n

, ∀k ∈ K, ∀n ∈ N , (12)

where Rk (qn) is concave with respect to qn. Therefore, con-
straint (10) is convex with respect to qn and tk,n. After the
above operations, the problem P2 can be formulated as:

P3 : min
Dk,n,qn,fk,n,tk,n,e

e, (13a)

s.t. e ≥
N∑
n=1

pk,nDk,ntk,n, ∀k ∈ K, (13b)

Rk (qn) ≥
1
tk,n

, ∀k ∈ K, ∀n ∈ N , (13c)

tk,n > 0, ∀k ∈ K, ∀n ∈ N , (13d)

Dk,ntk,n+
Xk,nDk,n
fk,nF

≤ 1, ∀k ∈K, ∀n∈N ,

(13e)
N∑
n=1

Dk,n = Dreq
k , ∀k ∈ K, (13f)

fmin ≤ fk,n ≤ ftot − (K − 1)fmin,

∀k ∈ K, n ∈ N , (13g)

Constraint C1, (5g), (6). (13h)

Although the problem P3 is still non-convex, it can be trans-
formed into different convex problems under different given
variables. Specifically, we identify that problem P3 can be
decomposed into the following two subproblems:
• Sub-problem to optimize the task data Dk,n under
given qn, fk,n and tk,n. The sub-problem can be formu-
lated as:

P3.1 : min
Dk,n,e

e, (14a)

s.t. Constraints (13b), (13e), (13f ). (14b)

• Sub-problem to optimize the trajectory qn, comput-
ing resources allocation fk,n and auxiliary variable
tk,n under given Dk,n. The sub-problem can be formu-
lated as:

P3.2 : min
q[n],fk,n,tk,n,e

e, (15a)

s.t. Constraints (13b)− (13e), (13g)− (13h).

(15b)

Algorithm 1 JTDCATO-Algorithm: Jointly Optimize Task
Data and Computing Resource Allocations and Trajectory

1: Initialize {Dk,n,qn, fk,n, tk,n, e}0 and set the iteration
number l = 0, qlocaln = q0n and the error tolerance
ε = 10−4

2: Repeat
3: Solve the problem P3.1 with given {qln, f

l
k,n, t

l
k,n} and

obtain the optimal solutions {D∗k,n}.
4: Solve the problem P3.2with given {D∗k,n} and obtain the

optimal solutions {q∗n, t
∗
k,n, f

∗
k,n, e

∗
}.

5: Update l ← l + 1 and {Dk,n,qn, fk,n, tk,n, e}l ←
{D∗k,n,q

∗
n, f
∗
k,n, t

∗
k,n, e

∗
}.

6: Until
∣∣el − el−1∣∣ ≤ ε

It can be verified that P3.1 and P3.2 are two convex
optimization problems which can be solved via conven-
tional optimization packages, e.g., CVX [36]. Similar to [37],
we propose an iterative joint task data and computing
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resource allocations and trajectory optimization algorithm
(called JTDCATO-Algorithm) to solve the problem P3, and
the JTDCATO-Algorithm is illustrated in Algorithm 1. In the
JTDCATO-Algorithm, the first step is to obtain a feasible ini-
tial solution. The method for obtaining the initial solution is
as follows. First, the allocation of task data is equally divided

(i.e.,Dk,n =
Dreqk
N ,∀k ∈ K, n ∈ N ). Next, for fk,n, we allocate

computing resources to each MT with the minimum number
of computing resource allocation fmin. For the remaining
computing resources, they can be randomly assigned to MTs.
Then, the whole vertical bisectors of the line between any
two MTs divide the whole horizontal plane into a number
of areas, we take a line segment with two endpoints locating
on the two edges of the area (i.e., the vertical bisectors that
forms the area), and the line segment cannot exceed the area.
Then, we determine the initial and final points of the UAV’s
trajectory on the line segment and divide the line segment
between the initial and final points to equal N segments.
Next, we determine the order of MTs based on the order
of the distances from MTs to the UAV. Finally, we need to
judge whether the trajectory satisfies constraints (5b) and
(5c) or not. If constraints are satisfied, let tk,n = 1

