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Abstract—We investigate the problem of distributed channel
selection using a game-theoretic stochastic learning solution in an
opportunistic spectrum access (OSA) system where the channel
availability statistics and the number of the secondary users are
apriori unknown. We formulate the channel selection problem
as a game which is proved to be an exact potential game.
However, due to the lack of information about other users and
the restriction that the spectrum is time-varying with unknown
availability statistics, the task of achieving Nash equilibrium
(NE) points of the game is challenging. Firstly, we propose
a genie-aided algorithm to achieve the NE points under the
assumption of perfect environment knowledge. Based on this,
we investigate the achievable performance of the game in terms
of system throughput and fairness. Then, we propose a stochastic
learning automata (SLA) based channel selection algorithm,
with which the secondary users learn from their individual
action-reward history and adjust their behaviors towards a
NE point. The proposed learning algorithm neither requires
information exchange, nor needs prior information about the
channel availability statistics and the number of secondary users.
Simulation results show that the SLA based learning algorithm
achieves high system throughput with good fairness.

Index Terms—Cognitive radio networks, opportunistic spec-
trum access, distributed channel selection, exact potential game,
stochastic learning automata.

I. INTRODUCTION

OPPORTUNISTIC spectrum access (OSA), which mainly
builds on the cognitive radio technology [1], has been re-

garded as a promising solution to lessen the spectrum scarcity
problem and hence has drawn great attention [2]–[4]. Cur-
rently, although some progress with regard to game-theoretic
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channel selections for OSA systems has been achieved in
the literature, e.g., [5]–[7], there are still several unsolved
problems. First, most existing work is based on the assump-
tion that the secondary users have full knowledge about the
environment and complete information about actions taken by
other users. Secondly, the environment is required to be static
during the convergence of the algorithms. However, these
assumptions are not realistic in practice, because (i) obtaining
the environment knowledge consumes a lot network resources,
e.g., time, power, and bandwidth, and may not be feasible in
some scenarios; moreover, acquiring information about other
users also leads to heavy communication overhead, and (ii) the
spectrum environment is always time-varying in OSA systems.

In this article, we study the problem of distributed channel
selection in OSA systems using a game-theoretic learning
solution. The reasons for using a game model are twofold.
First, the secondary users make decisions spontaneously and
independently. Secondly, their objectives are conflicting and
their decisions are interactive. We consider an OSA system
with the following characteristics: (i) the spectrum holes are
time-varying, (ii) no need to know the channel availability
statistics and the number of the secondary users in the system
and (iii) no need for information exchange between the
secondary users. Notably, the only available information in
the considered system is the individual history of each user’s
channel selection decisions and rewards. Thus, a learning
solution that can learn from the history information and
achieve Nash equilibrium (NE) points in the unknown and
dynamic spectrum environment is desirable.

To achieve this goal, we formulate the distributed channel
selection problem as a game which is proved to be an exact
potential game. To address the lack of information about others
and the time-varying spectrum environment, we propose a
stochastic learning automata (SLA) [8] based algorithm, with
which the secondary users learn from their individual action-
reward history and adjust their behaviors towards a NE point.
To summarize, the main contributions of this article are as
follows:

• Under the assumption of perfect environment informa-
tion, we first propose a genie-aided channel selection
algorithm to achieve NE points of the game, and investi-
gate the system performance in terms of throughput and
fairness.

• To address the lack of information and time-varying spec-
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trum environment, we propose a SLA based algorithm to
achieve the NE points, which neither requires information
exchange, nor needs prior information about the channel
availability statistics and the number of secondary users.

The rest of this article is organized as follows. In Section
II, we review the related work. In Section III, we present
the system model as well as the problem formulation. In
Section IV, we formulate the channel selection game and
investigate the properties of its NE points by proposing a
genie-aided algorithm. In Section V, we propose a SLA based
algorithm to achieve NE points of the game. In Section VI,
simulation results and discussion are presented. Finally, we
make conclusion in Section VII.

II. RELATED WORK

The problem of distributed channel selection in OSA sys-
tems has drawn great attention, and several literature address-
ing this topic from non-game theoretic and game theoretic
perspective can be found. The framework of partially observ-
able Markov decision process based opportunistic spectrum
access was first established in [9], and further investigated in
[10]–[12]. A main drawback of those studies is that they did
not consider the interactions among multiple secondary users.

The problem of distributed channel selection with unknown
channel availability statistics, which is the focus of this article,
begins to draw attention in [13]–[16] using the multi-armed
bandit approaches. There are two key differences in our work.
First, their optimization objectives are minimizing the regret,
whereas in our work the objective is maximizing the system
aggregate throughput. Secondly, those authors mainly focused
on investigating the asymptotical performance of their learning
algorithms and balancing the tradeoff between exploration and
exploitation. We study this problem from a game-theoretic
perspective, and focus on studying the properties of the game
as well as investigating a learning algorithm that converges
towards NE in the unknown and dynamic spectrum environ-
ment.

It is known that learning is the core in cognitive radio [2].
In [17], a multi-agent Q-learning channel selection algorithm
for the scenario of two users and two channels was proposed.
However, the considered system model therein is static and
the proposed learning algorithm is limited to two-by-two case.
Moreover, the stochastic learning automata (SLA) [8], which
can be regarded as an adaptive decision-making mechanism
that learns the optimal action from a set of actions through
repeated interactions with a random environment, has been
successfully applied into wireless communication systems
[18]–[21].

