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Abstract—This article considers a two-tier heterogeneous
network consisting of conventional sub-6-GHz macrocells along
with millimeter-wave (mmWave) small cells, where mobile devices
(MDs) can connect to either macrocell or small cells opportunis-
tically via the nonorthogonal multiple access (NOMA) protocol.
We employ the queuing theory in our network model to conduct
an assessment on the execution delay, energy consumption and
the total cost of offloading tasks in a mobile-edge computation
offloading (MECO) system. The main goal is to design an energy-
efficient MECO decision algorithm in an ultradense Internet of
Thing (UD-IoT) network to analyze the tradeoff between execu-
tion delay and energy consumption. The proposed scheme jointly
optimizes the communication and computation resource manage-
ment, subject to the energy and delay constraints. Due to the
mixed-integer nonlinear problem (MINLP) for resource alloca-
tion and computation offloading, an iterative algorithm along
with the successive convex approximation (SCA) is proposed to
achieve the optimum local frequency scheduling, power alloca-
tion, and computation offloading. The superior performance of
the proposed MECO algorithm in our UD-IoT network is verified
by the extensive numerical results.

Index Terms—Internet of Things (IoT) networks, millimeter-
wave (mmWave), IoT, mobile edge computing, nonorthogonal
multiple access (NOMA) technique, successive convex approxi-
mation (SCA), ultradense (UD).

I. INTRODUCTION

RECENTLY, various Internet of Things (IoT) applications
in smart cities, such as healthcare services and intelligent

transportation systems have employed narrowband IoT [1] and
the low-power IPv6 communication module in the wireless
personal area networks [2]. In addition, the deployment of
ultradense (UD) small cells along with a large number of
IoT smart devices has led to an expansion of the conventional
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IoT toward UD Internet of Thing (UD-IoT) networks [3]–[5].
However, from the quality-of-service (QoS) points of view,
the UD-IoT poses a number of new requirements on the
existing wireless networks [6]. Although, narrowband IoT
applications of smart bike sharing contain elastic necessities
on the reliability of the networks, the IoT-based smart health-
care and transportation systems have stringent requirements
on the bit error rate, latency, and throughput. Thus, due to the
diverse requirements of quality-of-experience (QoE) and QoS,
upcoming UD-IoT networks will face some challenges such
as how to provide resources to a computation-hungry pop-
ular application on the resource-limited IoT mobile devices
(MDs) [7], [8]. As an example, many processing tasks per-
formed in IoT MDs, such as face recognition, interactive
gaming, and speech processing, impose the computational
costs and high power consumptions [9]. However, because
of the physical size limitations, lightweight IoT MDs always
confront the issue of restricted battery life and the computa-
tional resources. One feasible solution to tackle this problem
is the mobile-edge computation offloading (MECO) [10]–[14].
Such a scheme significantly decreases the processing time of
big data and the energy consumption of smart MDs through
offloading massive computational tasks in MDs to the var-
ious edge servers located at radio access networks (RANs)
in small cells (e.g., relays and femtocells), Wi-Fi access
points (APs), and the macrocell. MECO consequently leads
to the enhancement of both user-QoE and QoS in UD-IoT
networks [15], [16].

Nowadays two methods are extremely attractive in UD-
IoT wireless networks: 1) network densification employing
small cells [17] and 2) millimeter-wave (mmWave) commu-
nications [18]. The cellular network densification consists of
dense deployments of small cells coexisting with the macro-
cell architecture. Traditionally, small cells have been employed
in sub-6-GHz frequencies by aiming to offload the burden in
the edge server deployed in the macro base station (MBS).
To further increase the data rates and due to having very high
bandwidth, mmWave small cells have gained high popularity.
Apart from achieving high data rates in the large bandwidths,
other special features of mmWave communications include
noise-limited due to directionality and large bandwidth, and
high directional beamforming gains leading to greatly reduc-
ing the co-channel interference [19]. Highlighted by the
aforementioned benefits, mmWave communication has been
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nominated for short-range communications. Nevertheless, very
poor penetration into buildings or around solid objects is one
of the disadvantages of this type of communication.

Most of the current researches have concentrated on the
single-tier base station (BS) framework with very simple
MECO schemes [20], [21]. Particularly, they demonstrate that
a part of computation tasks may be executed locally at the
user side, and other parts should be offloaded to the rich-
source edge servers located at the MBS to accomplish the
intensive tasks on the behalf of IoT MDs. Besides this, how-
ever, the MBS is being congested when the number of users’
requests in UD wireless networks increases, and this severely
affects the user-QoE and QoS. In order to lessen the bur-
den of the MBS, the lightweight edge servers close to IoT
MDS in small cells, or new emerging unmanned aerial vehi-
cles (UAVs), can be utilized to process the computationally
intensive tasks. In recent years, the attention of researchers has
been devoted to the MECO topic in the UD-5G networks that
deploy IoT MDs [22]–[25]. However, the proposed schemes
mainly take some simple computation task scenarios into con-
sideration and ignore the cases in which the type of tasks
are randomly requested by the IoT devices. Motivated by the
above limitations of the current solutions, this article addresses
the edge computation offloading issue in a UD-5G heteroge-
neous network and formulate the joint execution delay and
energy consumption optimization problem for the IoT MDs in
the network.

II. CONTRIBUTIONS

The key contributions of this article are summarized as
follows.

1) In this article, we study a mobile edge computation
framework with sub-6-GHz macrocells and low-power
mmWave small cells in an IoT-based UD-5G heteroge-
neous network with multiple MDs. Each MD is assumed
to connect to either MBS or small cells on the uplink
direction, independently. For further assessment on the
delay and energy consumption performances, the fol-
lowing queueing models are utilized in the network:
a) M/M/1 queue for MDs; b) M/M/1 queue for APs
(or equivalently, fog nodes); and c) the queue with a
predetermined maximum request rate and the one at the
cloud server is defined as M/M/c queue. There exist a
few research works related to the MEC that study such
resource allocation and user association in a multiaccess
MECO environment [22], [26]–[28].

2) With a focus on the execution delay and the energy
consumption of IoT MDs, we provide an integrated
framework in the MEC networks for both resource
allocation and computation offloading. We formulate a
constrained optimization MECO problem in our UD-IoT
network to decrease the computation overhead in the
whole network and satisfy both the delay and energy
constraints.

3) A multiobjective optimization problem involving the
minimization of the energy consumption and the exe-
cution delay, from the MDs perspective, is formulated

where we derive the optimal transmit power, local com-
puting frequency, and the best location for processing the
tasks. We use the scalarization method to transform the
above multiobjective optimization problem into a single-
objective optimization case. The remaining energy of
MDs is used to weigh these functions. To address this
optimization problem, the successive convex approxima-
tion (SCA) method combined with an iterative search
algorithm is proposed to achieve the optimal offloading
decision, power allocation, local computing frequency
scheduling, and computation offloading.

4) Eventually, a comprehensive analysis supported by some
simulation studies shows that the proposed MECO algo-
rithm displays substantial superior performance with
comparison to other benchmark schemes.

The remainder of this article is structured as follows.
Section III presents the related works on the MECO problem.
In Section IV, the system model of multidevice MECO is
introduced and our optimization problem related to the min-
imum total cost function is formulated as a mixed-integer
nonlinear programming problem. Section V provides an effi-
cient algorithm to solve the joint computation offloading and
resource allocation optimization problem. Section VI presents
some simulation results for different schemes to evaluate the
performance of the network and confirm our analysis. Finally,
in Section VII, a summary of the results and conclusions are
presented.

III. RELATED WORK

Many researches have investigated the MECO problem in
recent years due to the increased popularity of this subject
where the main focus of some research has been on the
proposing of computation offloading algorithms in the sin-
gle/multiuser single edge server scenarios [29]–[32]. In these
works, the MECO problem has been solved in addition to the
interference management, radio, and computational resources
allocation [21], [33]. Zheng et al. [20] formulated the problem
of multiuser MECO as a stochastic game while assuming
the time-varying channel gains and the MDs’ activity. They
presented a multiagent stochastic learning scheme to mini-
mize the system-wide computation overhead. Wang et al. [34]
studied the multiuser MECO as well as the interference mit-
igation in cellular systems with MEC and formulate three
optimization problems for the physical resource block allo-
cation, the computation offloading decision making, and the
MEC computation resource allocation.