Rk,n
,∀k ∈

K, n ∈ N and set e to the largest energy consumption among
MTs. If not, we reselect the two endpoints on the vertical
bisectors and connect the two points to obtain a new straight
trajectory satisfying the constraint of channel gain order until
constraints (5b) and (5c) are satisfied. In addition, we use the
rounding-off method to reconstruct the integral computing
resource allocation variables, and based the integral com-
puting resource allocation strategies, we use the JTDCATO-
Algorithm again (since fk,n are already fixed, there is no need
to optimize fk,n in the JTDCATO-Algorithm) to obtain the
optimal trajectory and task data allocation strategies.

Moreover, the key idea of the JTDCATO-Algorithm is
to iteratively optimize task data and computing resource
allocations and UAV’s flying trajectory. Each iteration is
optimized on the basis of the previous iteration. Thus, when
the iteration process continues, a series of non-increasing
objective function values can be obtained. Meanwhile,
the objective function of P3 must be lower bounded by
the optimal solution to the P1. Therefore, the convergence
of the JTDCATO-Algorithm is guaranteed. Finally, regard-
ing the complexity of our JTDCATO-Algorithm, since the
JTDCATO-Algorithm requires alternatively solving the con-
vex problems P3.1 and P3.2 which require polynomial
complexities. Hence, the overall computation-complexity of
JTDCATO-Algorithm is O(I (KN )3(2N +KN )3) [38], where
the I is the number of iterations. Recall that K denotes the
number of MTs in the system, and N denotes the number of
time slots.

IV. FIXED POINT SERVICE SCHEME
A. SCHEME DESCRIPTION AND PROBLEM FORMULATION
One of the effective ways to further reduce the computation-
complexity of our JTDCATO-Algorithm is to simplify the
trajectory of the UAV. Recently, there have been some studies

FIGURE 2. Illustrative scenario of the fixed point service scheme.

investigating the fixed point service (FPS) schemes. In [14]
and [39], the authors assign several service points in con-
sequence, and the UAV only needs to visit these service
points and hover at these service points to provide services.
Compared to the service scheme in which the UAV provides
services while flying, the schemes in [14] and [39] can signif-
icantly reduce the total number of computing service points
into a small number of computing service points, which
significantly reduces the computational complexity. Based on
this consideration, in this paper, we further propose a FPS
scheme for the system.

As shown in Fig. 2, in a finite time horizon T , the UAVflies
from the initial point qI to a computing service point qC (i.e.,
the fixed point) with the maximum rate, and hovers at qC to
provide computing services for all MTs. After the computing
tasks of all MTs are completed, the UAV flies to the final
point qF with the maximum rate. During the period in which
the UAV provides computing services, each MT k offloads
the task data Ak

1
=
(
Dreqk ,Xk

)
to the UAV using the NOMA

protocol, where Xk represents the computing intensity which
is assigned to the k-th MT during the service period (in the
unit of CPU cycles per bit). We assume that the coordinate of
the UAV’s computing service point is qC = [xqc, yqc,H ]T ,
where H is a constant. We denote the transmit power of MT
k as pk . Similar to (2), the channel gain between the UAV and
the MT k during the service period is given by:

gk = β0 ‖qC − wk‖
−2 , (16)

and similar to [40], [41], we assume g1 > g2 > · · · > gK and
p1 > p2 > · · · > pK . Thus, the decoding order is the same
as the decoding order described in the Section II. Moreover,
the transmission rate of the MT k during the service period is
given by:

Rk = B log2

1+
pkgk

K∑
j=k+1

pjgj + σ 2

 . (17)