The convergence towards NE of SLA based algorithms is
a key concern but not well studied. In [8], the authors have
investigated the convergence of SLA based algorithm towards
NE for coordination games with all the players having exactly
the same utility function. In [21], the authors have investigated
the convergence for a type of exact potential game, in which
the received rewards in each iteration are the same for all the
players. In this article, we investigate the convergence towards
NE for a general exact potential game, in which the users
have different utility functions and receive different rewards
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Fig. 1. Transmission structure of the secondary users.

in each iteration. Thus, the results obtained in this article can
be regarded as a significant extension of existing work and
can hence be applied into more general scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider an opportunistic spectrum access (OSA) sys-
tem involving N secondary users and M licensed channels
with transmission rate Rm, 1 ≤ m ≤ M , N > M > 1. It
is assumed that each channel supports the same transmission
rate for all users. This represents the case that each channel
yields the same bandwidth and same transmission rate to
each user, although different users may experience different
channel conditions [22]. Note that such an assumption holds
in some practical systems, e.g., IEEE 802.16d/e standard
[23]. Moreover, it is assumed that the primary users use the
licensed channels in a slotted fashion and their activities are
independent from channel to channel and from slot to slot.
Thus, channel m can be assumed to be idle with probability
θm in each slot, 1 ≤ m ≤ M . To make it more practical, the
following are considered in this work:

1) The channel availability statistics θm, 1 ≤ m ≤ M , are
fixed but unknown.

2) The number of the secondary users, N , is unknown.
3) There is no centralized controller and no information

exchange between the secondary users.

The transmission structure of the secondary users is de-
scribed in Fig. 1. We assume that the secondary users can only
select one channel for transmission in a slot due to hardware
limitation [9]. At the beginning of each slot, each user selects
a channel to sense according to its current channel selection
strategy. For simplicity, it is assumed that the channel sensing
is perfect1. If the selected channel is sensed idle, a carrier sense
multiple access (CSMA) mechanism can be implemented to
address collision issue among the secondary users sharing
the same channel [9]. Otherwise, the secondary user has to
suspend its transmission in this slot. At the end of the slot,
the secondary user receives a random reward, and then applies
a learning algorithm to update its channel selection strategy.

1The analysis is this article can easily be extended to the scenario with
imperfect channel sensing.
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In the contention process, time is divided into mini-slots
with equal length and each secondary user contends for the
channel access with the same probability pa in each mini-
slot2. A channel contention of a secondary user is said to
be successful if no other secondary user contends during the
same mini-slot. After a successful channel contention, the
successful secondary user transmits data in the residual time
slot. Once the channel is occupied by a secondary user, all
other competing secondary users in the same channel have to
keep silent until the next slot. For presentation, we denote the
useful time after sensing in a slot as Te, and the mini-slot
length as τ (see Fig. 1).

B. Problem formulation

Let an denote a channel selection of secondary user n, cm
denote the set of secondary users who select channel m for
transmission, i.e., cm = {n ∈ {1, . . . , N} : an = m}, and sm
denote the number of these secondary users, i.e., sm = |cm|.
Then the random reward, which is equivalent to the normalized
effective transmission time in a slot, received by secondary
user n, ∀n ∈ cm, in the jth slot is given by:

rn(j) =
[(
Te −Nc(sm)τ

)
/Te

]
βn(sm)ImRm, (1)

where Te is the useful time after channel sensing in a slot, τ
is the length of a mini-slot, Nc(sm) is the number of mini-
slots it takes for a successful channel contention with the
condition that there are sm secondary users contending for this
channel, βn(sm) indicates whether secondary user n success-
fully contends the channel or not, and Im indicates whether
the channel m is idle or occupied. This rewarding strategy
captures the dynamics of the random radio environment and
the interactions of multiple secondary users for channel access.
It can be seen that Nc(sm) is a geometric random variable [25]
with the following probability mass function (PMF):

Pr{Nc(sm) = i} = ps(1− ps)
i−1, i ≥ 1, (2)

where ps = smpa(1− pa)
sm−1 represents the overall success-

ful channel contention probability in a mini-slot. Moreover,
βn(sm) and Im are Bernoulli random variables with the
following PMFs:

Pr{βn(sm) = x} =

{ 1
sm

, x = 1

1− 1
sm

, x = 0
, (3)

and

Pr{Im = y} =

{
θm, y = 1
1− θm, y = 0

(4)

respectively.
Let us define a throughput loss function due to the con-

tention of multiple secondary users as follows:

f(sm) = E[Te −Nc(sm)τ ]/Te, (5)

where E[·] takes the expectation.

2The assumption of the same pa for different users and channels is
for simplicity of analysis. However, it should be pointed out that it is an
important issue to optimize the access probability for different users and
different channels in a competitive environment. Previous work focusing on
investigating this topic for a single channel system was reported in [24].

Based on (1)–(5), the expected throughput achieved by
secondary user n in a slot is given by:

r̄n(j) =
θmf(sm)Rm

sm
, (6)

and the system throughput, which is defined as the aggregate
throughput obtained by all the secondary users, is given by:

Us(a) =

N∑
n=1

θanf(san)Ran

san

=

M∑
m=1

θmf(sm)Rmδ(sm),

(7)
where a = (a1, . . . , aN ) is a channel selection profile for the
secondary users, and δ(sm) is the following indicator function:

δm =

{
1, sm ≥ 1
0, sm = 0

(8)

Then the system-centric objective is to find the optimal chan-
nel selection profile aopt such that the system throughput is
maximized. Formally,

aopt = argmaxUs(a) (9)

It is seen that the task of solving (9) is challenging, since (i)
there is no control center for secondary users, and (ii) θm and
N are unknown. Thus, a distributed approach with learning
ability is desirable.

Remark 1: The secondary users can also adopt other CSMA
schemes. To make it more general, the discussion in the rest
of this article does not rely on the specific expression of
f(san); instead, the following properties of the general CSMA
schemes are used:

• san ≥ 1, ∀n ∈ {1, . . . , N}.
• In general, f(san) is a decreasing function of san .
• In general, 0 ≤ f(san) ≤ 1, ∀san ≥ 1; moreover,

we have f(san) ≡ 1, ∀san ≥ 1, when the contention
overhead is negligible.