In order to reduce the energy consumption of MDs fur-
ther, some works have proposed some computation offloading
algorithms through energy harvesting (EH) techniques or
the integration of dynamic voltage frequency scaling in the
uplink transmission of IoT-based wireless networks [35]–[37].
Mao et al. [36] considered an MEC system with EH devices
and proposed an online Lyapunov optimization-based dynamic
computation offloading algorithm. In this article, the CPU-
cycle frequencies for the tasks processing in MDs, and the
transmit power of MDs for the computation offloading deci-
sion are determined through the adaptation of their algorithm.
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Fig. 1. NOMA-based computation offloading in ultradense IoT networks.

Some works attempted to combine the UD network (UDN)
and the MEC to design the MECO problem in 5G multi-
cell scenarios. Sardellitti et al. [37] studied the problem of
multiuser MECO in a multicell system with the multiple
antennas connected to the cloud server, and proposed an
iterative algorithm based on the SCA method as the solu-
tion. Through optimizing the computation resource allocation
and the communication jointly, Zhang et al., presented an
energy-efficient computation offloading algorithm to investi-
gate the tradeoff between the MDs’ energy consumption and
the transmission delay of single/multicell networks. However,
the focus of that article has been on the assumption that
multiple cells are connected to a common cloud/edge server.
This motivates researchers to study the MECO problem in
UDNs where multiple edge servers are utilized [22]–[24].
Chen and Hao [22] studied the task offloading problem in
a UDN through introducing the software-defined networks
where the main objective is to jointly minimize the delay and
the MDs’ energy consumption in a mixed-integer nonlinear
problem (MINLP).

Considering the limitations of the existing works, the main
objective of this article is to investigate the computation
offloading problem subject to the specified energy and delay
constraints for UD-IoT networks with conventional sub-6-GHz
macrocells coexisting with ultradense low-power mmWave
small cells. It is assumed that each MD connects opportunisti-
cally to either macrocell or small cells via the nonorthogonal
multiple access (NOMA) protocol. Unlike previous studies
in [30], [31], and [33]–[37], in this article, the computation
offloading techniques for MEC with mmWave communica-
tions have been merged, and the radio and computational
resources are jointly assigned to IoT MDs which is modeled
as an MINLP problem.

IV. ULTRADENSE IOT NETWORK MODEL

In this article, we consider a multitier heterogeneous
network consisting of a macrocell working in the microwave
band where the MEC server is connected to the MBS via

optical fiber links, and small cells working in the mmWave
band. We assume in this model that small cells are formed by
mmWave APs that are directly connected to the local comput-
ing servers, also known as fog nodes. The fog nodes provide
the computing capacity to offload some tasks from MDs.
A collaborative MECO scenario in the UD-IoT networks is
presented where collocated IoT MDs are overlaid by small
cells or MBS (see Fig. 1). For such an ultradense wireless
network, the total number of small cells is assumed to be
more than MDs [22]–[25]. The small cells are distributed in
the network in a way that they are clustered and more concen-
trated in dense places with a large number of users. Without
loss of generality and for ease of our notations and analy-
sis, we assume that the network is partitioned in Nc clusters
where each cluster includes N users distributed in M small
cells. This assumption is generic and has been applied in the
pertinent MEC networks in the literature (see [34], [37], [38]).
We examined our proposed algorithms numerically through
deploying a more practical network model with different num-
ber of small cells and users within each cluster, and our
simulation results showed that this randomness scheme has
no effect on the behavior of our results in the general case.
We assume that small cells in the network have a limited
computational and storage capacity so that the correspond-
ing users can use resources of the network to accomplish
their processing tasks. It is supposed that all processors of
small cells in each cluster are concentrated in the center of
the cluster called the central processor unit. Thus, all small
cells in each cluster are connected to the central processor,
and this central node is connected to the macrocell through
the optical fiber. Furthermore, it is assumed that Nφ users in
the network are not in the coverage area of small cells and
they are served by the MBS. For such a real network model,
it is assumed that all users and IoT devices are equipped with
omnidirectional antennas, and the method of user access to
the radio spectrum is NOMA. In order to analyze the energy
consumption and delay performances, we consider the follow-
ing queue model for the network users’ requests: 1) M/M/1
queue for MDs and APs (or equivalently, fog nodes) and
2) the queue with a defined maximum request rate and the
one at the central cloud is considered as M/M/c queue. We
use index in related to the ith user in its corresponding clus-
ter n ∈ {1, . . . ,Nc} in the network. In addition, index mn

corresponds to the mth small cell of the network inside the cor-
responding cluster n. Furthermore, we set n = 0 to represent
the cluster number of users that are not in the coverage area of
the cluster. Hence, the whole users, index set and the process-
ing methods of their computational tasks in the network are

represented by I �= {in : i = 1, . . . ,N, n = 0, 1, . . . ,Nc} and

M �= {mn : m = 1, . . . ,M, n = 1, . . . ,Nc} ∪ {mn = −1, 0},
respectively. Index mn = −1 refers to the state that user in
fulfills its processing task in the local mode, while mn = 0
implies that user in intends to receive service through the
MEC server in the macrocell, otherwise, the user aims to
receive service from the small cell mn. In addition, we define
M′ �=M\{−1} meaning that M′ consists of all members of
M except −1. The task that each user in wants to accomplish
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is expressed by APPin = {Vin, θin , T max
in
}, in which Vin is the

number of CPU cycles required for executing a computational
task, θin indicates the size of the input data (including the pro-
gram code and the input parameters), and T max

in
is an upper

bound for the execution time of each program. For each mobile
device, parameter Vin is obtained using the synthetic bench-
mark method in [39], in which a power meter is connected to
the MD’s battery and makes to measure the Vin while running.
Through running the synthetic benchmark multiple times and
varying the runtime of the benchmark, the power meter records
the number of CPU cycles that is required for each run. We
assume that the computational tasks of users are atomic and
indivisible to the smaller parts, where each user accomplishes
its processing by the following three methods: 1) each user per-
forms its processing task in a local mode; 2) each user offloads
its processing to the fog server which is connected to the small
cells with a high power of processing; and 3) each user offloads
its processing to the MEC server which is connected to the
macrocell. For users who are covered by small cells and intend
to offload their processing tasks to the server, due to the short
distance between the users and the corresponding SBSs and
benefit from the high channel data rates, small cells are in
higher priority than the macrocell. Since the main features
of mmWave communications are the short range communica-
tions along with supporting high data rates requests, small cells
should use the mmWave frequency band, while MBS should be
assigned a microwave frequency band. In addition, we consider
two interference concepts in our network model: 1) interclus-
ter interference, i.e., the interference imposed on one user in
cluster n ∈ {1, . . . ,Nc} due to the transmission of one user in
cluster m ∈ {1, . . . ,Nc}, m �= n, when both MDs are scheduled
on the same spectral resources and 2) intracluster interference,
i.e., the interference caused by users within the same
cluster.

In the following, we will separately compute the energy and
the latency of processing for the aforementioned strategies. In
addition, the problem is modeled mathematically using the key
notations summarized in Table I.

A. Computing Total Cost in Local Processing

We denote f loc
in

as the computational capacity of a specific
MD in the unit of CPU cycles per second. Then, the required
time for local processing APPin can be obtained as a function
of f loc

in
as follows:

τ loc
in

(
f loc
in

)
= Vin

f loc
in

. (1)

In addition, the corresponding energy consumption for local
processing is given by

Eloc
in

(
f loc
in

)
= ks ×

(
f loc
in

)2
Vin (2)

where ks = 10−26 denotes the effective switch capacitance for
each MD which depends on the each device chip architec-
ture [40]. It is seen that parameter f loc

in
affects the execution

time and the energy consumption for the local execution.
In this regard, two main objectives of this section are the
minimization of the latency and the energy consumption in the

TABLE I
NETWORK’S PARAMETERS

MDs’ service reception. These objective cost functions pose
conflicting goals that requires making tradeoff between them.