Similar to (4a)-(4b), the energy consumption and task delay
of MT k during the service period are respectively given by:

Ek = pk
Dreqk
Rk

, (18a)
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T taskk =
Dreqk
Rk
+
XkD

req
k

fkF
, (18b)

where fk is the number of computing resources allocated to
the MT k during the service period (in the unit of CPU cycles
per second). Moreover, the flight delay of the UAV is related
to the computing service point qC , and it can be given by:

T fly =
‖qC − qI‖ + ‖qC − qF‖

Vmax
. (19)

To ensure the min-max fairness among MTs, we aim to mini-
mize the largest energy consumption amongMTs by optimiz-
ing the location of the UAV’s computing service point and the
computing resource allocation. The optimization problem can
be formulated as follows:

P4 : min
qC ,fk

max
k
{Ek} , (20a)

s.t. T taskk + T fly ≤ T , ∀k ∈ K, (20b)

g1 > g2 > · · · > gK , (20c)

fk ∈{fmin, . . . , ftot−(K−1)fmin}, ∀k ∈K, (20d)
K∑
k=1

fk = ftot . (20e)

Constraint (20b) represents the sum of the task delay of any
MT and the flight delay cannot exceed T , and constraint (20c)
ensures that under the NOMA protocol, all MTs’ signals are
correctly demodulated at the UAV. Similar to (6), constraint
(20c) can be rewritten as:(
2xqc − xi − xj

) (
xi − xj

)
+
(
2yqc − yi − yj

) (
yi − yj

)
> 0,

∀i ∈ I, j ∈ Ji, (21)

where the left-hand-side of (21) is affine with respect to qC .
However, since the objective function and constraint (20b) are
non-convex, this problem is still difficult to solve.

B. FIXED POINT OPTIMIZATION
In this subsection, we convert the problem P4 into a con-
vex problem by introducing auxiliary variables. Specifically,
we introduce variable e ≥ Ek ,∀k ∈ K and relax the fk
into a continuous number. Therefore, the problem P4 can be
equivalently written as:

P5 : min
qC ,fk ,e

e, (22a)

s.t. e ≥ Ek , ∀k ∈ K, (22b)

T taskk + T fly ≤ T , ∀k ∈ K, (22c)

fmin ≤ fk ≤ ftot − (K − 1)fmin, ∀k ∈ K, (22d)

Constraints (20e), (21). (22e)

Since 1
Rk

is non-convex with respect to qC , the problem P5 is
still non-convex. To handle it, we introduce variables tk ≥ 1

Rk
,

and constraints (22b)-(22c) can be equivalently written as:

e ≥ pkD
req
k tk , ∀k ∈ K, (23a)

Dreqk tk+
XkD

req
k

fkF
+
‖qC−qI‖+‖qC−qF‖

Vmax
≤ T , ∀k ∈K,

(23b)

Rk ≥
1
tk
, ∀k ∈ K, (23c)

tk > 0, ∀k ∈ K. (23d)

However, since Rk is non-concave with respect to qC , con-
straint (23c) is still non-convex. To solve this problem,
we first rewrite the Rk as follows:

Rk = B log2

 K∑
j=k

pjβ0
‖qC − wk‖

2
+ H2

+ σ 2


− B log2

 K∑
j=k+1

pjβ0
‖qC − wk‖

2
+ H2

+ σ 2

 , (24)

and then we introduce the following variables:

αk ≤
1

‖qC − wk‖
2
+ H2

, ∀k ∈ K, (25a)

αk ≥ 0, ∀k ∈ K, (25b)

exp(−λk )≥
1

‖qC−wk+1‖
2
+H2

, ∀k ∈K \ {K }, (25c)

where the αk represents K variables and λk only repre-
sents K − 1 variables. Since 1

‖qC−wk‖2+H2 and exp(−λk ) are
non-concave with respect to ‖qC − wk‖ and λk , respectively,
constraints (25a) and (25c) are non-convex. Then, constraints
(25a) and (25c) can be rewritten as:

‖qC − wk‖
2
+ H2

≤
1
αk
, ∀k ∈ K, (26a)

‖qC − wk+1‖
2
+ H2

≥ exp(λk ), ∀k ∈ K \ {K }. (26b)

Since 1
αk

and ‖qC − wk‖
2 are convex with respect to αk and

qC , respectively, for any given local point αlocalk and qlocalC ,
we have:

1
αk
≥

1

αlocalk

−
1(

αlocalk

)2 (αk − αlocalk

)
, (27a)

‖qC − wk+1‖
2
≥

∥∥∥qlocalC − wk+1

∥∥∥2
+ 2

(
qlocalC − wk+1

)T (
qC − qlocalC

)
, (27b)

and the right-hand-sides of (27a) and (27b) are affine with
respect to αk and qC , respectively. Moreover, constraints
(26a) and (26b) can be rewritten as:

‖qC − wk‖
2
+ H2

≤
1

αlocalk

−
1(

αlocalk

)2 (αk − αlocalk

)
,

∀k ∈ K, (28a)∥∥∥qlocalC − wk+1

∥∥∥2 + 2
(
qlocalC −wk+1

)T (
qC − qlocalC

)
+H2

≥ exp(λk ), ∀k ′ ∈ K \ {K }. (28b)

In addition, we define variables as follows:

Rlbk
1
= B log2

 K∑
j=k

pjβ0αj + σ 2
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−B log2

 K∑
j=k+1

pjβ0 exp(−λj−1)+ σ 2

 ≤ Rk ,
∀k ∈ K, (29)

where the subtractor of Rlbk is a log-sum-exp formula which is
convex [42]. Then, we define a series of functions as follows:

fk (αk , . . . , αK ) = B log2

 K∑
j=k

pjβ0αj + σ 2

 , ∀k ∈ K.

(30)

Theorem 3: For ∀k ∈ K, fk (αk , . . . , αK ) is a concave
function.

Proof: Wefirst define variables o, u ∈ {k, . . .K }, k ∈ K
and obtain the first partial derivative with respect to αo as
follows:

∂fk (αk , . . . , αK )
∂αo

=
Bβ0po

ln 2

(
K∑
j=k

pjβ0αj + σ 2

) . (31)

Based on (31), we can obtain the second mixed partial deriva-
tives with respect to αo and αu as follows:

∂2fk (αk , . . . , αK )
∂αo∂αu

= −
Bβ20popu

ln 2

(
K∑
j=k

pjβ0αj + σ 2

)2 . (32)

Therefore, we can obtain the Hessian matrix of
fk (αk , . . . , αK ):

Hk = γ


p2k pkpk+1 · · · pkpK

pkpk+1 p2k+1 · · · pk+1pK
...

...
...

...

pkpK pk+1pK · · · p2K

 , (33)

where γ = −
Bβ20

ln 2

(
K∑
j=k

pjβ0αj+σ 2
)2 < 0. Furthermore,

we define:

H′k =


p2k pkpk+1 · · · pkpK

pkpk+1 p2k+1 · · · pk+1pK
...

...
...

...

pkpK pk+1pK · · · p2K

 . (34)

LetH′k (s−k+1, :) = H′k (s−k+1, :)−
ps
pk
H′k (1, :),∀s, where

s ∈ {k + 1, . . . ,K }. Then, we can obtain:

H′k =


p2k pkpk+1 · · · pkpK
0 0 · · · 0
...

...
...

...

0 0 · · · 0

 . (35)

Thus, the (K − k + 1)-order principal minor of the H′k is:

DK−k+1 =

∣∣∣∣∣∣∣∣∣
p2k pkpk+1 · · · pkpK
0 0 · · · 0
...

...
...