IV. GAME-THEORETIC DISTRIBUTED CHANNEL

SELECTION

A. Game model

We formulate the problem of distributed channel selection
in the OSA system as a game. Formally, the game is denoted
by Gc = [N , {An}n∈N , {un}n∈N ], where N = {1, . . . , N}
is the set of players (secondary users), An = {1, . . . ,M} is
the set of available actions (licensed channels) for player n,
and un is the utility function of player n, which is defined as
the expected achievable throughput of player n, i.e.,

un(an, a−n)
Δ
= E[rn|(an, a−n)] =

θanf(san )Ran

san
, (10)

where rn is the random reward received by player n as
specified by (1), an ∈ An represents the channel selection of
player n, and a−n ∈ A1 × · · · ×An−1 ×An+1 × · · · ×AN

represents a channel selection profile of all the players ex-
cluding n, where × denotes the Cartesian product.
Definition 1 (Nash equilibrium): A channel selection profile
a∗ = (a∗1, . . . , a

∗
N ) is a pure strategy NE point of Gc if and

only if no secondary user can improve its utility function by
deviating unilaterally, i.e.,
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θa∗
n
f(sa∗

n
)Ra∗

n

sa∗
n

≥ θanf(san + 1)Ran

san + 1
,∀n ∈ N ,∀an ∈ An\{a∗

n}.
(11)

where f() is the throughput loss function specified by (5),
sa∗

n
is the number of secondary users selecting channel a∗n,

and An\an means that an is excluded from An.

B. Analysis of NE

The properties of NE of Gc are characterized by the follow-
ing theorems.

Theorem 1. Gc is an exact potential game which has at least
one pure strategy NE point.

Proof: For a channel selection profile a = (an, a−n),
denote the number of secondary users selecting each channel
m as sm, ∀m ∈ {1, . . . ,M}. Then, we define the following
potential function φ : A1 × · · · × AN → R for the channel
selection game Gc:

φ(an, a−n) =

M∑
m=1

sm∑
k=1

ϕm(k), (12)

where ϕm(k)
Δ
= θmf(k)Rm

k . The above function is also known
as Rosenthal’s potential function [26].

Suppose that an arbitrary player n unilaterally changes its
channel selection from an to ãn, then the change in individual
utility function caused by this unilateral change is given by:

un(ãn, a−n)−un(an, a−n) = ϕãn(sãn+1)−ϕan(san). (13)

Since player n’s channel selection change only affects the
users on channels an and ãn, the change in the potential
function caused by this unilateral change is given by:

Φ(ãn, a−n)− Φ(an, a−n)

=

(
sãn+1∑
k=1

ϕãn(k) +
san−1∑
k=1

ϕan(k)

)

−
(

sãn∑
k=1

ϕãn(k) +
san∑
k=1

ϕan(k)

)

= ϕãn(sãn + 1)− ϕan(san).

(14)

From (13) and (14), we have the following equation:

un(ãn, a−n)− un(an, a−n) = Φ(ãn, a−n)− Φ(an, a−n).
(15)

It is seen from (15) that the change in individual utility
function caused by any player’s unilateral deviation is the same
as the change in the potential function. Thus, according to the
definition given in [27], the channel selection game Gc is an
exact potential game with potential function φ. Exact potential
game belongs to potential games, which exhibit several nice
properties and the most important one is that every potential
game has at least one pure strategy NE point. Therefore,
Theorem 1 is proved.

Although Theorem 1 shows that the proposed game Gc

has at least one pure strategy NE, the NE points can not
be straightforwardly obtained. In order to investigate the
properties of the game, we assume that there is an omnipotent

Algorithm 1: Genie-aided channel selection algorithm

1) Initially, set N1 = N , N2 = ∅, k = 1 and sm(k) = 0,
1 ≤ m ≤ M , where ∅ is the null set.
2) Randomly select a secondary user n ∈ N1 and let it
select channel m∗, i.e., an = m∗, where m∗ is determined
by:

m∗ ∈ arg
1≤m≤M

max

[
θmf(sm(k) + 1)Rm

sm(k) + 1

]
(16)

That is, m∗ is the one which leads to the maximum
individual throughput.
3) Exclude n from N1 and include it in N2, i.e., N1 =
N1\n and N2 = N2∪n. Then, update {s1(k), . . . , sM (k)}
according to the following rules:

sm(k + 1) = sm(k) + 1, m = m∗

sm(k + 1) = sm(k), m 
= m∗ (17)

4) If N1 = ∅, stop; else go to step 2).

genie, which knows the channel availability statistics and can
perfectly monitor all selections made by the secondary users
in each iteration. Then, we propose a genie-aided channel
selection algorithm, which is described by Algorithm 1, to
find NE points of Gc.

Theorem 2. The proposed genie-aided selection algorithm
converges to a pure strategy NE point of Gc.

Proof: Refer to Appendix A.
It is noted that in Step 2) of the genie-aided algorithm,

there may be multiple channels simultaneously resulting in the
maximum individual throughput for the selected user. That is,
these channels are indistinguishable for the user. In this case,
although the algorithm still achieves a NE point of the game,
the final number of secondary users on the channels, i.e.,
{s1(N), . . . , sM (N)}, is not deterministic since it depends on
which channel the user selects among those indistinguishable
channels. For general scenarios, it is hard to investigate the
achievable system throughput of the NE solutions. However,
we can investigate it under the assumption (it is tagged as A1)
that the channels are distinguishable in each iteration, which
provides a better understanding of this problem.

