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Abstract—Mobile edge computing (MEC) has been recognized as
an emerging technology that allows users to send the computation
intensive tasks to the MEC server deployed at the macro base
station. This process overcomes the limitations of mobile devices
(MDs), instead of sending that data to a cloud server which is
far away from MDs. In addition, MEC results in decreasing the
latency of cloud computing and improves the quality of service.
In this paper, a MEC scenario in 5G networks is considered,
in which several users request for computation service from the
MEC server in the cell. We assume that users can access the
radio spectrum by the non-orthogonal multiple access (NOMA)
protocol and employ the queuing theory in the user side. The
main goal is to minimize the total power consumption for com-
puting by users with the stability condition of the buffer queue to
investigate the power-latency trade-off, which the modeling of the
system leads to a conditional stochastic optimization problem. In
order to obtain an optimum solution, we employ the Lyapunov
optimization method along with successive convex approxima-
tion (SCA). Extensive simulations are conducted to illustrate
the advantages of the proposed algorithm in terms of power-
latency trade-off of the joint optimization of communication and
computing resources and the superior performance over other
benchmark schemes.

Index Terms—Mobile edge computing, Lyapunov optimization,
queue theory, non-orthogonal multiple access.

I. INTRODUCTION

With the ever-increasing utilization of mobile devices (MDs),
highly popular applications with intensive and sophisticated
computation are made available on a daily basis to users
in wireless 5G networks. In spite of the rapid development
of technology in phones, there are still some challenges in
their resources such as battery life, storage and computational
capacities that limit the use of these applications. In recent
years, the mobile cloud computing (MCC) has been proposed
as an effective solution to overcome this limitation in mobile
handsets in order to benefit from the potential of the cloud
computing (CC) in MDs [1]–[4]. In other words, MCC can be
utilized to send a part of the intensive computational tasks to
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the cloud server (CS). The benefit of using such a scheme is
the power consumption reduction by mobile users leading to
an increase in battery life and also providing lower latency
and computing agility [5]–[7]. Despite these benefits, one
weakness of this technique is that CSs are usually located far
away from the user and this causes the delay in the service
or equivalently degradation in the quality of service (QoS)
for real-time applications. Consequently, a new concept called
mobile edge computing (MEC) has been recently proposed by
the European Telecommunications Standards Institute (ETSI)
with the purpose of putting this server near the end users
to overcome this weakness. It is worth mentioning that edge
servers have less computing and storage power than CSs and
those benefit from the advantage of their proximity to the
network’s users [8], [9]. In [10], a computation offloading
strategy is proposed for using in MCC in order to minimize
the energy expenditure at the mobile handset under a delay
constraint. In this scheme, an optimization problem is intro-
duced for joint allocation of computation and communication
resources in a single-user mode. In [10], the CS is assumed to
have a centralized structure, while the authors in [11] assume
a decentralized structure for the CS. They employ game theory
concepts to solve the problem of optimal resource allocation.
Further, [6] proposes an optimal power allocation scheme in
the ultra-dense heterogeneous network based on mmWave.
Reference [12] investigates the optimal power allocation in
a heterogeneous two-layer network and proposes an efficient
algorithm for reducing the interference in the network.

Many works have been focused on the joint computation
and communication resource allocation in multi-user MEC
systems [13]–[19]. For example, the orthogonal frequency-
division multiple access (OFDMA) based multi-user computa-
tion offloading for the cases with binary and partial offloading
has been studied in [13]–[15]. In these works, the computation
and communication resource allocations are optimized in order
to minimize the users’ sum-energy under different criteria.
In [16], the OFDMA-based multi-user computation offloading
jointly with the caching technique was considered to maximize
the system utility. The game theory was employed in [17] to
explore the energy efficiency trade-off among different users
in a multi-user MEC system with the code division multiple
access (CDMA) based offloading. A wireless powered MEC
system with time-division multiple access (TDMA) based
offloading was considered in [18], where the computation
offloading and local computing at the users are supplied
by wireless power transfer from the base station (BS). A

Authorized licensed use limited to: Ryerson University Library. Downloaded on March 05,2020 at 19:18:07 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2957313, IEEE Internet of
Things Journal

new computation and communication cooperation procedure
in a MEC system including one user, one helper, and one
BS was studied in [19]. In the aforementioned schemes, a
TDMA-based offloading algorithm is proposed, such that for
computation performance optimization, the user is able to
explore the communication and computation resources in both
BS and helper. Despite the research progress, only suboptimal
multi-user computation offloading alternatives have been men-
tioned in the above literature review using orthogonal multiple
access (OMA) for computation offloading (e.g., TDMA and
OFDMA) or utilizing CDMA by dealing interference as the
noise. However, these schemes cannot fully estimate the capac-
ity of the multiple access channel for offloading from multiple
users to the BS, and therefore may give rise to suboptimal
performance for multi-user MEC systems.