Toward this goal, we define the total overhead for each
MD in the local case as the weighted sum of the afore-
mentioned cost functions. We utilize the percentage of the
residual energy for each MD to obtain the weight of each
function. More precisely, users that have lower percent of
residual energy are assigned higher energy weight than the
latency weight. In contrast, if a delay-sensitive user does not
have any energy constraint (e.g., face recognition or finger-
print recognition applications), higher weight is deployed for
the latency. Thus, we define parameter ψin for each user in as
follows:

ψin
�= Emax

in

Etotal
in

(3)

where ψin ∈ [0, 1] indicates the percentage of the residual
energy for each user, Emax

in
represents the maximum residual

energy with respect to the battery of user in, and Etotal
in

denotes
the user’s battery capacity in terms of Joule. Therefore, we can
express the computation overhead (i.e., total cost) in the local
case as follows:

Oloc
in

(
f loc
in

)
= ψinτ

loc
in

(
f loc
in

)
+ (1− ψin

)
Eloc

in

(
f loc
in

)
. (4)

B. Computing Total Cost in Remote Processing

We assume that user in intends to receive the service from a
remote server (e.g., MEC or fog server in a cluster) to develop
the hybrid model of the network. In this case, the user is able
to connect to the macrocell (i.e., MC) or one of the small
cells inside cluster opportunistically [41] and offload its com-
putational task to either a fog node or a MEC server to receive
the service that the user needs. In the subsequent section, we
use notation SC to represent the set of small cells. The tol-
erable delay block for receiving the desired service from the



NOURI et al.: JOINT ACCESS AND RESOURCE ALLOCATION IN UD mmWAVE NOMA NETWORKS WITH MOBILE EDGE COMPUTING 1535

Fig. 2. Time line of offloading from an MD in.

remote server, denoted by T max, is divided into three parts:
1) the time for offloading the users tasks in the uplink direc-
tion, denoted by T ul; 2) the execution time of the offloaded
tasks by the servers, denoted by T ser; and 3) the time spent
for sending the computation results back to the users, denoted
by T dl. In fact, in the first phase with duration T ul, all users
offload their computation tasks simultaneously. After collect-
ing these bits, in the second phase with duration T ser, the
desired server remotely executes the offloaded tasks on behalf
of these users. Finally, in the third phase with duration T dl,
the server sends the computation results back to the users. It
should be noted that due to the small sizes of computation
results, the time of downloading these results from the server
is negligible compared to the time of mobile offloading and
local computing (i.e., T dl ≈ 0). Accordingly, we can define

T max ≈ T ul + T ser. (5)

Note that the time spend in the server (i.e., τ ser
in

) consists
of three parts: 1) the latency due to the round-trip time for
exchanging information between the base transceiver station
(BTS) and the server through the backhaul link, represented
by τ bh

in
; 2) the queueing latency in a buffer, denoted by τ que

in
;

and 3) the latency due to the processing time in the server,
represented by τ exe

in
. In other words

τ ser
in

�= τ bh
in + τ que

in
+ τ exe

in (6)

τ ser
in ≤ T ser. (7)

Fig. 2 shows the timeline of the latency experienced by each
user in the network, while receiving the desirable service from
the server. Our second goal is to minimize the total energy
consumption for each user. Thus, we calculate only the energy
that a user consumes for execution, transmitting, and receiving
data. Below we will derive performance metrics as given in
the above five equations in our network model.

1) Uplink Transmission: One of the intrinsic features of
mmWave is using multiantenna techniques at the receiver
side. Since, in the uplink transmission mode, we assume
that each MD is exposed to the beam of only one specific
antenna at the corresponding SBS, we use the concept of
single-input–single-output (SISO) for all the subsequent SNR
and achievable rate expressions in this article. We assume that
all users in the network access the spectral resources through
the NOMA protocol to superpose the multiple users in the
power domain forming a superposition coding for the signal
transmission. The transmitted signal for user in is denoted

by χin such that E[|χin |2] = 1, where E is the expectation
operator. Furthermore, using successive interference cancela-
tion (SIC) technique at the BS mn (either MBS or APs in small
cells), the superposition coded signal can be correctly decoded
and demodulated at the receiver, which leads to reducing the
interference [42]–[45]. Note that the interference in the signal
of each user at the receiver side is only due to the users which
have stronger channel gains related to the end user. This means
that the interference caused by the weaker channels are can-
celed by this technique [46], [47]. We denote the sample-space
received signal at the BS mn as

rmn =
∑
in∈I

√
pin gmn

in
χinI

{
Smn

in
= 1
}
+ nMC

k I{n = 0}

+ nSC
k I{n �= 0} ∀ mn ∈M′ (8)

where pin denotes the transmission power allocated to user in
which satisfies the power constraint 0 ≤ pin ≤ Pmax

in
. Note that

Pmax
in

indicates the maximum power budget in each MD. In
addition, gmn

in
represents the channel coefficient between the

user in and the server mn. The first term in the right-hand
side of (8) is the aforementioned received superposed signal
at server mn, and nMC

k and nSC
k represent the additive white

Gaussian noise (AWGN) in macrowave and mmWave bands,
respectively. For the indicator function I{Smn

in
= 1}, if user

in offloads its processing to BS mn, then Smn
in

is equal to 1,
otherwise, it takes zero value.

We define ϕmn = {in ∈ I|Smn
in
= 1} ∀ mn ∈M, for the set

of users that receive their services from BS mn. In this case,
the signal-to-interference-plus-noise ratio (SINR) in the small
cell mn related to the user in is defined as

SINRmn
in
= pin Hmn

in

1+∑jn∈ϕmn pjn Hmn
jn

I

{
Hmn

jn
≥ Hmn

in

}

where hmn
in

�= |gmn
in
|2 is the direct channel gain between the

user in and the server mn and Hmn
in

�= [(hmn
in
)/(σ 2

K)], in which

σ 2
K

�= E[|nK|2], K ∈ {MC,SC}, indicates the noise power in
macrowave and mmWave bands. In addition

hmn
in
= h̃mn

in
βKGK

in LK
(

dmn
in

)−1/
σ 2
K (9)

where LK(dmn
in
) = (dmn

in
)αK and K ∈ {MC,SC} denotes the

path loss at distance dmn
in

between user in and BS mn. In addi-
tion, αK is the path-loss exponent where αSC is equal to
αl
SC if the link is line-of-sight (LOS) and αn

SC , otherwise,
where both parameters αl

SC and αn
SC are different in values

from the path-loss exponent for macrocell. Another differ-
ence between the channel models for mmWave small cells
and macrocell is related to their near-field path-loss models
at 1 m, denoted by βK, K ∈ {MC,SC}. In fact, parameter
βK for both macrowave and mmWave have been considered
as βK = (fK/4π)2 where fMC = 2 GHz and fSC = 70 GHz.
This specific channel model with path loss is used in many
research works (see [41], [48], and [49]). In addition, h̃mn

in
and

GK
in

in (9) represent the small scale Rayleigh fading channel
and the antenna gain, respectively. Note that all mmWave small
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cells and macrocell are equipped with directional and omnidi-
rectional antennas, respectively. The main difference between
the directional and omnidirectional antennas is related to their
antenna gains. Unlike the omnidirectional antenna that has a
fixed gain, directional antenna gain is a function of angle θin
and the main lobe beam-width θmn . Accordingly, small cell
receives a signal with Gmn,max, if angle θin of user in with
respect to the best beam alignment is within the main beam
width (θmn) of the serving cell, and Gmn,min otherwise. Thus

Gmn
in

(
θin

) =
{

Gmn,max, if
∣∣θin

∣∣ ≤ θmn

2
Gmn,min, otherwise

∀mn ∈M\{−1, 0}

where mn denotes the small cell in cluster n to which the user
in is connected. Taking the above considerations into account,
if user in decides to send its processing to the server indexed
by mn ∈M′, the transmission data rate of user in in the uplink
case is expressed in terms of the number of bits per second
as follows:

Rmn
in

(
pin

) = WKlog2

(
1+ SINRmn

in

)
(10)

where WK, K ∈ {MC,SC}, denotes the bandwidth of the link
between user in and its corresponding base station. In addition,
the latency or equivalently the required time for transmitting
θin data bits to a MEC server in the uplink direction can be
obtained as

τ ul
in

(
pin

) = θin

Rmn
in

(
pin

) . (11)

Finally, the consumed energy for transmitting θin data bits to
the BS is derived as

Eul
in

(
pin

) = pinτ
ul
in . (12)

2) Offloading Process in the MEC Server in Macrocell:
Let FMEC denote the service rate of the MEC server in terms of
millions of instructions per second (MIPS) that is unchanged
during the execution of the computation task. We assume that
the data generated by user in follows the Poisson distribution
with an average generating rate of λin . Thus, offloaded requests
in the queue of the MEC server would be a Poisson process,
as well. The requests from different MDs in the system are
pooled together with a total rate λMEC

p , where based on the
properties of the Poisson process, λMEC

p is given by

λMEC
p =

∑
in∈I

λinI

{
S0

in = 1
}
. (13)

According to the analysis of M/M/c queue at the MEC server
and the Erlang’s formula [50], we define

ρMEC = λMEC
p

cFMEC
(14)

to calculate the average waiting time of each request at the
MEC which contains the waiting time at the queue (τ que

in
) and

the execution time (τ exe
in

) as follows [50], [51]:

τ
MEC,que
in

+ τMEC,exe
in

= C
(
c, ρMEC

)

cFMEC − λMEC
p
+ 1

FMEC
(15)

where

C
(

c, ρMEC
)
=

((
cρMEC

)
c!