Theorem 3. Under assumption A1, the channel selection
game Gc has multiple pure strategy NE points, and all of them
lead to the same system throughput.

Proof: It can be seen from the procedure of the genie-
aided channel selection algorithm that if the assumption A1
holds, it will finally lead to a deterministic and unique channel
selection scheme {s∗1(N), . . . , s∗M (N)}. Moreover, since the
secondary users are randomly selected in each iteration, the
unique channel selection scheme corresponds to multiple
channel selection profiles. Because it does not matter which
secondary user selects the channel, but how many secondary
users select the channel. Thus, according to Theorem 2, there
are multiple pure strategy NE points in Gc. More specifically,
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the number of the pure strategy NE points is as follows:

K =

(
N

s∗1(N)

)(
N − s∗1(N)

s∗2(N)

)
· · ·
(N −

M−2∑
m=1

s∗m(N)

s∗M−1(N)

)
(18)

Then, according to the definition of system throughput speci-
fied by (7), Theorem 3 follows.

Besides the system throughput, fairness is another concern
in wireless communication systems. Let us present an example
to illustrate this. Suppose that there is an OSA system with
two channels and three secondary users. The channels are with
unit transmission rate and the channel idle probabilities are
0.7 and 0.6 respectively. It is known that the NE solution
in this case is as follows: two users select the channel with
idle probability 0.7, while the other selects the one with 0.6.
Without considering the throughput loss due to contention, the
individual throughput for the users are (0.35 0.35 0.6), which
is relatively unfair. Thus, we conclude that due to the selection
of different channels, the obtained throughput may vary from
user to user and hence the fairness in the channel selection
game needs to be investigated.

In the following, we investigate the fairness of Gc using
Jain’s fairness index (JFI) [28]. Formally, the JFI of Gc is
defined as follows:

JGc =

(
N∑

n=1
un

)2

N
N∑

n=1
u2
n

, (19)

where un ≥ 0, ∀n, denotes the expected throughput obtained
by the secondary user n. JFI translates a resource allocation
vector {u1, . . . , uN} into a score in the interval of [1/N, 1].
It is noted that higher JFI implies that the resource allocation
is more fair. Specifically, JGc = 1 corresponds to an absolute
fair system (in this case, all the users get the same amount
of resource, i.e., un = u0, ∀n), and JGc = 1/N corresponds
to an absolute unfair system (in this case, there exists a user
such that un > 0 and uk = 0, ∀k 
= n). The following theorem
characterizes the achieved fairness of Gc.

Theorem 4. If the channel contention is negligible, JGc is no
less than 8/9.

Proof: Refer to Appendix B.
Remark 2: Although the channel contention overhead can

not be ignored in general scenarios, it is believed that the
game-theoretic solution can still achieve good fairness. This is
due to the nature of Nash equilibrium, which can be essentially
interpreted as another form of fairness. Furthermore, simula-
tion results presented in Section VI validate this statement.

V. STOCHASTIC LEARNING SOLUTION FOR ACHIEVING

NE IN UNKNOWN DYNAMIC ENVIRONMENT

It is known that there are some learning algorithms con-
verging towards pure strategy NE points for an exact potential
game, such as regret learning [5], best (better) response dy-
namic [27], spatial adaptive play [22], [29] and fictitious play
[30]. However, these algorithms require complete information
about the actions selected by all other players in each iteration;

Algorithm 2: SLA based channel selection algorithm

1) Initially, set j = 0 and the initial channel selection prob-
ability vector pnm(j) = 1/M, ∀n ∈ N ,m ∈ {1, . . . ,M}.
2) At the beginning of the jth slot, each secondary user
n selects a channel an(j) according to its current channel
selection probability vector pn(j).
3) In each slot, the secondary users perform channel sensing
and channel contention. At the end of the jth slot, each sec-
ondary user n receives the random reward rn(j) specified
by (1).
4) All the secondary users update their channel selection
probability vectors according to the following rule:

pnm(j + 1) = pnm(j) + br̃n(j)(1− pnm(j)),m = an(j)
pnm(j + 1) = pnm(j)− br̃n(j)pnm(j), m 
= an(j)

(21)
where 0 < b < 1 is the step size, r̃n(j) is the normalized
reward defined as follows:

r̃n(j) = rn(j)/(max
m

Rm) = rn(j)/Rmax (22)

5) If ∀n ∈ N , there exists a component of pn(j) which is
approaching one, e.g., larger than 0.99, stop; Otherwise, go
to step 2).

in addition, the environment is required to be static during the
convergence. Thus, these algorithms are not feasible in the
considered OSA system. Motivated by the underlying idea of
stochastic learning automata (SLA) [8], we propose a SLA
based channel selection algorithm, with which the secondary
users learn from their individual action-reward experiences and
finally adjust their behaviors towards a NE point.

A. Algorithm description

To characterize the SLA based channel selection algo-
rithm, we extend the channel selection game Gc to a mixed
strategy form and give the following definitions. Let P =
(p1, . . . ,pN ) denote the mixed strategy profile of Gc; more
specifically, pn = (pn1, . . . , pnM ), ∀n ∈ N , is the channel
selection probability vector of secondary user n, where pnm
denotes the probability with which secondary user n selects
channel m. Let hnm(P) denote the expected reward function
of player n if it employs pure strategy m (i.e., an = m)
and other secondary users k, ∀k ∈ N , k 
= n, employ mixed
strategy pk. Formally,

hnm(P) =
∑

ak,k �=n

un(a1, ..., an−1,m, an+1..., aN )
∏
k �=n

pkak

(20)
The proposed SLA based channel selection algorithm is

described in Algorithm 2. Notably, the proposed SLA based
algorithm is characterized by the following two distinctive
features: (i) the channel selection is based on a probability
distribution over the channel set, and (ii) the probability
distribution is updated based on the received reward in the
competitive environment. Specifically, rn(j) serves as a re-
inforcement signal. If a channel is selected and the system
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feeds back a positive reward, i.e., rn(j) > 0, the probability
of selecting this channel in the next slot increases. On the other
hand, if the system feeds back zero reward, i.e., rn(j) = 0, the
probability of selecting this channel in the next slot remains
unchanged.