Nowadays, one of the key approaches in 5G cellular net-
works is non-orthogonal multiple access (NOMA) [20]–[22].
In contrast to the traditional OMA, the NOMA enables mul-
tiple users to communicate with the BS at the same time
and frequency resources. The NOMA-based communication
system achieves a much higher spectral efficiency than the
OMA counterpart by implementing sophisticated multi-user
detection schemes such as the successive interference cancel-
lation (SIC) at receivers [23], [24]. For a single-cell uplink
NOMA system, or equivalently a multiple access channel
from users to the BS, it has been well established that the
information-theoretical capacity region is achievable when
users employ Gaussian signaling with optimized coding rates,
and the BS receiver adopts the minimum mean square error
(MMSE)-SIC decoding with a properly designed decoding
order for various users (see, e.g., [24]). It is expected that
NOMA can be exploited to further improve the performance
of multi-user computation offloading for MEC systems.

These features have motivated some researchers to pay atten-
tion to the combination of MEC and NOMA in recent literature
[25]–[30]. The authors in [25] minimized the weighted sum of
the energy consumption at all MUs subject to their computa-
tion latency constraints for both binary and partial computation
offloading modes. A similar problem was investigated in [26]
by considering the user clustering for the uplink NOMA.
In [27], the authors proposed a procedure to select the best
mode among OMA, pure NOMA, and hybrid NOMA schemes
in MEC networks based on the energy consumed by full
offloading. The main concentration of the previous works was
on the minimization of the energy computation by optimizing
the network’s parameters in terms of the instantaneous channel
state information. In contrast, the authors in [28] investigated
the effect of NOMA’s parameters, e.g., transmit powers and
user channel conditions on the full offloading by calculating
the successful computation probability. In [29], the weighted
sum of the energy consumption of all users in a multi-user
partial offloading MEC system was minimized by NOMA over
the execution delay constraints. In such a case, the NOMA
protocol can remarkably enhance the energy efficiency of
the network in comparison with OMA. A MEC system is
studied in [30] that employs the NOMA protocol in both

uplink and downlink directions. It is demonstrated in [31] that
the total energy consumption is minimized by optimizing the
transmit powers, task offloading partitions and transmission
time allocation.

In this paper, a MEC scenario in 5G networks is considered
in which the BS is equipped with the MEC server where the
network’s users can get assistance from the MEC server for
their computations and offload their processing tasks to this
server. In this model, we assume that users can access radio
resources via NOMA protocol. The main goal is to achieve a
dynamic power-latency trade-off for MEC offloading in such
a network, where the term dynamic is referred to the time
varying nature of the queue length. Toward this goal, we define
an objective function to minimize the required average power
consumption for computing tasks of the network’s users by
considering the transmitted power of each user to send data to
the BS and determining central processing unit (CPU)-cycle
frequency as the optimization variables. We mathematically
formulate the proposed minimization problem as the stochastic
form and use the Lyapunov method to derive the optimal
solution. We obtain an upper bound for the objective func-
tion and minimize this bound rather than the main objective
function. We also divide the problem into two parts, i.e., the
local computing and server-side computing. It is demonstrated
that the problem in the server side has a non-convex form,
so we employ the successive convex approximation (SCA)
method to solve the problem. Eventually, simulation studies
are conducted to validate the theoretical analysis and demon-
strate the effectiveness of the proposed schemes in multi-user
MEC networks. Motivated by the above considerations, the
key contributions of this work are summarized as follows:

• We present a stochastic NOMA-based computation of-
floading framework for an uplink NOMA-based multi-
user MEC network with multiple MDs. Each user has
computation tasks that should be successfully completed.
In each time slot, the tasks are generated in a stochastic
manner and are embedded at the queue available on
the mobile devices. The MEC server is supposed to be
computationally powerful with unlimited computational
resources.