...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣ = 0. (36)

Similarly, we can know that principal minors of arbitrary
order of the H′k equal 0. Therefore, for ∀k ∈ K, the H′k
is a semi-positive matrix. Moreover, because of γ < 0,
the Hessian matrix Hk is a semi-negative matrix. Therefore,
the fk (αk , . . . , αK ) is a concave function.

In summary, Rlbk is concave with respect to αk and λk . After
the above operation, the problem P5 can be rewritten as:

P6 : min
qC ,fk ,tk ,αk ,λk ,e

e, (37a)

s.t. e ≥ pkD
req
k tk ,∀k ∈ K, (37b)

Dreqk tk+
XkD

req
k

fkF
+
‖qC−qI‖+‖qC−qF‖

Vmax
≤T ,

∀k ∈ K, (37c)

Rlbk ≥
1
tk
,∀k ∈ K, (37d)

tk > 0, ∀k ∈ K, (37e)

αk ≥ 0, ∀k ∈ K, (37f)

fmin≤ fk≤ ftot−(K−1)fmin, ∀k ∈ K, (37g)

Constraint (20e), (21), (28a)− (28b). (37h)

Obviously, the problem P6 is a convex problem and we pro-
pose a fixed point service algorithm (called FPS-Algorithm)
to solve the problem P6. The FPS-Algorithm is illustrated
in Algorithm 2 below. The FPS-Algorithm requires a poly-
nomial complexity of O((3K + 1)3) for solving the problem
P6, which thus is lower than the complexity of the previous
JTDCATO-Algorithm. In addition, we use the rounding-off
method to reconstruct the integral computing resource allo-
cation variables, and based the integral computing resource
allocation strategies, we use the FPS-Algorithm again (since
fk are already fixed, there is no need to optimize fk in the
FPS-Algorithm) to obtain the optimal hover point.

Algorithm 2 FPS-Algorithm

1: Initialize qlocalC and αlocalk .
2: Solve the problem P6 by CVX tool.
3: Output: q∗C , f

∗
k .

V. NUMERICAL RESULTS
In this section, simulation results are presented to demon-
strate the effectiveness of our proposed JTDCATO-
Algorithm and FPS-Algorithm. There are K = 4 MTs
with the respective positions of w1 = (−100, 0, 0), w2 =

(100, 0, 0), w3 = (−100, 200, 0), and w4 = (100, 200, 0) in
the system. Moreover, based on the typical settings in [21]
and [27], we set other related system parameters as follows:
N = 150, T = 30 s, B = 1 MHz, Vmax = 30 m/s,
β0 = −50 dB, fk,n = 1.2 Gcps, fmin = 1, ftot = 8, and
σ 2
= −110 dBm. According to 3GPP Release 15 [44],

in order to ensure the existence of pure LoS, we set the UAV’s
altitude H = 100 m. In addition, we refer to the scheme of
serving during the whole flight in the Section II as a general
scheme. For the general scheme, p1,n = 0.1 W, and pk+1,n =
0.9pk,n,∀k ∈ K/{K }, n ∈ N . Similarly, for the FPS scheme,
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p1 = 0.1 W, and pk+1 = 0.9pk ,∀k ∈ K/{K }. Moreover,
similar to [27] and [29], we make the following definitions:
straight flight with uniform task data allocation is called
‘‘without (w.o.) opt’ for the general scheme, and randomly
selected computing service point is called ‘‘w.o. opt’’ for
the FPS scheme. In addition, we regard the optimization
algorithm in [43] as the benchmark algorithm and compare
the proposed algorithm with it below. In addition, since the
system model can be modeled as a simple mathematical
model, we chose MATLAB as the simulation platform.

In Fig. 3, we show the required number of iterations of the
JTDCATO-Algorithm versus the largest energy consumption
among MTs. It can be observed from Fig. 3 that even at
different altitudes, the JTDCATO-Algorithm can reach the
convergence state within 15 iterations. In addition, we find
that when the altitude becomes larger, the optimal largest
energy consumption among MTs becomes smaller. This is
mainly because when the altitude becomes larger, the inter-
ference among different MTs becomes smaller, which results
in an increase in rate and a decrease in the largest energy
consumption among MTs.