Moreover, the proposed learning solution is completely
distributed, since the updating rules specified by (21) is only
dependent on their individual action-reward experiences. It is
also noted that it neither needs any information exchange, nor
monitors the actions taken by other users.

B. Discussion on convergence towards NE

In [8], the authors have investigated the convergence of the
SLA based algorithms towards NE points for coordination
games, which is a special kind of game in which all the
players have the same utility function. Recently, the authors
in [21] have proved the convergence towards NE points of a
SLA based algorithm, under an assumption that all the players
receive the same reward in each iteration. It is seen from
(1) and (10) that the considered scenario in this article is
more general since the users have different utility functions
and receive different rewards in each iteration. Therefore, the
proposed channel selection game Gc is beyond the scope of
existing work, and hence the convergence of the proposed
learning solution needs to be re-investigated.

The proof of the convergence is structured as follows.
First, using the ordinary differential equation (ODE), we
characterize the long-term behavior of the sequence {P(j)}
and exploit the relationship between the stable points of the
ODE and the Nash equilibria of Gc. Secondly, we establish
a sufficient condition to achieve NE points for the proposed
learning solution and prove that Gc satisfies this condition.

Proposition 1. With a sufficiently small step size b, the
sequence {P(j)} will converge to P∗, which is the solution
of the following ODE:

dP

dt
= F (P),P0 = P(0), (23)

where P0 is the initial channel selection probability matrix
and F (P) is the conditional expected function defined as:

F (P) = E[G(P(j), a(j), r(j))|P(j)] (24)

In (24), G(P(j), a(j), r(j)) = P(j + 1) represents the
updating rules specified by (21).

Proof: Refer to Theorem 3.1 in [8].

Proposition 2. The following are true of the SLA based
algorithm:

1) All the stable stationary points of (23) are the Nash
equilibria of Gc.

2) All the Nash equilibria of Gc are the stable stationary
points of (23).

Proof: Refer to Theorem 3.2 in [8].

Theorem 5. Suppose that there is a non-negative function
H(P) : P → R for some positive constant c such that:

H(m1,P−n)−H(m2,P−n)
= c[hnm1(P)− hnm2(P)], ∀n,m1,m2,P,

(25)

where H(m,P−n) is the value of H on the condition that pn

is a unit vector with the mth component unity, and hnk(P)
is specified by (20). Then, the SLA based algorithm converges
to a pure strategy NE point of a game.

Proof: Refer to Appendix C.
Theorem 5 establishes a sufficient condition that can guar-

antee the convergence towards NE. Next, we prove that Gc

satisfies this condition and hence it converges to a pure
strategy NE point by using the SLA based learning algorithm.

Theorem 6. With a sufficiently small step size b, the proposed
SLA based channel selection algorithm converges to a pure NE
point of Gc.

Proof: Take H(P) = E[Φ(P)], where Φ is the potential
function specified by (12). Then, we have:

H(m,P−n) =
∑

ak,k �=n

Φ(a1, ..., an−1,m, an+1, ..., aN )
∏
k �=n

pkak

(26)

Applying (15) and (20), it is easy to have:

H(m1,P−n)−H(m2,P−n) = hnm1(P) − hnm2(P) (27)

By Theorem 5, Theorem 6 follows.
In fact, if we take He(P) = E[Φe(P)], where Φe(·) is

the potential function of any exact potential game, then the
sufficient condition specified by (25) is always met. Thus,
we claim that the SLA based algorithm converges to a pure
strategy NE point for any exact potential game.

Remark 3: It is noted from Theorem 6 that when b
approaches zero, the proposed SLA based learning algorithm
finally converges to a NE point. However, smaller step size b
implies a slower convergence speed. Hence, the choice of the
step size b involves a tradeoff between accuracy and speed,
and is application-dependent. This can be done by practical
experiments or training [20], [21].

VI. SIMULATION RESULTS AND DISCUSSION

In this section, we simulate the convergence and the
throughput performance of the SLA based channel selection
algorithm. The slot length is set to T = 100×10−3s; moreover,
to meet the sensing requirement, the sensing length in a slot
is set to Ts = 5 × 10−3s. As a result, the time length after
channel sensing in a slot is Te = 95 × 10−3s. The mini-slot
length is set to τ = 2×10−3s and the access probability is set
to pa = 0.3. In addition, the step size of the learning algorithm
is set to b = 0.15.

The simulation results mainly include the following two
parts. In the first part, we illustrate the convergence of the
algorithm. In the second part, we evaluate the throughput
and fairness performance of the algorithm. Specifically, we
compare the achievable system throughput and fairness of the
following three channel selection schemes: (i) the proposed
learning algorithm, (ii) the exhaustive search and (iii) the
random selection approach. In the exhaustive search, it is
assumed that there is an omnipotent controller which knows
all the system parameters including the channel availability
statistics, θm, and the number of secondary users, N . Based
on this assumption, the exhaustive search is implemented by
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Fig. 2. Evolution of the channel selection probability of an arbitrarily
secondary user (N = 6, R1 = 2, R2 = 1.5, R3 = 1, θ1 = 0.6, θ2 =
0.7, θ3 = 0.6).

the controller in a centralized manner. It is clear that the
achievable system throughput of the exhaustive search serves
as an upper bound. On the other hand, in the random selection
scheme, each secondary user selects an arbitrary licensed
channel to sense with equal probability in each slot. Such
a random scheme is an intuitive simple method in an OSA
system where the channel availability statistics are apriori
unknown and there is no information exchange.