• Considering the uplink NOMA protocol for computation
offloading, network users able to simultaneously offload
their computational tasks to the MBS in the same fre-
quency resources.

• The average weighted sum power consumption of MDs
is employed as the performance metric. The available
radio and computational resources including the CPU-
cycle frequencies for local computing, and the transmit
power for computation offloading are jointly allocated to
minimize the average weighted sum power consumption.

• Another goal of this paper is to investigate the power-
latency trade-off in mobile edge computation offloading
in NOMA-based networks. In this regard, an average
weighted sum power consumption minimization problem
subject to a task buffer stability constraint is formulated.
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Fig. 1. The proposed MEC network model.

This is a very challenging stochastic optimization prob-
lem. An online algorithm is then suggested according to
the Lyapunov optimization that determines the CPU-cycle
frequencies and the transmit power for local execution
and computation offloading, respectively. The system
operation is determined in each time slot via solving a
deterministic problem. Especially, the optimal CPU-cycle
frequencies are calculated in closed forms, whereas the
optimal transmit power is obtained by the SCA algorithm.

• Finally, numerical results are conducted to validate the
performance of our proposed NOMA-based computation
offloading system. It is shown that our NOMA-based of-
floading scheme attains substantial superior performance
when compared to the benchmark schemes with OMA-
based offloading, local computing only, and full of-
floading only. Furthermore, the performance evaluations
explicitly demonstrate the trade-off between the power
consumption of mobile devices and the execution delay.

The rest of this paper is organized as follows. In Section II,
we describe the proposed system model and mathematically
formulate the problem of the optimal resource allocation. In
Section III, we introduce the proposed solution method. In
Section IV, we evaluate our results employing some simulation
examples. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this work, we consider a network model depicted in
Fig. 1 consisting of a cell, N mobile users and one base
station equipped with the edge server. This server provides
storage and computational resources for the network’s users
where they can access the MEC server through the BS. For
convenience, we assume that the MEC server is equipped
with an N -core high speed CPU which performs N various
applications in parallel.Moreover, it is assumed that all MDs
can access to the radio spectrum resources by the NOMA
protocol. Each user sends a part of its request via a radio
link to the MEC server embedded in the BS. We suppose

that MDs run computation tasks during time slots that can
be separated into independent and fine-grained sub-tasks and
have delay-tolerant features. This means that they do not have
instantaneous delay constraints [10], [30]. The length of each
time slot is represented by τ . For simplicity, we denote the
index sets of mobile users and time slots as N = {1, 2, ..., N}
and T ∆

= {0, 1, 2, ...}, respectively. If we denote θi(t) (in bits)
as the amount of generated computational tasks by ith user
device in time slot t ∈ T , the processing of this task can
be started from the next time slot (t + 1). Furthermore, we
assume that θi(t)s are independent and identically distributed
(i.i.d) in different time slots with the uniform distribution
(i.e., θi(t) ∼ U

[
θmin
i , θmax

i

]
) and E [θi(t)] = λi, i ∈ N .

In each time slot t, some computing tasks can be processed
locally on each user device which is denoted by θ`i (t). In
addition, some other computing tasks can be offloaded to the
MEC server embedded in the BS represented by θMi (t). The
generated computational tasks of each user at each time slot
can be placed in the queue of each device for computing at
the next time slots. We denote the length of the queue for
ith user’s buffer at time slot t as Qi(t) to define the vector
Q(t)

∆
= [Q1(t), ..., QN (t)]. In addition, we assume that the

buffer of each device is initially empty (i.e., Qi(0) = 0,
∀i ∈ N ). In this case, for the queue length of each user i
at time slot t+ 1, we have

Qi(t+ 1) = max
{

0, Qi(t)− θΣ
i (t)

}
+ θi(t), t ∈ T , (1)

where θΣ
i (t) = θ`i (t) + θMi (t) denotes the value of the output

data bits from ith user’s buffer at time slot t.
Remark 1: Generally, the delay endured by each user to
complete its computational tasks is defined as Di which in-
cludes four parts: i) the delay due to the local processing tasks
represented by Dloc

i , ii) the delay due to the offload execution
tasks to the MEC server, denoted by Dtx

i , iii) the total edge
computing execution time of the tasks, represented by Dexe

i ,
and v) the delay due to sending toward the MEC server the
results back to ith MU, denoted by Drx

i . Accordingly, we can
write the total delay for ith user as

Di = Dloc
i +Dtx

i +Dexe
i +Drx

i . (2)

The total edge computing execution time of the tasks (i.e.,
Dexe
i ) is considered negligible due to inherent computation

capabilities of the MEC server. This assumption has been com-
monly used in many literature on MEC networks. Furthermore,
the delay caused by sending the computation results back to
ith user via the MEC server (i.e., Drx

i ) can be ignored in our
optimization problems, since the size of the outcome results
are generally much smaller than the size of input data (e.g.,
image rendering, speech recognition and feature extraction in
the augmented reality-based applications) [25], [28].