FIGURE 3. Iteration of the JTDCATO-Algorithm at different altitudes, with
Dreq

k = 100kbits, ∀k ∈ K.

Fig. 4 shows the largest energy consumption among MTs
versus the largest transmit power among MTs. As men-
tioned above, the transmit powers of all MTs are propor-
tional. In order to satisfy the proportion relation of all
MTs’ transmit powers, when the maximum transmit power
among MTs changes, the transmit power of other MTs
also changes. It can be seen from the figure that as the
MTs’ transmit powers increase, the largest energy con-
sumption among MTs shows an increasing trend. Moreover,
our proposed JTDCATO-Algorithm and FPS-Algorithm
always outperform the ‘‘w.o. opt.’’ algorithm and the largest
energy consumptions among MTs obtained by our pro-
posed algorithms are always smaller than those obtained by
the benchmark algorithm. This result validates the superior
performance of our proposed algorithm. In addition, with
the increase of MTs’ transmit powers, the gap between our
proposed algorithms and the ‘‘w.o. opt.’’ algorithm increases,
which indicates that the proposed algorithm can achieve

FIGURE 4. The largest energy consumption versus the largest transmit
power among MTs, with H = 100m, Dreq

k = 100kbits, ∀k ∈ K.

greater performance gain when the MTs’ transmit power
increase.

Fig. 5 presents the largest energy consumptions among
MTs obtained by different algorithms under different
required amount of task data. We can note that the
largest energy consumption among MTs obtained by
JTDCATO-Algorithm is the smallest among all algorithms
in Fig. 5, which indicates the effectiveness of the JTDCATO-
Algorithm. However, the JTDCATO-Algorithm requires a
high complexity, which reduces the timeliness. The largest
energy consumption amongMTs obtained by the FPS scheme
(FPS-Algorithm) is slightly greater than that obtained by
the general scheme (JTDCATO-Algorithm), but only needs
to solve a convex problem and does not require iterations.
At the same time, the performance of the two proposed
algorithms is better than other algorithms under the same
scheme. In particular, our proposed algorithms are superior
to the benchmark algorithm. Moreover, the performance of
the benchmark algorithm is only slightly better than the
‘‘w.o. opt.’’ algorithm, which shows that the benchmark algo-
rithm is not applicable for solving our problem. In addition,
for general scheme, ‘‘Only data opt.’’ yields better results,
while ‘‘Only trajectory opt.’’ even cannot outperform than
the FPS scheme (w.o. opt.). This is because only optimizing
one parameter in the approximated problem P3 once cannot

FIGURE 5. The largest energy consumption.

117456 VOLUME 7, 2019



X. Diao et al.: Joint Trajectory Design, Task Data and Computing Resource Allocations

FIGURE 6. The sum of energy consumption.

FIGURE 7. The energy consumption, with Dreq
k = 100kbits,∀k ∈ K.

ensure that the original solution can be optimized. Therefore,
in order to get better results, iterative optimization is needed,
just like the JTDCATO-Algorithm.

Fig. 6 presents the sum of energy consumption under dif-
ferent required amount of task data. It can be seen from the
figure that the sums of the energy consumption obtained by
the two proposed algorithms are smaller than other algorithms
under the same scheme. In addition, we observe that the
sum of the energy consumption obtained by general scheme
(JTDCATO-Algorithm) is also the smallest, which reflects
that the general scheme (JTDCATO-Algorithm) can not only
ensure fairness among MTs, but also has better global per-
formance. However, the sum of the energy consumption
obtained by the FPS scheme (FPS-Algorithm) is higher than
that of general scheme (Only data opt.), which indicates that
although the FPS scheme (FPS-Algorithm) can obtain prefer-
able fairness among MTs, the global performance is inferior.