A. Convergence of the proposed SLA based learning algo-
rithm

First, we show the evolution of the channel selection prob-
abilities of the SLA based channel selection algorithm. We
consider an OSA system with six secondary users and three
licensed channels. The channel rates and idle probabilities are
set as follows: R1 = 2, R2 = 1.5, R3 = 1, and θ1 = 0.6,
θ2 = 0.7, θ3 = 0.6. Applying the genie-aided algorithm, it is
known that the channel selection profile of NE solution in this
case is determined by:

s1 = 3, s2 = 2, s3 = 1. (28)

That is, there are three secondary users selecting channel-1,
two secondary users selecting channel-2 and one secondary
user selecting channel-3 in the NE solution.

We plot the evolution of the channel selection probability of
the proposed learning algorithm for an arbitrarily secondary
user in Fig. 2. It is noted that the channel selection probability
vector evolves from {1/3, 1/3, 1/3} to {0, 1, 0} in about 250
iterations. In other words, the secondary user finally selects
channel-2 for transmission. Moreover, the evolution of the
number of secondary users selecting each channel is shown in
Fig. 3. It is noted that when it converges, the channel selection
result is s∗1 = 3, s∗2 = 2, s∗3 = 1, which is exactly the NE
solution of Gc.

We also simulated more complex scenarios involving more
secondary users and more licensed channels under different
system parameters. The simulation results show that the
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Fig. 3. Evolution of the number of secondary users selecting each channel
(N = 6, R1 = 2, R2 = 1.5, R3 = 1, θ1 = 0.6, θ2 = 0.7, θ3 = 0.6).
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Fig. 4. Comparison of the achievable system throughput of three channel
selection schemes in the homogeneous OSA system (θ1 = θ2 = θ3 = 0.6).

proposed SLA based algorithm always converges to a pure
strategy NE point for the game.

B. Throughput performance of a homogeneous OSA system

In this subsection, we consider a homogeneous OSA sys-
tem, where the licensed channels have the same transmis-
sion rates and the same availability statistics. The system
parameters are set as follows: R1 = R2 = R3 = 1, and
θ1 = θ2 = θ3 = 0.6. Fig. 4 shows the comparison results of
the achievable system throughput when increasing the number
of secondary users. For the proposed learning algorithm and
random selection approach, the simulation results are obtained
by independently simulating 105 trials and then taking the
average results. It is noted that the proposed learning algo-
rithm significantly outperforms the random selection approach.
The reasons are as follows: (i) when the proposed learning
algorithm converges towards a pure strategy NE point, all
the secondary users finally are spread over different channels,
whereas (ii) with the random selection approach, there is a
certain probability that some secondary users are crowded on
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Fig. 5. Comparison results of the JFI of three channel selection schemes in
the homogeneous OSA system (θ1 = θ2 = θ3 = 0.6).

a licensed channel while the other licensed channels are not
selected by any secondary user. It is also noted that when
the number of secondary users becomes large, e.g., N ≥ 4,
the achievable system throughput of the learning algorithm
is close to that of the exhaustive search. In addition, it is
noted that the throughput gap between the random selection
and the exhaustive search decreases when the number of the
secondary users N increases. The reason is that when N
becomes sufficiently larger, the secondary users can uniformly
be spread over the channels.

Moreover, the JFI of the three channel selection schemes
are shown in Fig. 5, where Je, JGc and Jr denote the JFI
of the exhaustive search, the proposed learning algorithm and
the random selection approach respectively. It is noted that
the random selection approach achieves perfect fairness (Jr ≈
1), while the proposed learning algorithm and the exhaustive
search can also achieve good fairness (both JGc and Je are
greater than 0.90).

From Fig. 4 and Fig. 5, it can be realized that the pro-
posed learning algorithm can achieve the near-optimal system
throughput while guaranteeing good fairness. Furthermore,
the proposed learning algorithm is robust with increasing the
number of secondary users. Thus, we claim that the proposed
learning algorithm is efficient in the OSA system where the
channel availability statistics are prior unknown and there is
no information exchange among the secondary users.

C. Throughput performance of a heterogeneous OSA system

In this subsection, we consider a heterogeneous OSA sys-
tem, where the variation of the licensed channels is large. The
system parameters are set as follows: R1 = R2 = R3 = 1, and
θ1 = 0.2, θ2 = 0.4, θ3 = 0.8. Fig. 6 shows the comparison re-
sults of the achievable system throughput when increasing the
number of secondary users. It is noted that the achievable sys-
tem throughput of the proposed learning algorithm is greater
than that of the random selection approach. Moreover, as the
number of the secondary users N increases, the proposed
learning algorithm and exhaustive search algorithms perform
closely. The throughput gap between the proposed learning
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Fig. 6. Comparison of the achievable system throughput of three channel
selection schemes in the heterogeneous system (θ1 = 0.2, θ2 = 0.4, θ3 =
0.8).
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Fig. 7. Comparison results of the JFI of three channel selection schemes in
the heterogeneous system (θ1 = 0.2, θ2 = 0.4, θ3 = 0.8).

algorithm and the exhaustive search is due to the nature of
the heterogeneous channels. This phenomena is referred to as
the price of anarchy, which is the inherent limitation of the
NE solution, and has been well discussed in [31]–[33].

The JFI of the three channel selection schemes is shown
in Fig. 7. It is noted in this case that, the random selection
approach still achieves perfect fairness as expected. However,
it is noted that the exhaustive search achieves poor fairness
(Je is about 0.8) whereas the proposed learning algorithm still
achieves good fairness (JGc is greater than 0.95).