Local Execution Model: Let us denote the number of the
required CPU-cycles for computing one bit in device i as ξi
which depends on the program type and can be determined
by offline calculations [32]. If fi(t) shows the CPU-cycle
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frequency of user i, the number of data bits computed locally
at time slot t in device i is obtained as

θ`i (t) = τ
fi(t)

ξi
, i ∈ N , (3)

and the amount of the required power for the local execution
in ith MD is given by

p`i(t) = κ[fi(t)]
3, (4)

where κ represents the effective switch capacitance which
depends on the chip architecture [33].

Uplink Transmission Model: It is assumed that the transmit-
ted signal of ith user in the uplink mode is denoted by xi
where E

[
|xi|2

]
= 1. We denote puli (t), 0 ≤ puli (t) ≤ Pmax

i ,
as the amount of the transmit power that user i can send its
data to the BS. All users in the network employ a superposition
coding scheme to send their data to the BS over a common
spectrum resource. In addition, hi(t) = |gi(t)|2 represents
the power gain of the short-term fading channel coefficient
gi(t) between ith mobile user and the MEC server at time slot
t with E [hi(t)] = 1 [34], [35]. It is assumed that wireless
channels between mobile users and the MEC server are i.i.d.
frequency-flat block fading. Furthermore, the path-loss effect
is represented by Li = L0

(
di
d0

)η
, where L0 is the path-loss

at the reference distance d0, η is the path-loss exponent, and
di is the distance between user i and the MEC server. Taking
the above considerations into account, the received signal at
the BS can be expressed as follows:

rBS(t) =
N∑
i=1

√
puli (t)

Li
gi(t)xi(t) + nt(t), (5)

where nt(t) is the additive white Gaussian noise at the receiver
with the noise power N0

∆
= E

[
|nt|2

]
. In this case, the signal-

to-interference-plus-noise ratio (SINR) of user i at time slot t
is defined as

SINRi(t) =
puli (t)Hi(t)

1 +
∑
j∈N

pulj (t)Hj(t)I (Hj(t) > Hi(t))
, (6)

where I (•) denotes the indicator function which takes the
value 1 if its argument is correct and takes the zero value,
otherwise. In addition, the normalized power gain of the
channel from ith mobile user to the MEC server is given by
Hi(t) = hi(t)

N0Li
. Here, we assume that the BS is equipped

with the successive interference cancelation (SIC) technique
to reduce the interference effect from the received signal.
In this case, the interference effect of the users who have
weaker channel gains is eliminated in the receiver side by
this technique. Under these assumptions, in the uplink mode,
the data rate of user i in terms of the bits/seconds can be
expressed as [36]

Ri(t) =W log2

1 +
puli (t)Hi(t)

1 +
∑

j∈N
pulj (t)Hj(t)I (Hj(t) > Hi(t))

 , (7)

where W is the bandwidth of the whole network. Conse-
quently, the number of transmitted data bits by ith user to
the MEC server during time period τ and at the time index t
is equal to

θMi (t) = τRi(t). (8)

Problem Formulation: Now we are ready to present our opti-
mization problem to minimize the average power consumption
of the entire network’s users including the power consumptions
in local and remote modes expressed as follows [37], [38]:

P̄ = lim
T→∞

E
[
T−1∑
t=0

P (t)

]
T

, (9)

where P (t)
∆
=
∑
i∈N

(
puli (t) + p`i(t)

)
. Therefore, the optimal

offloading problem can be described as

P1) min
Pul(t),f(t)

P̄ = lim
T→∞

1

T
E

[
T−1∑
t=0

∑
i∈N

(
puli (t) + p`i(t)

)]
s.t.