)(
1

1−ρMEC

)

∑c−1
k=0

(cρMEC)
k

k! +
(
(cρMEC)

c!

)(
1

1−ρMEC

) .

(16)

Assuming FMEC
b is the transmission data rate of the MEC

server, we can obtain the expected time τMEC,b
in

for the execu-
tion results waiting in the fog node before they are completely
delivered as follows:

τ
MEC,b
in

= 1

FMEC
b − λMEC

p

. (17)

In addition, the corresponding delay due to the backhaul link
between small cell mn and the MEC processor is obtained as

τ bh
in =

θin

ϑ
(18)

where ϑ indicates the capacity in terms of bits per second of
the optical fiber link.

3) Offloading Process in the FOG Server Omitted in Small
Cells: Let FFOG,mn indicates the service rate of the fog server
mn in MIPS. If user in intends to receive service from the
fog server, since the queue model for the incoming requests
is considered as M/M/1, we can define the total rate in the
fog server mn as

λFOG,mn =
∑
in∈I

λinI

{
Smn

in
= 1
}
∀mn ∈M\{−1, 0}. (19)

Hence, we have the following relationships in the calcula-
tion of τFOG,que

in
and τFOG,exe

in
[52]:

τ
FOG,que
in

+ τFOG,exe
in

= Vin

FFOG,mn − λFOG,mn
. (20)

In addition, due to the use of optical fiber as backhaul links
between the fog processor and the access point, we can
calculate τ bh

in
the same as (18).

4) Downlink Transmission: Since the output data has a
much smaller size than the input data, i.e., Edl

in
� Eul

in
and

T dl � T ul, we ignore the time delay and the energy consump-
tion of receiving the outcome computation result back from
the servers as following the same assumptions in [53]–[55].

5) Computing Total Cost in Remote Mode: Similar to the
local processing case, the total cost function in the remote
processing can be expressed as

OK
in

(
pin

) = ψinτ
K
in

(
pin

)+ (1− ψin

)
EK

in

(
pin

)
. (21)

Remark 1: Recalling that the binary parameter Smn
in
∈ {0, 1}

denotes the offloading decision for each user in which means
if user in offloads its task to the server mn ∈ M, Smn

in
= 1,

otherwise, Smn
in
= 0, we can obtain the overhead of user in as

follows:

Oin

(
pin , Smn

in

)
= Smn

in
Oloc

in

(
f loc
in

)
I{mn = −1}

+ Smn
in

OK
in

(
pin

)
I{mn �= −1}. (22)
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C. Optimization Problem

Now, we formulate the problem of minimizing the total cost
function in (22) as the following optimization problem:

P1) min
S,F,P

∑
in∈I

∑
mn∈M

(
Smn

in
Oloc

in

(
f loc
in

)
I{mn = −1}

+Smn
in

OK
in

(
pin

)
I{mn �= −1}

)

s.t. C1. S−1
in
τ loc

in

(
f loc
in

)
+
(

1− S−1
in

)
τ ul

in ≤ T max

−
(

1− S−1
in

)
T ser

C2.
(

1− S−1
in

)
τ ser

in ≤ T ser ∀in ∈ I

C3. S−1
in

Eloc
in

(
f loc
in

)
+
(

1− S−1
in

)
EK

in

(
pin

) ≤ Emax
in

∀in ∈ I
C4. 0 ≤

(
1− S−1

in

)
pin ≤ Pmax

in ∀in ∈ I

C5. f min
in ≤ S−1

in
f loc
in ≤ f max

in ∀in ∈ I
C6. λMEC

p < cFMEC

C7. λMEC
p < FMEC

b

C8. λFOG,mn < FFOG,mn ∀mn ∈M\{−1, 0}
C9. Smn

in
∈ {0, 1} ∀in ∈ I,mn ∈M

C10.
∑

mn∈M
Smn

in
= 1 ∀in ∈ I

where S−1
in
= 1 is related to the case that MD in executes

APPin locally in its own CPU, while S−1
in
= 0 means that MD

in decides to offload its task to other servers (e.g., MEC or fog
server in a cluster). Constraints C1−C4 represent the latency,
energy, and power constraints which should be less than or
equal to the maximum tolerable delay (T max), residual energy
(Emax

in
) and power budget (Pmax

in
) in each MD. In addition,

constraint C5 shows the local CPU-cycle frequency restriction,
C6−C8 are obtained from (15), (17), and (20), respectively,
and C9 indicates that each MD executes its task by either local
or remote computing. Finally, C10 represents the constraint on
the offloading decision parameter of each MD.

For convenience in mathematical expressions, we collect

all optimization variables in vector U �= (S,F,P), where

S
�= (Smn

in
)in∈I , F

�= (f loc
in
)in∈I , and P

�= (pin)in∈I . Obviously,
if [(Vin)/(f

local
in

)] ≤ T max and ks×(f local
in

)2Vin ≤ Emax
in
∀in ∈ I,

the feasible set of problem P1 is nonempty and be guar-
anteed that there is at least one solution for this problem.
Considering nonconvexity of the objective functions and con-
straints, problem P1 is nonconvex. Since Smn

in
is a binary

parameter and P1 is considered as an MINLP, finding an
optimum solution for the problem is intractable. In addition,
problem P1 is a generalization of the knapsack problem [56]
and for this reason, it is considered as an NP-hard problem.
Thus, we cannot find an optimum solution in the polynomial
time.

V. PROPOSED ALGORITHM TO SOLVE PROBLEM P1

In order to tackle the optimization problem P1, we divide
problem P1 in two separate parts: 1) the total cost in local
mode (P2) and 2) the total cost in remote mode (P3).

Generally, the procedure of the proposed algorithm in solving
P1 is divided into six stages performed as follows.

A. Optimum Local Processing

In the first step, all users in ∈ I are supposed to accomplish
their computational tasks in a local mode (i.e., S−1

in
= 1),

then, the optimum value of CPU-cycle frequency should be
obtained such that it minimizes the local overhead. With the
assumption S−1

in
= 1, problem P1 is converted to the following

optimization problem:

P2) min
F

∑
in∈I

Oloc
in

(
f loc
in

)

s.t. C1. τ loc
in

(
f loc
in

)
≤ T max ∀in ∈ I

C2. Eloc
in

(
f loc
in

)
≤ Emax

in ∀in ∈ I

C3. f min
in ≤ f loc

in ≤ f max
in ∀in ∈ I.

Problem P2 is convex that is straightforward to be solved.
In order to solve the optimization problem, one can find the
first-order derivation of the objective function f loc

in
and set it

equal to zero. Therefore, we have

f̃in = 3

√
ψin

2
(
1− ψin

)
ks
. (23)

On the other hand, according to C1 and C2, one can easily
find upper and lower bands for f loc

in
by the following relations:

f lb ≤ f loc
in ≤ f ub (24)

where f lb �= [(Vin)/(T max)] and f ub �=
√

[(Emax
in
)/(ksVin)]

obtained from (1) and (2). Through combining (24) and C3,
we can modify the lower and upper bands for f loc

in
as follows:

f l
in = max

{
f min
in , f lb

}
(25)

f u
in = min

{
f max
in , f ub

}
. (26)

If we have f u
in
< f l

in
for one of the users, then, the feasible

region of problem P2 is empty and the problem has no solu-
tion. This means that user cannot execute its processing in the
local mode and it should use either MEC or the fog server.
Clearly, for this type of user, S−1

in
= 0. However, for the users

that f l
in
≤ f u

in
, and using the obtained upper and lower bounds

for f loc
in

, the optimum value of f loc
in

is given by

f̂ loc
in =

⎧⎪⎨
⎪⎩

f l
in

f̃in ≤ f l
in

f̃in f l
in
≤ f̃in ≤ f u

in
f u
in

f̃in > f u
in
.