From Fig. 6 and Fig. 7, it can be realized that although
the achievable system throughput of the proposed learning
algorithm is slightly less than that of the exhaustive search
when N is large, the learning algorithm can achieve good
fairness. Thus, we claim that the learning algorithm is also
desirable in this case.
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TABLE I
IMPACT OF THE VARIATION OF CHANNEL AVAILABILITY STATISTICS ON

THE ACHIEVABLE SYSTEM THROUGHPUT.

Channel idle probability Exhaustive Learning Random

[0.4, 0.5, 0.5, 0.6] 0.3797 0.3797 0.3272

[0.25, 0.35, 0.65, 0.75] 0.3800 0.3600 0.3248

[0.2, 0.3, 0.6, 0.9] 0.3801 0.3413 0.3299

[0.15, 0.25, 0.75, 0.85] 0.3802 0.3427 0.3269

TABLE II
IMPACT OF THE VARIATION OF CHANNEL AVAILABILITY STATISTICS ON

JFI.

Channel idle probability Exhaustive Learning Random

[0.4, 0.5, 0.5, 0.6] 0.9705 0.9532 0.9997

[0.25, 0.35, 0.65, 0.75] 0.9275 0.9717 0.9989

[0.2, 0.3, 0.6, 0.9] 0.8481 0.9777 0.9998

[0.15, 0.25, 0.75, 0.85] 0.8172 0.9933 0.9994

D. Impact of the variation in channel availability statistics

It can be seen from Fig. 4 to Fig. 7 that the proposed
learning algorithm leads to higher system throughput in the
homogeneous OSA system than that obtained in the heteroge-
neous system. Thus, it is seen that the achieved performance
is dependent on the system parameters. In this subsection,
we investigate the impact of the variation of the channel
availability statistics on the performance of the proposed
learning algorithm.

We consider an OSA system involving four licensed chan-
nels and seven secondary users. For the purpose of com-
parison, the channel transmission rates are set equally, i.e.,
R1 = R2 = R3 = R4 = 1, but the channel avail-
ability statistics vary slightly or sharply for different sce-
narios. Table I and Table II show the comparison results
of the achieved system throughput and the JFI in different
scenarios, respectively. It is noted from Table I that the
smaller the variation of the licensed channels statistics, the
higher system throughput can be achieved of the proposed
learning algorithm. In comparison, it is noted from Table
II that when the channel availability statistics vary sharply,
e.g., [θ1, . . . , θ4] = [0.2, 0.3, 0.6, 0.9], JGc is significantly
greater than Je. Thus, the proposed algorithm can still achieve
good fairness whereas the exhaustive search achieves poor
fairness in this scenario. Thus, in order to achieve high system
throughput, sharply heterogeneous channels should be avoided
and the quasi homogeneous channels are preferred. In practice,
the techniques of channel fragmentation or channel bonding
can be used to achieve quasi homogeneous channels [31], [34],
[35].

VII. CONCLUSION

We studied the problem of distributed channel selection in
an opportunistic spectrum access (OSA) system with unknown
channel availability statistics and the number of secondary
users, using a game theoretic learning solution. We formulated
the channel selection problem as a game with random reward

and proved that it is an exact potential game. Firstly, we
proposed a genie-aided algorithm to investigate the properties
of the considered game in terms the throughput performance
and the achieved fairness. Due to the lack of information
and the dynamics of the environment, Nash equilibrium (NE)
points of the game can not be achieved by existing methods.
We then proposed a stochastic learning automata (SLA) based
algorithm, with which the secondary users learn from their
individual action-reward histories and adjust their behaviors
towards a NE point. The proposed learning algorithm neither
needs information exchange, nor requires prior information
about the channel availability statistics and the number of
the secondary users. Moreover, it just utilizes the individual
history information of each secondary user. Thus, it can be
applied to other problems in OSA systems, especially the one
with unknown and dynamic environment.

However, it is also seen that we have assumed that all the
users have the same access probabilities (pa) and they remain
fixed across all channels, all users, and all slots. In future work,
we will investigate the issue of optimizing the access probabil-
ities for different users, different channels and different slots,
to further improve the system performance.Furthermore, it is
noted that the exact potential game formulation in this work
essentially relies on the fact that the users have symmetrical
rates in accessing a channel. We will also consider the scenario
with asymmetrical channel rates in the near future.
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APPENDIX A
PROOF OF THEOREM 2

After the kth iteration, 1 ≤ k < N − 1, let us denote
the set of the secondary users which have been scheduled on
channel m as cm(k), i.e., cm(k) = {n ∈ N2 : an = m}.
Now, suppose that an arbitrary secondary user n is selected
from N1 and is scheduled to transmit on channel m0, i.e.,
an = m0. As a result, we have sm0(k + 1) = sm0(k) + 1
and sm(k+1) = sm(k), ∀m 
= m0. According to the channel
selection principle specified by (16), it is clear that the utility
function of any secondary user i ∈ cm0(k + 1) is given by:

ui =
θm0f(sm0(k + 1))Rm0

sm0(k + 1)
≥ θmf(sm(k + 1) + 1)Rm

sm(k + 1) + 1
,

(A.29)
where 1 ≤ m ≤ M and m 
= m0. It can be seen from (A.29)
that every secondary user i, ∀i ∈ cm0(k + 1), is not willing
to deviate unilaterally.