C1. 0 ≤ fi(t) ≤ fmax
i , ∀i ∈ N , t ∈ T

C2. 0 ≤ puli (t) ≤ pmax
i , ∀i ∈ N , t ∈ T

C3. lim
t→∞

E [|Qi(t)|]
t

= 0, ∀i ∈ N ,

where f(t)
∆
= [f1(t), ..., fN (t)] and Pul(t)

∆
=

[pul1 (t), ..., pulN (t)]. The constraints C1 and C2 indicate
the limitations on the CPU-cycle frequency and the power
of each user, respectively. In order that the average rate be
stable, constraint C3 is required for the task buffers [39]
and guarantees that all the arrived computation tasks can be
performed with a finite latency. For ease of mathematical
expressions, we use the set S(t)

∆
=
(
Pul(t), f(t)

)
representing

the set of all optimization variables.

III. PROPOSED SOLUTION

Since the defined variables in S(t) are temporally correlated,
P1 is a stochastic optimization problem, in which, the CPU-
cycle frequency and the transmit power allocation should be
calculated for each MD at each time slot. The objective is to
develop a flexible and effective online control algorithm that
can solve this long-term optimization problem. Temporally
correlated nature of this problem makes the optimal decisions
intractable to solve [37], [38]. There are several traditional
methods to solve this type of problems such as Dynamic
Programming [40] and Markov Decision Process [41]. How-
ever, these approaches demand substantial statistics of system
dynamics (e.g., link conditions and traffic arrivals), and they
suffer from excessive computational complexity. Recently, the
Lyapunov optimization method [39] has been developed for
solving such sophisticated optimization problems and joint
system stability on stochastic networks, especially queuing
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systems and wireless communication. Unlike Dynamic Pro-
gramming [40] and Markov Decision Process [41], the Lya-
punov method does not need the information of the statistics of
related stochastic models, instead, it requires the queue back-
log information to make online control decisions. However,
the former two conventional solutions withstand the so-called
“curse of dimensionality” problem [39], and give rise to the
complexity of the system implementation where significant
re-computation is needed when statistics are changed [42].
On the other hand, Lyapunov optimization algorithms usually
have a less computational complexity, and also they are easily
implemented in applied systems [43], [44]. Therefore, this
emerging alternative has been employed in solving several
optimization problems of stochastic networks, including re-
source/workload scheduling among data centers [45], power
management in smart grid [42], and energy/throughput op-
timization for wireless systems [39]. According to above-
mentioned discussions around the merits of the proposed
online algorithm, the Lyapunov optimization algorithm would
be a suitable candidate for real-time applications. Thus, instead
of solving P1, we obtain an equivalent form of the problem
by employing the Lyapunov algorithm that is deterministic in
each time slot. In this case, P1 can be solved easier with
lower complexity.

Online Lyapunov-based Optimization Algorithm: In the
first step, lets define the Lyapunov function as follows:

L(Q(t)) =

∑
i∈N

Q2
i (t)

2
. (10)

Hence, the Lyapunov drift function can be represented as

∆(Q(t)) = E [L(Q(t+ 1))− L(Q(t))|Q(t)] . (11)

In addition, the Lyapunov drift-plus-penalty function is
given by

∆V (Q(t)) = ∆(Q(t)) + V E [P (t)|Q(t)] , (12)

where V ∈ (0,+∞), in the dimension bits2 per Watt, denotes
the control parameter in the Lyapunov algorithm.
Lemma 1. For each arbitrary 0 ≤ puli (t) ≤ pmax

i and 0 ≤
fi(t) ≤ fmax

i , ∀i ∈ N , the function ∆V (Q(t)) is upper
bounded by

∆V (Q(t)) ≤ −E

[∑
i∈N

Qi(t)(θ
Σ
i (t)− θi(t))|Q(t)

]
+ V E [P (t)|Q(t)] + Ψ, (13)

where Ψ is a constant value.

Proof: Squaring both sides of the local task buffer dy-
namics in (1), we have

Q2
i (t+ 1) =

(
max

{
0, Qi(t)− θΣ

i (t)
})2

+ θ2
i (t) + 2θi(t) max

{
0, Qi(t)− θΣ

i (t)
}

≤
(
Qi(t)− θΣ

i (t)
)2

+ θ2
i (t) + 2θi(t)Qi(t)

= Q2
i (t)− 2Qi(t)(θ

Σ
i (t)− θi(t)) + θ2

i (t) +
(
θΣ
i (t)

)2

With transferring Q2
i (t) to the left side, dividing the two

sides of the above inequality by 2 and summing up for all
users, we have

1

2

∑
i∈N

[
Q2
i (t+ 1)−Q2

i (t)
]
≤ 1

2

∑
i∈N

(
θ2
i (t) +

(
θΣ
i (t)

)2)
−
∑
i∈N

Qi(t)(θ
Σ
i (t)− θi(t)).