(27)

In addition, the optimum local overhead for user in can be
obtained as (see lines 1–8 of Algorithm 1)

min
F

∑
in∈I

Oloc
in

(
f loc
in

)
=
∑
in∈I

Oloc
in

(
f̂ loc
in

)
. (28)
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B. Optimum Remote Processing

In the second case, we assume that each user in ∈ I wants
to receive one service from a server (fog or MEC), then
S−1

in
= 0, thus, problem P1 can be changed to the following

optimization problem:

P3) min
S,P

∑
in∈I

∑
mn∈M′

Smn
in
OK

in

(
pin

)

s.t. C1. τ ul
in ≤ T ul ∀in ∈ I

C2. τ ser
in ≤ T ser ∀in ∈ I

C3. EK
in

(
pin

) ≤ Emax
in ∀in ∈ I

C4. 0 ≤ pin ≤ Pmax
in ∀in ∈ I

C5. λMEC
p < cFMEC

C6. λMEC
p < FMEC

b

C7. λFOG,mn < FFOG,mn ∀mn ∈M\{−1, 0}
C8. Smn

in
∈ {0, 1} ∀in ∈ I,mn ∈M

C9.
∑

mn∈M
Smn

in
= 1 ∀in ∈ I.

This problem is still nonconvex and is considered to be MINLP
and NP-hard which its solution is complicated. In order to
tackle this problem, we classify the users into two groups.
The first group is related to the users that are connected to
the macrocell, while the second group includes the users that
are connected to small cells inside the cluster. As mentioned
in [41], different criteria are introduced to allocate the small
cells to the network users, e.g., the biased received powers.
Using (9), we perform this classification algorithm based on
the direct channel gain criterion as follows [41], [57]:

h̃
m∗n
in
βKGK

in LK
(

d
m∗n
in

)−1 ≥ h̃mn
in
βKGK

in LK
(

dmn
in

)−1
. (29)

Using this criterion, user in connects to the fog server which
has the best channel condition. In addition, in (29), the asterisk
superscript (i.e., ∗) for server mn means that the best server
(in terms of having the best direct channel gain condition) is
selected for user in to start communication with this nominated
server. Moreover, this selection scheme is completely indepen-
dent of the interference in the network. Denoting QMC and
QSC as the sets of users that receive service from the MEC
and small cells, respectively, we can rewrite problem P3 as

P4) min
P

OK =
⎡
⎣ ∑

in∈QSC

OK
in

(
pin

)+
∑

in∈QMC

OK
in

(
pin

)
⎤
⎦

s.t. C1. τ ul
in ≤ T ul ∀in ∈ I

C2. τ ser
in ≤ T ser ∀in ∈ I

C3. EK
in

(
pin

) ≤ Emax
in ∀in ∈ I

C4. 0 ≤ pin ≤ Pmax
in ∀in ∈ I

C5. λMEC
p < cFMEC

C6. λMEC
p < FMEC

b

C7. λFOG,mn < FFOG,mn ∀mn ∈M\{−1, 0}.
It is seen that problem P4 is nonconvex because of the non-
convexity of the objective function and constraints C1 and C3,
so we employ the SCA algorithm in [58] and [59] (lines 9–48

of Algorithm 1) to solve this challenging optimization
problem. In this algorithm, an iterative procedure is performed
to solve such a nonconvex problem where in each iteration,
we obtain a convex successor of P4 by calculating the convex
approximation for the objective function and the constraints
C1 and C3 so that these approximations should satisfy the
specific constraints in [58] and [59]. Using the obtained total
cost from P4 with the previous iteration (i.e., OK

in
(pin)) and in

comparison with the local cost (i.e., Oloc
in
(f̂ loc

in
)), we can clas-

sify the users into three categories (i.e., QL, QMC , and QSC),
as will be discussed shortly.

C. Convex Approximation for Objective Function

Let us denote the set X as the feasible region for problem
P4 and P(υ) represents the transmit power vector calculated
in the υth iteration of the algorithm. If we denote the approx-
imation of the objective function OK(P;P(υ)) around the

current feasible point P(υ), i.e., the vector P
�= (pin)in∈I , by

ÕK(P;P(υ)), this approximation should satisfy the following
conditions [58, Sec. II]:

A1: ÕK(•;P(υ)) is uniformly convex on J with constant
cÕK > 0 meaning that ∀x, z ∈ J and ∀y ∈ X , we have
cÕK‖x− z‖2 ≤ (∇xÕK(x; y)− ∇xÕK(z; y))(x− z)T ;

A2: ∇PÕK(P(υ);P(υ)) = ∇POK(P(υ);P(υ)), for all
P(υ) ∈ X ;

A3: ∇PÕK(•; •) is continuous on J ×X .
For the above constraints, ∇xf (x; y) denotes the partial gra-

dient of f (x; y) with respect to the first argument evaluated at
(x; y), and J represents a compact convex set that includes
the feasible set X , i.e., X ⊆ J . The above condition empha-
sizes that in addition to the convexity of smoothness, the
first order behavior of the approximation should be similar
to the original nonconvex function. We will compute a convex
approximation for the objective function so that it satisfies the
aforementioned conditions A1–A3 as follows:

ÕK(P;P(υ)) = MEC
∑
in∈I

ÕK
in

(
pin;P(υ)

)

+ γP

2
‖P− P(υ)‖2. (30)

The second term in the right-hand side of (30) is a quadratic
regularization term that is aggregated in order to make
ÕK(P; P(υ)) uniformly strongly convex and γP indicates the
positive arbitrary constant. In addition

ÕK
in

(
pin;P(υ)

) = ψinτ
K
in

(
pin

)

+ (1− ψin

)
ẼK

in (P;P(υ)) (31)

where

ẼK
in (P;P(υ)) = pin(υ)

θin

Rmn
in

(
pin , p−in(υ)

)

+ pin
θin

Rmn
in

(
pin(υ), p−in(υ)

)

+
∑
jm∈I

∂Ejm(P)
∂pin

× (pin − pin(υ)
)
. (32)
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Algorithm 1 Proposed Algorithm for Joint Access and
Resource Management
Initialization:
Classified MDs sets: QL = QMC =QSC = φ.

Set �0 = �1 = �2 = φ and � �= I.
Set μlow = 0, μup = numel(�).

Set j = 1, γ (0) ∈ (0, 1] and α ∈
(

0, 1
γ (0)

)
.

1: for each in ∈ I do
2: Obtain APPin =

{
Vin , θin ,T max

in

}
.

3: Calculate ψin according to (3).
4: Calculate f l

in
and f u

in
according to (25) and (26).

5: Calculate f̃in and f̂ loc
in

according to (23) and (27).

6: Determine Oloc
in
(f loc

in
) according to (32).

7: Perform cell association according to (29).
8: Update QSC and QMC .
9: end for

10: while μup − μlow > 1 do
11: Compute ÕK(P;P(υ)) according to (30) and (32).
12: Compute τ̃Kin (pin ) according to (35).

13: Compute ĒK
in
(pin ) according to (38).

14: Obtain P5 as convex successor of P4.
15: Set υ = 0.
16: Select P(0) ∈X .
17: Solve convex problem P5 to obtain P̂.
18: calculate OK

in
(p̂in ) and OK(P̂) according to (21) and (22), respectively.

19: while
∣∣∣OK(P̂(υ + 1)

)
−OK(P̂(υ)

)∣∣∣ ≤ δ do

20: Set P(υ + 1) = P(υ)+ γ (υ)(P̂(υ)− P(υ)).
21: υ ← υ + 1, and return to step 16.
22: γ (υ) = γ (υ − 1)I{υ > 0}(1− αγ (υ − 1))+ γ (0)I{υ = 0}.
23: end while
24: Popt ← P̂(υ + 1).
25: for each in ∈ � do
26: if j == 1 && OK

in
(popt

in
) <Oloc

in
(f loc

in
) then

27: �1 ← �1 ∪ in.
28: Set S−1

in
= 0.

29: else if j > 1&&
(
OK(Popt))j

<
(
OK(Popt))j−1

30: μlow ← λ.

31: else if j > 1&&
(
OK(Popt))j

>
(
OK(Popt))j−1

32: μup ← λ.
33: else j == 1 && OK

in
(popt

in
) >Oloc

in
(f loc

in
)

34: Set S−1
in
= 1.