Now, consider the utility function of an arbitrary secondary
user j, j ∈ cm(k+1), ∀m 
= m0. Suppose that sm(k+1),m 
=
m0 remains unchanged for k0 iterations, 1 ≤ k0 ≤ k, i.e.,
sm(k + 1) = sm(k + 1 − k0). Thus, the utility function of
each secondary user j, j ∈ cm(k+1), ∀m 
= m0, is given by:

uj =
θmf(sm(k+1))Rm

sm(k+1) = θmf(sm(k+1−k0))Rm

sm(k+1−k0)

≥ θm̂f(sm̂(k+1−k0)+1)Rm̂

sm̂(k+1−k0)+1 ≥ θm̂f(sm̂(k+1)+1)Rm̂

sm̂(k+1)+1 , ∀m̂ 
= m,
(A.30)
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where θmf(sm(k+1−k0))Rm

sm(k+1−k0)
≥ θm̂f(sm̂(k+1−k0)+1)Rm̂

sm̂(k+1−k0)+1 is due
to the result of the (k − k0)th channel selection and
θm̂f(sm̂(k+1−k0)+1)Rm̂

sm̂(k+1−k0)+1 ≥ θm̂f(sm̂(k+1)+1)Rm̂

sm̂(k+1)+1 is caused by
the following fact: (1) According to Remark 1, it is known
that f(sm)/sm is a decreasing function of sm, and (2) the
inequality sm̂(k + 1) ≥ sm̂(k + 1 − k0) always holds for
∀m̂ 
= m. It can be seen from (A.30) that every secondary user
j ∈ cm(k+1), ∀m 
= m0 is not willing to deviate unilaterally.

In conclusion, it is seen from (A.29) and (A.30) that the
arbitrarily selected secondary user n in the (k+1)th iteration
can not improve its utility function by deviating unilaterally
and so do all the previously selected secondary users. Then,
by the definition of NE, it is clear that the channel selection
profile after the (k+1)th iteration is a pure strategy NE point.
Inductively, after the N th iteration, i.e., when all the secondary
users are finally selected, the final channel selection scheme
{s1(N), . . . , sM (N)} is a pure strategy NE point of Gc.

APPENDIX B
PROOF OF THEOREM 4

Denote a∗ = (a∗1, . . . , a
∗
N ) as a pure strategy NE of Gc, and

u∗
n as the corresponding utility function of each player n. For

any arbitrarily user n, we have:

u∗
n ≥

(
θa∗

k
f(sa∗

k
)Ra∗

k

sa∗
k

)(
f(sa∗

k
+ 1)

f(sa∗
k
)

)(
sa∗

k

sa∗
k
+ 1

)
∀k 
= n,

(B.31)
which can straightforwardly be obtained from the definition
of NE specified by (11).

Since the channel contention overhead is assumed to be
negligible, following Remark 1, we have f(sa∗

k
+ 1) =

f(sa∗
k
) = 1. Thus, the following can be obtained:

u∗
n ≥ u∗

k

(
sa∗

k

sa∗
k
+ 1

)
∀n ∈ N , k 
= n, (B.32)

where we use the fact that u∗
k =

θa∗
k
f(sa∗

k
)Ra∗

k

sa∗
k

.

Moreover, since sa∗
n
≥ 1, ∀n ∈ N , (B.32) can be re-written

as follows:

u∗
n ≥ 1

2
u∗
k ∀n ∈ N , k 
= n. (B.33)

Now, let us define u∗
min = min{u∗

1, . . . , u
∗
N}, u∗

max =

max{u∗
1, . . . , u

∗
N} and ρ =

u∗
max

u∗
min

. The following inequality
can be immediately obtained from (B.33):

1 ≤ ρ ≤ 2. (B.34)

Then, according to [28], the JFI of Gc is bounded by:

JGc ≥ 4ρ

(ρ+ 1)2
. (B.35)

Furthermore, it is easily known that 4ρ
(ρ+1)2 is a decreasing

function of ρ in the interval [1,∞). Therefore, the following
lower bound of JGc can be obtained from (B.34) and (B.35):

JGc ≥ 8

9
(B.36)

Thus, Theorem 4 follows.

APPENDIX C
PROOF OF THEOREM 5

We can re-write the ODE specified by (23) as follows:

dpnm
dt

= qFnm(P), ∀n ∈ N , 1 ≤ m ≤ M. (C.37)

Applying (24), (C.37) can be further re-written as:

dpnm

dt = q
Rmax

(
pnm(1− pnm)E[rn|(m,P−n)]

+
M∑

k=1,k �=m

pnk(−pnm)E[rn|(k,P−n)]

)

= qpnm

Rmax

M∑
k=1

pnk[hnm(P)− hnk(P)].

(C.38)
It is known that the variation of H(P) is given by:

∂H(P)

∂pnm
= H(m,P−n), (C.39)

where we use the fact that H(P) =
M∑

m=1
pnmH(m,P−n).

Applying (25), (C.38) and (C.39), the derivation of H(P)
is given by:

dH(P)
dt =

∑
n,m

∂H(P)
∂pnm

dpnm

dt

=
∑
n,m

H(m,P−n)
qpnm

Rmax

∑
k

pnk[hnm(P)− hnk(P)]

= q
Rmax

∑
n,m,k

H(m,P−n)pnmpnk[hnm(P)− hnk(P)]

= q
2Rmax

∑
n,m,k

Y (n,m, k,P)

= qc
Rmax

∑
n,m,k>m

pnmpnk[hnm(P)− hnk(P)]
2 ≥ 0,

(C.40)
where Y = pnmpnk

[
H(m,P−n) − H(k,P−n)][hnm(P) −

hnk(P)]. From (C.40), (C.38) and (C.37), the following is
known:

dH(P)
dt = 0 ⇒ pnmpnk[hnm(P) − hnk(P)] = 0 ∀n,m, k

⇒ Fnm(P) = 0 ∀n,m
⇒ P is the stationary point of (23)

(C.41)
In other words, the sequence {P(j)} converges to a station-

ary point of the ODE of (23). Thus, according to Proposition
2, Theorem 5 follows.
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