Eventually, by summing up the term V P (t) in both sides
and get conditional expectation value, we obtain

1

2
E

[∑
i∈N

(
Q2
i (t+ 1)−Q2

i (t)
)
|Q(t)

]
+ V E [P (t)|Q(t)]

≤ 1

2
E

[∑
i∈N

(
θ2
i (t) +

(
θΣ
i (t)

)2) |Q(t)

]
+ V E [P (t)|Q(t)]

− E

[∑
i∈N

Qi(t)(θ
Σ
i (t)− θi(t))|Q(t)

]
.

Note that
∑
i∈N

(
θ2
i (t) +

(
θΣ
i (t)

)2)
with condition Q(t) is

deterministic, hence,

E

[∑
i∈N

(
θ2
i (t) +

(
θΣ
i (t)

)2) |Q(t)

]
=
∑
i∈N

(
θ2
i (t) +

(
θΣ
i (t)

)2)
Defining Ψ

∆
= 1

2

∑
i∈N

(
θ2
i (t) +

(
θΣ
i (t)

)2)
, the proof of Lemma

1 is completed.

Finding the optimal value of the upper bound for ∆V (Q(t))
in the right side of (13) in a greedy manner at each time
slot is the critical contribution of our proposed online com-
putation offloading policy and the local execution procedure.
Accordingly, the number of computational tasks, waiting in
the queue buffer, can be held at a small level. This guarantees
that the constraint C3 can be satisfied, meanwhile the total
power consumption of MDs can be minimized. Thus, instead
of solving the problem P1, we find an optimum solution for
its equivalent form expressed as the following deterministic
optimization problem P2 at each time slot:

P2) min
S(t)

V P (t)−
∑
i∈N

Qi(t)θ
Σ
i (t)

s.t.
C1. 0 ≤ fi(t) ≤ fmax

i , ∀i ∈ N , t ∈ T
C2. 0 ≤ puli (t) ≤ pmax

i , ∀i ∈ N , t ∈ T

Remark 2: By employing the Lyapunov method to solve
problem P1, we first form the Lyapunov drift-plus-penalty
function which is a weighted function consisting of the objec-
tive function and the stability condition of the problem. For
simplicity in our analysis, we derive an upper bound for this
weighted function in order to solve the problem P2 instead of
solving P1. Note that the objective function of P2 is related
to the right-hand side of (13). It is worth mentioning that
problem P2 is completely equivalent to problem P1, with the

Authorized licensed use limited to: Ryerson University Library. Downloaded on March 05,2020 at 19:18:07 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2957313, IEEE Internet of
Things Journal

difference that constraint C3 : lim
t→∞

E[|Qi(t)|]
t = 0, ∀i ∈ N

in problem P1 appears in the objective function of P2. In
other words, minimization of −

∑
i∈N

Qi(t)θ
Σ
i (t) means that

the above condition C3 is established and this equivalent state
in P2 guarantees that all the arrived computation tasks can
be performed with a finite latency. It is clearly seen that
problem P2 is separable into two distinct optimization parts.
The first one is related to the local computing where the main
parameter of this optimization is the CPU-cycle frequency of
each user. The other optimization part is related to offloading
computation tasks to the ES, in which the power consumption
of each user for sending data to the MEC server is the
optimization parameter. In the following, we first separate
problem P2 into two problems P2.1 and P2.2, and then
find their solutions.

Local Computing Mode: Recalling that the amount of the
required power for the local execution in ith MD is given by
p`i(t) = κ[fi(t)]

3, the problem P2 in the local computing
mode can be expressed as follows:

P2.1) min
f(t)

κV [fi(t)]
3 − τQi(t)

fi(t)

ξi

s.t.
C1. 0 ≤ fi(t) ≤ fmax

i ,∀i ∈ N , t ∈ T .