35: end if
36: end for
37: if j == 1 then

38: �2
�= �\�1.

39: end if
40: Sort �1 and �2 according to the total cost of the remote in

descending order.
41: Set �0 ← �1 +�2.
42: Set j← j+ 1.

43: Set λ← numel(�1)+
⌊
μlow+μup

2

⌋
.

44: Set �← �0{1, ..., λ}.
45: end while
46: λ∗ = μlow.
47: if in ∈ �0{1, ..., λ∗} do
48: Set S−1

in
= 0.

49: else if in ∈ �0{λ∗ + 1, ..., numel(�0)} do
50: Set S−1

in
= 1.

51: end if
Output: QL,QMC ,QSC and Uopt = (Sopt,Fopt,Popt).

Note that the first two phrases on the right-hand side of (32)
are the desired convexification of EK

in
(P;P(υ)), while the third

part denotes the linearization term, furthermore, p−in(υ) =
(pjn(υ))

N
i �=j=1.

D. Convex Approximation for Constraints C1 and C3

If we denote the convex approximation of this function in
the υth iteration of the SCA algorithm by τ̃ ul

in
(pin), this approx-

imation should satisfy the following conditions [58, Sec. II]:

B1: τ̃ ul
in
(•;P(υ)) is uniformly convex on J ;

B2: ∇Pτ̃
ul
in
(P(υ);P(υ)) = ∇Pτ

ul
in
(P(υ);P(υ)), for all

P(υ) ∈ X ;
B3: ∇Pτ̃

ul
in
(•; •) is continuous on J ×X ;

B4: τ̃ ul
in
(P;P(υ)) ≥ τ ul

in
(P;P(υ)), for all P(υ) ∈ X and

P ∈ J ;
B5: τ̃ ul

in
(P(υ);P(υ)) = τ ul

in
(P(υ);P(υ)), for all P(υ) ∈ X ;

B6: τ̃ ul
in
(•; •) is continuous on J ×X .

In order to calculate this approximation, we first rewrite (10)
as the difference between two concave functions as shown
in (33), at the bottom of the next page, where functions
Rmn

+
in

(pin) and Rmn
−

in
(pin) are concave functions. To compute

the above concave approximation of the function, we use the
first-order Taylor’s expansion approximation of the function
Rmn

−
in

(pin), i.e.,

R̃mn
in

(
pin

) = Rmn
+

in

(
pin

)− Rmn
−

in

(
pin(υ)

)

−
∑
jm∈I

∂Rmn
jm
−(pjm(υ)

)

∂pjm
× (pjm − pjm(υ)

)
. (34)

Finally, by substituting the concave approximation in (11),
we can claim that the convex upper bound for the constraint C1
in problem P4: τ̃ ul

in
(pin) ≤ T max ∀in ∈ I can be obtained by

τ̃ ul
in

(
pin

) = θin

R̃mn
in

(
pin

) . (35)

In the next step, constraint C3 is manipulated as follows:

pin
θin

Rmn
in

(
pin

) ≤ Emax
in (36)

or equivalently

pinθin − Emax
in Rmn

in

(
pin

) ≤ 0. (37)

Therefore, the convex approximation for the constraint C3
would be obtained by substituting (34) in (37) as follows:

ĒK
in

(
pin

)
� pinθin − Emax

in R̃mn
in

(
pin

) ≤ 0. (38)

Remark 2: It can be easily demonstrated that the obtained
convex approximations satisfy the constraints mentioned in
A1-A3 and B1-B6.

E. Convex Successor of Problem P4

After computing convex approximations of the objective
function [i.e., ÕK(P;P(υ)) in (30)] and the constraints C1
and C3 around the current iterate P(υ) ∈ X , the following
problem can be solved instead of P4 by conventional methods
such as interior point methods

P5) min
P

∑
in∈QSC

ÕK
in

(
pin

)+
∑

in∈QMC

ÕK
in

(
pin

)

s.t. C1. τ̃ ul
in

(
pin

) ≤ T max ∀in ∈ I
C2. τ ser

in ≤ T ser ∀in ∈ I
C3. ĒK

in

(
pin

) ≤ 0 ∀in ∈ I
C4. 0 ≤ pin ≤ Pmax

in ∀in ∈ I
C5. λMEC

p < cFMEC
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C6. λMEC
p < FMEC

b

C7. λFOG,mn < FFOG,mn ∀mn ∈M\{−1, 0}.
Note that we use lines 13–22 of Algorithm 1 to achieve the

optimal solution. For this part of the algorithm, P(0) deter-
mines the initial point which is selected from the feasible
region of the problem [i.e., P(0) ∈ X ] ,and P̂(υ) indicates the
unique solution of P5 in the υth iteration of the algorithm.
Parameter γ in line 20 indicates the step size in the algo-
rithm which is obtained as γ (υ) = γ (υ − 1)(1− αγ (υ − 1))
where γ (0) ∈ (0, 1] and α ∈ (0, [1/γ (0)]). Furthermore, other
step size rules can be employed. The algorithm is terminated
when |OK(P̂(υ + 1))−OK(P̂(υ))| ≤ δ, in which δ deter-
mines the algorithm accuracy and Popt �= (popt

in
)in∈I represents

the optimal solution that satisfies this condition.

F. Users Classification

So far, we have derived the optimum value of total over-
head in the local and remote modes. In this step, we obtain
the optimal decision between the local and remote modes.
Recalling from (22), problem P3, that specifically focuses on
deciding S−1

in
for each user, turns to the following form:

P6) min
S

∑
in∈�

⎛
⎝S−1

in
Oloc

in

(
f loc
in

)

+
(

1− S−1
in

)
OK

in

(
pin

)
⎞
⎠

s.t. C1. S−1
in
∈ {0, 1} ∀in ∈ I.

In order to obtain the binary coefficients S−1
in

, we can use
lines 25–36 of Algorithm 1. In the first iteration of the algo-
rithm, OK

in
(pin) is compared to Oloc

in
(f loc

in
). For user in that

OK
in
(pin) < Oloc

in
(f loc

in
), we are sure that S−1

in
= 0 and collect

this user index in �1, while �2 represents other user indexes
(i.e., OK

in
(pin) > Oloc

in
(f loc

in
)) showing an optimal decision for

members of this collection. Note that � = �1+�2. After that,
users who are in the �1 and �2 vectors are sorted according
to the total cost of the remote in the descending order of the
value of �2 as �2,π1 ≤ �2,π2 ≤ · · · ≤ �2,πnumel(�2)

, where π is
a permutation of numel(�2). Next, we concatenate the sorted
vectors �1 and �2 to form �0. By defining parameter λ as
an index, in each iteration, first users up to λ are selected as
users who receive service from the server (i.e., �). We define
parameter j as the number of iterations in Algorithm 1. In the
subsequent iterations of the algorithm (i.e., j > 1), the above
cost is compared to the previous iteration, and by the manner

which has been described in lines 25–51 of Algorithm 1, we
achieve the optimal decision for users in �2.

It is worth mentioning that the aforementioned stages in
subsections B-E must operate iteratively until the convergence
criterion (μup − μlow) > 1 is satisfied. Then, for the indices
first up to λ∗ in the set �0 (i.e., in ∈ �0 = {1, . . . , λ∗} in
Algorithm 1), we set S−1

in
= 0 and for other indices, we set

S−1
in
= 1. Accordingly, all users can be classified into three

categories QL, QMC , and QSC . We summarize the aforemen-
tioned steps of our procedure as pseudocode in Algorithm 1.
In addition, we will refer to our proposed joint access and
resource allocation in the UD-IoT scheme as JARA-UDIoT in
the next proposition.

Proposition 1 (Complexity Analysis): The computational
complexity of JARA-UDIoT Algorithm 1 is of order
O(
∑j

l=1 Cl�
2
l�l), where Cl represents the number of itera-

tions needed for the convergence of SCA, �l and �l denote
the total number of IOT-MDs and offloading decision choices
in the lth iteration, respectively.