In addition, by comparing the Fig. 5 and Fig. 6, we observe
that the largest energy consumption among MTs and the
sum of energy consumption are basically linear with the
required amount of task data. To reduce theMTs’ energy con-
sumptions, MTs upload task data in the time slots when the
UAV is close to themselves, which makes MTs upload task
data at roughly the same rate in these time slots. Moreover,
the transmit powers of MTs are fixed, and combined with for-
mula (4a), we can know that the MTs’ energy consumptions
are linear with the required amount of task data. Moreover,

FIGURE 8. The JFI of MTs’ energy consumptions, with
Dreq

k = 100kbits,∀k ∈ K.

we find that for the largest energy consumption among MTs
and the sum of energy consumption, the gap between the
general scheme (w.o. opt.) and general scheme (JTDCATO-
Algorithm) is larger than the gap between the FPS scheme
(w.o. opt.) and FPS scheme (FPS-Algorithm). This shows
that optimization is more effective for the general scheme.
In general, the general scheme (JTDCATO-Algorithm) can
obtain the best performance, but the time complexity is rela-
tively large. Compared with the general scheme (JTDCATO-
Algorithm), the FPS scheme (FPS-Algorithm) can obtain
sub-optimal performance, and the complexity is reduced.
Thus, we can choose from the two schemes according to the
practical needs.

Fig. 7 presents the energy consumption of allMTs obtained
by proposed schemes and algorithms. It can be seen from
Fig. 7 that the energy consumptions ofMT 4 of different algo-
rithms are roughly the same. As mentioned above, since MT
4 is not affected by other MTs, the impact of trajectory and
task data allocation is weakened for MT 4. For MT 1-MT 3,
we find that for the two schemes, the energy consumptions
of MT 1-MT 3 under ‘‘w.o. opt.’’ are quite different. Com-
pared with the ‘‘w.o. opt.’’ and the benchmark algorithm,
our proposed optimization algorithms can greatly reduce the
gap among MT 1-MT 3. This reflects that our proposed
algorithm can ensure fairness among MTs. However, ‘‘Only
trajectory opt.’’ and ‘‘Only data opt.’’ also cannot reduce the
gap of energy consumption between MT 1-MT 3, which also
indicates that for the general scheme, only optimizing one
parameter in the approximated problem P3 cannot ensure
fairness among MTs.

Moreover, Fig. 8 shows the Jain’s fairness index (JFI) [45]
for MT’s energy consumption under different algorithms.
It can be seen from the figure that for the two schemes, the JFI
of our proposed algorithms is higher than other algorithms as
illustrated in the figure, which also shows that our proposed
algorithms can enhance the fairness among MTs. In addition,
as flying altitude of the UAV increases, the JFIs of all algo-
rithms illustrated in the figure show downward trend, which
indicates that increasing in H decreases the fairness among
MTs.
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VI. CONCLUSION
In this paper, we have studied the NOMA-based and
UAV-assisted MEC system. Two schemes have been investi-
gated in the system, namely, the general scheme and the FPS
scheme. For the general scheme, we have adopted the joint
trajectory, task data and computing resource allocations opti-
mization to minimize the largest energy consumption among
MTs. We have solved the original non-convex problem by
adding auxiliary variables and transforming it into two con-
vex problems, which are solved iteratively. Moreover, to min-
imize the largest energy consumption amongMTs with lower
complexity, we have proposed the FPS scheme and optimized
the location of the fixed point. The simulation results have
showed that for both schemes, our proposed algorithms can
effectively reduce the largest energy consumption among
the MTs. In addition, compared with other algorithms as
illustrated in the simulation section, our proposed algorithms
can guarantee the fairness among MTs. In the future work,
we will use event-driven software to model more realistic
channel models for making the results more convincing.
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