Proof: Regarding to the proposed JARA-UDIoT in
Algorithm 1, there are totally two-tier loops, containing an
outer “for” loop (i.e., steps 1–9) and outer “while” loop (i.e.,
steps 10–51). The running time required for the first outer
“for” loop in steps 1–9 is of order O(|I|) and runs only
one time for each user in ∈ I, where | • | denotes the
cardinality operator. The outer “while” loop contains two
more main inner loops, including the inner “while” loop in
steps 19–23, and the inner “for” loop in steps 25–36. The
running time for the outer “while” loop mainly depends on
the iteration times of steps 11–24, related to solving problem
P5, where we employed the SCA algorithm. By this method,
each case of problem P5 can be solved with the complexity
of order O(max{x3

j , x2
j yj}) through employing interior points

methods (IPM) [60, Ch. 1]. The subscript j indicates the
iteration number of the algorithm, xj is the total number of
optimization variables, and yj is the total number of con-
straints, namely, for j = 1, x1 = |I|, y1 = 3|I| + |M|. Hence,
the corresponding computational complexity for P5 is of
order O(max{|I|3, |I|2(3|I| + |M|)}) = O(|I|3 + |I|2|M|).
Denoting the total number of users and the total number of
their offloading decisions in the lth iteration of the algorithm
as �l and �l, we have

O
(

max
{

x3
l , x2

l yl

})
= O

(
max

{
�3

l ,�
2
l (3�l +�l)

})

= O
(

max
{
�3

l , 3�3
l +�2

l�l

})
.

Rmn
in

(
pin

) = WKlog2

⎛
⎜⎜⎝1+ pin Hmn

in

1+ ∑
jn∈ϕmn

(
pjn Hmn

jn
I

{
Hmn

jn
≥ Hmn

in

})

⎞
⎟⎟⎠

= WKlog2

⎛
⎝1+

∑
jn∈ϕmn

(
pjn Hmn

jn
I

{
Hmn

jn
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in

})
+ pin Hmn

in

⎞
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+
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−WKlog2

⎛
⎝1+

∑
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(
pjn Hmn

jn
I

{
Hmn

jn
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in

})⎞⎠
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Rmn
in
−
(pin)

(33)
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For the proposed UDN �l > �l, so the computational
complexity of this part in the lth iteration can be more simpli-
fied as O(�2

l�l). In addition, the running time of inner “for”
loop (i.e., steps 25–36) is of order O(�l). Moreover, the pro-
cess from steps 37 to 51 is run in an O(1) time. Finally,
let us define Cl as the set of iterations needed for the conver-
gence of the SCA in the inner “while” loop in the lth iteration,

and accordingly, we define C �= {C1, . . . , Cj}. Therefore, the
total running time of the JARA-UDIoT algorithm can be cal-
culated by adding the aforementioned complexity terms, i.e.,
O(
∑j

l=1(Cl�
2
l�l +�l + 1)+ |I|) = O(

∑j
l=1 Cl�

2
l�l).

VI. SIMULATION RESULTS

In this section, we verify the performance of our proposed
NOMA-based offloading design algorithm in the UD-IoT
networks, through the extensive simulations, and compare that
with other benchmark methods.

1) NOMA-Based Offloading: We assume that all IoT MDs
use the NOMA protocol to access the radio spectrum,
where this case can be divided into the following three
modes.

a) NOMA-Based Offloading (Multifrequency Band):
Small cells and macrocell work in the mmWave
and microwave frequency band, respectively.

b) NOMA-Based Offloading (Microwave Frequency
Band): Small cells and macrocell work in the
microwave frequency band.

c) NOMA-Based MEC Offloading (Microwave
Frequency Band): In this case, we consider a
wireless network without any small cell where
its users receive the service from the MEC
server.

2) OMA-Based Offloading: We assume that all IoT MDs
in each cluster use the frequency-division multiple
access (FDMA) protocol to access the radio spectrum.
In any frequency band (i.e., mmWave or microwave
frequency band), the total available bandwidth WK,
K ∈ {MC,SC}, is equally and orthogonally assigned to
its corresponding IoT MDs for task offloading. This case
can be divided into three modes similar to the cases of
NOMA-based offloading scenario. We name these cases
as the OMA-based offloading (multifrequency band),
OMA-based offloading (Microwave frequency band),
and OMA-based MEC offloading (Microwave frequency
band) in our simulations.

3) Local Computing: In this case, all users in the network
execute their computational tasks only on their own
device (i.e., S−1

in
= 1 ∀in ∈ I). In this scheme, total

overhead of the network is obtained by solving problem
P2 according to (28).

We consider a centralized MEC scenario in an ultradense
heterogeneous network which is covered by an MBS located
at the center with 500 m in diameter. Furthermore, M SBSs
with 100 m in radius are randomly scattered over the network.
The MBS is equipped with an MEC server, whose compu-
tation capability is 4 GHz/s. MDs are randomly distributed

TABLE II
SIMULATION PARAMETERS

over the coverage area. The input data size of the computation
offloading and the total number of CPU cycles are uniformly
distributed within [300− 800] KB and [100− 1000] megacy-
cles, respectively. The detailed simulation parameters adopted
in our performance evaluation, unless mentioned otherwise,
are summarized in Table II.

In order to validate the superiority of our proposed JARA-
UDIoT algorithm, we compare latency, energy consumption,
and the total overhead versus the number of IoT MDs with
different benchmark schemes in Fig. 5. We assume that the
number of IoT MDs in the network ranges from 9 to 48. It
can be observed that the total execution delay, energy con-
sumption, and total overhead increase in all schemes with an
increment of the number of MDs in the network. Based on the
results depicted in Fig. 5, we found that more cost is expended
when all tasks are performed locally. It is also shown that
the performance of the network is improved by employing
the NOMA-based partial offloading scheme when compared
to the OMA-based case. Through combining NOMA and
the capabilities of mmWave for small cell users and also,
employing the proposed JARA-UDIoT algorithm, the amount
of the cost function significantly diminishes in comparison
to other schemes. For example, for N = 36, the proposed
scheme reduces the total cost of the network with the value
of 20%, 46%, 76%, 79%, 81%, and 90% for the schemes
NOMA-based offloading (microwave frequency band),
NOMA-based MEC offloading (microwave frequency band),
OMA-based offloading (multifrequency band), OMA-based
offloading (microwave frequency band) and OMA-based MEC
offloading (microwave frequency band), and local computing,
respectively. By comparing the results in Fig. 5, we can
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(a) (b)

Fig. 3. Comparison of the performance of the proposed user classification algorithm for different schemes. (a) Percentage of IoT MDs who receive the
service from the server. (b) Average algorithm iteration to achieve the desired solution (i.e., j̄) versus the number of users.

conclude that the proposed JARA-UDIoT algorithm able to
attain superior performance in comparison to other methods.

Furthermore, we investigate the performance of the
proposed JARA-UDIoT algorithm from another perspective
in Fig. 3. The percentage of offloaded users who are able
to receive the service from each server1 to accomplish their
processing tasks has been illustrated versus the number of
IoT MDs for different schemes in Fig. 3(a). In addition, the
average number of iterations, denoted by j̄, to achieve these
results during simulation implementation is represented in
Fig. 3(b). From Fig. 3(a), it is found that the number of users
receiving the service from the server is the largest among all
other schemes. In addition, it is seen from OMA-based MEC
offloading (Microwave frequency band) that the percentage
of users who able to offload their computational tasks to the
server is the lowest between all schemes. More precisely, most
of the users’ requests to receive the service from the server are
rejected. In order to reduce the overall cost of the network,
it is cost effective for users to accomplish their processing
locally on their own devices. It is worth mentioning that the
main purpose of this article is minimizing the total cost, not
maximizing the number of applicant users at any cost. In
Fig. 3(a), the advantage of employing NOMA and mmWave
jointly is clearly visible. Accordingly, the NOMA-based com-
putation offloading has the best performance in comparison
with its counterpart (OMA-based) among the studied schemes.
In addition, it is observed from Fig. 3(a) that the percentage
of users receiving the service from the server decreases in
all the schemes by increasing the number of network’s users.
This is completely reasonable, since the number of requests
sent to the server increases by the increment of MDs in the
network, leading to an increase in the interference. Obviously,

1From now on, the generic term “server” refers to the MBS and APs in
small cells.

increment of the interference reduces the transmission data
rates. Hence, users should spend more power for transmitting
data to the server, resulting in an increase in the total cost of
the network. In addition, the interference increases the latency
of the user’s task processing, due to the limitation of com-
puting resources on the servers. Accordingly, for reducing the
total cost of the network, it is advantageous that some users
process their computational tasks locally on their devices.

We also examined the typical convergence speed of the
proposed JARA-UDIoT algorithm in Fig. 3(b). For this
purpose, we independently simulated ten times for various
schemes and illustrated the average number of iterations to
obtain the desired solutions (i.e., satisfying the termination cri-
teria). From Fig. 3(b), we find that the proposed JARA-UDIoT
algorithm displays the desirable solution with the least average
repetitions when compared to the other schemes which indi-
cate the fastest convergence time and the best performance of
the proposed JARA-UDIoT algorithm.

Fig. 4 shows the impact of the chosen coefficients for
weighting the energy consumption and execution delay on
total overhead in the network under the different number of
IoT MDs. For this purpose, we compare the applied weighting
method (i.e., ψin = ψ ′inηE

in
) with the random weighting case.

As mentioned earlier, to improve the network performance, we
used the remaining energy available in each device to weigh
the overhead for each user. Accordingly, for the user with
smaller energy (i.e., more limitation is considered on energy
consumption), the weight of the energy function is greater than
the delay. In contrast, users without any energy limitation and
with a high charge percentage, are assigned more weight to
latency. By this procedure, we can weigh the overhead function
for each user. As shown in Fig. 4, for ψin = 0.9 and ψin = 0.1,
the amount of the network’s latency and consumed energy
have the lowest and highest values, respectively. This is rea-
sonable since, with increasing the weight of the network delay
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(a) (c)(b)

Fig. 4. Impact of weightings on latency, energy consumption, and total overhead.

(a) (c)(b)

Fig. 5. Comparison results of the latency, energy consumption and total overhead versus the number of MDs by adopting various offloading schemes.

function, the proposed JARA-UDIoT algorithm proceeds in a
way to minimize the network’s latency as much as possible.
By increasing the weight of the delay function, the amount of
consumed energy naturally increases due to the lower weight
of energy. This may lead to an increase in the power consump-
tion of each user sending the data in the uplink direction. From
Fig. 4, it is observed that this type of weighting procedure
outperforms the random weighting method. For example, it is
seen that the performance of this type of weighting is better
than the weights of ψin = 0.5, 0.7, and 0.9.

Fig. 6 depicts the effect of employing the proposed user
classification algorithm on the total overhead. For this purpose,
we evaluate the effect of the proposed JARA-UDIoT algorithm

in NOMA-based offloading (multifrequency band) by calcu-
lating the total network cost versus the number of MDs in two
cases. In the first case in NOMA-based offloading performed
on the multifrequency band, it is assumed that the user clas-
sification is not applied for calculating the total overhead. In
this case, we solve problem P1 by the combination of the
SCA method and the interior penalty function. However, in the
second case and using the proposed user classification algo-
rithm (i.e., proposed JARA-UDIoT scheme) for NOMA-based
offloading (multifrequency band), we can reduce significantly
the overall cost of the network. It is worth mentioning that the
aforementioned cases 1 and 2 have been marked in Fig. 6 as
“Offloading without the proposed algorithm” and “Offloading
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Fig. 6. Comparison the results of total overhead by adopting proposed
algorithm versus the number of MDs.

with the proposed algorithm,” respectively. We see in Fig. 6
that for N = 15, the performances of the two schemes (i.e.,
with and without using the proposed JARA-UDIoT algorithm)
are exactly similar. This is mainly due to the fact that when
there are few applicant’s users in the IoT network, there is
sufficient radio resource for the offloading tasks. Thereby,
because of the lower interference in the network, users will
spend less energy to offload their tasks to the server. Besides,
for a few number of network’s users, the amount of avail-
able computational resources on the servers, distributed among
the applicant’s users, is lower. This leads to a reduction in
processing delays. Therefore, processing on the server is less
costly than local processing. Consequently, it is advantageous
for the entire users to employ the computing resources that
are available on the server for processing. However, as men-
tioned earlier, the amount of energy and execution delays will
increase with increment of the network’s users due to incre-
ment of the interference and limitation in computing resources
on servers. Since the main purpose is to reduce the total cost
of the network, it can reduce the total cost by rejecting the
requests of some network users. With increasing the number of
MDs, the energy consumption and processing delays of some
users in the remote mode will be greater than local process-
ing, hence the rejection of users’ requests will be occurred. As
shown in Fig. 6, the proposed JARA-UDIoT algorithm shows
a suitable performance in which more improvement can be
achieved by increasing the number of MDs in the network.
For example, for N = 57, it is seen that by using the proposed
JARA-UDIoT algorithm in the network, the total network cost
is reduced by 40%.

Finally, in Fig. 7, we investigate the impact of the max-
imum available power per device (in dBm) for different
schemes. It is seen that the total cost of the network for dif-
ferent schemes is reduced by increasing Pmax

in
. In fact, by the

increment of Pmax
in

, the transmission data rate to the server
increases which causes a reduction in both energy and delay
in the uplink direction. We find that the proposed algorithm
can attain superior performance in total overhead by joint
optimization of computation and communication resources.

Fig. 7. Impact of maximum transmission power on total overhead.

This indicates the comprehensiveness and verification of the
proposed JARA-UDIoT algorithm.

Proposition 2 (Optimality Analysis): If the solving accuracy
is set to zero (i.e., δ = 0), the proposed JARA-UDIoT algo-
rithm converges to the global optimal solution, otherwise, i.e.,
δ � 0, the JARA-UDIoT scheme converges to the near-optimal
solution.

Proof: Since, Smn
in

is a binary parameter and the nonconvex
optimization problem P1 is considered as an MINLP belonging
to NP-hard problems, we cannot find an optimum solution in the
polynomial time. Hence, we adopt the decomposition method
to decompose the original problem P1 into two subproblems
as: 1) the total cost in local mode (i.e., P2), and 2) the total cost
in remote mode (i.e., P4). The aim of applying the decompo-
sition method is to reduce the computational complexity and
the number of iterations for converging to the optimal solution
of the problem. It is straightforward to show that problem P2
is a convex optimization problem and global optimal solution
for parameter F is achieved at either the stationary point of the
objective function or one of the boundary points. In this way, the
optimal solution for this problem has been obtained in a closed-
form expression according to the (23)–(27). On the other hand,
problem P4 is nonconvex. We employed an iterative search
algorithm, namely, SCA, where a convex approximation of
P4 should be obtained in each iteration and solve this convex
problem using the IPM [60, Ch. 1]. Besides, we adopted the
Frank and Wolf (FW) method [61] to obtain a desired convex
approximation. It should be noted that the IPM converges to the
stationary solution for nonconvex problems, but for the convex
problem, the obtained stationary solution is equivalent to the
global solution. According to the above arguments, by applying
FW and IPM methods and setting δ = 0, we can iteratively
search the optimal solution for problem P4 [62]–[66]. There is
only one parameter left to be optimized that is offloading deci-
sion vector S. We have generalized the well-known bisection
method for our problem to calculate the binary decision param-
eter S for the network’s users. It is proved in [60] and [67]
that the bisection method converges to the global solution.
Taking the above considerations into account, we claimed that
the solution obtained with the proposed algorithm converges to
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the optimal global solution. In addition, it can be proved that for
δ � 0, the JARA-UDIoT scheme converges to the near-optimal
solution.

VII. CONCLUSION

The main contribution of this article was to analyze the
tradeoff between the execution delay of computational tasks
and the energy consumption of MDs in hybrid UD-IoT
networks. In particular, we focused on a two-tier heteroge-
neous network with sub-6-GHz macrocells coexisting with
dense mmWave small cells, where each MD opportunisti-
cally connects to one of them via the NOMA protocol. We
merged the computation offloading scheme for MEC with
mmWave backhaul connections and jointly optimized the com-
putation and communication resources in an energy-aware
MEC system. With the focus on minimizing the total cost func-
tion of MDs, we defined the total weighted energy and delay
as the performance metric, in which the weighting factor was
introduced according to known residual energy of MDs. Due
to the fact that the outcoming problem was intractable noncon-
vex and MINLP, we proposed the JARA-UDIoT algorithm that
employed the SCA scheme to search iteratively for the best
solution under the energy and delay restrictions. The original
optimization problem was simplified by the proposed algo-
rithm that decreased the computation complexity, even though
the final solutions were suboptimal. The extensive performance
evaluation has been performed to illustrate the effectiveness of
the proposed JARA-UDIoT algorithm by trace-driven simula-
tions which proved the superior performance of our scheme
when compared to the existing works in the literature review.
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