It is seen that the above problem is convex and the optimal
solution is straightforward. We can take the derivative of the
objective function with respect to fi(t) and set it to zero. Thus,
we can obtain

fopti (t) = min

{√
τQi(t)

3κV ξi
, fmax
i (t)

}
,∀i ∈ N . (14)

Optimal Transmit Power: In order to calculate the optimal
transmitted power, problem P2 can be stated as the following
optimization problem:

P2.2) min
Pul(t)

J
(
Pul(t);Pul(t; υ)

)
∆
= V

∑
i∈N

puli (t)−
∑
i∈N

Qi(t)θ
M
i (t)

s.t.
C2. 0 ≤ puli (t) ≤ pmax

i (t),∀i ∈ N , t ∈ T .

It can be easily shown that the problem P2.2 is non-convex,
hence we employ the SCA iterative algorithm [46] to solve this
problem. In this regard, we denote Pul(t; υ) and Pul(t; υ+1)
as the starting points in υth and (υ + 1)th iterations of the
SCA algorithm at time slot t, respectively. In addition, the
solution obtained from this starting point in υth iteration of the
algorithm is shown by P̂ul(Pul(t; υ)). Eventually, the optimal
solution at each time slot t is represented by Pulopt (t). It is
proved that the SCA algorithm converges to the stationary
solution of original NP-hard non-convex problem via solving a
series of convex sub-problems, where each one can be solved
in polynomial time, e.g., by interior-point methods [46]. In

this regard, we should obtain a convex approximation for
the objective function and non-convex constraints in order to
satisfy the specified criteria in [46].

Through calculating the convex approximation and substi-
tuting in the problem, we solve a convex problem in each
repetition of P2.2 in the following steps.

Step 1: Convex Approximation of Objective Function:
Let J̃

(
Pul(t),Pul(t; υ)

)
denote the convex approximation

of the objective function of problem P2.2 around the vector
point Pul(t; υ)

∆
= [pul1 (t; υ), ..., pulN (t; υ)]. This approximation

should satisfy the following conditions [46, Sec. II]:

A1: J̃
(
•,Pul(t; υ)

)
on the feasible set K must be con-

tinuous and strongly convex with constant εJ̃ > 0. In
other words, ∀x, z ∈ C , ∀y ∈ K, εJ̃ ‖x− z‖

2 ≤(
∇xJ̃ (x ; y )−∇xJ̃ ( z ; y )

)
(x− z)T .

A2: ∇pJ̃
(
Pul(t);Pul(t; υ)

)
= J

(
Pul(t);Pul(t; υ)

)
, for all

Pul(t; υ) ∈ K.
A3: ∇P J̃ (•, •) must have the Lipschitz continuity on K×C.

For the above conditions, ∇af (a, b) represents the partial
gradient of the function f (a, b) with regard to the first
argument a. In addition, C denotes the compact convex set
including the feasible region K (i.e., K ⊆ C). It is worth
mentioning that conditions A1 and A2 emphasize on the
convexity and smoothness, while condition A3 enforces that
the first order behavior of the approximation should be the
same as for the original non-convex function.

In order to calculate the above convex approximation, we
first restate the objective function P2.2 as in (15). It can be
easily shown that functions P+(t) and P−(t) are in the convex
form. To calculate the convex approximation of the objective
function, it is adequate to obtain the linear approximation of
function P−(t) around the desired point Pul(t; υ) and then
substitute it in (15). Note that we can use the Taylor expansion
approximation of this function around point Pul(t; υ) to
achieve the linear approximation of the function P−(t) as
(16). The first two expressions of the right-side of (16) are
convex, and the third expression is added to the equation in
order that the function P−(t) becomes linear. Moreover, the
fourth expression is added in order that the approximation of
the objective function becomes strongly convex on C, where
γP represents a positive arbitrary constant (see [46]).

Step 2: Convex Surrogate for Problem P2.2: So far, we
achieved the convex approximations of the objective function
around the acceptance point Pul(t; υ). In this step, we employ
the SCA iterative algorithm to solve the following problem
P3, instead of solving the non-convex optimization P2.2:

P3) min
Pul(t)

J̃
(
Pul(t),Pul(t; υ)

)
s.t.

C2. 0 ≤ puli (t) ≤ pmax
i (t),∀i ∈ N , t ∈ T .

Using (16), it can be seen that P3 is continuous and
convex. By employing the SCA algorithm and the interior
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J̃
(
Pul(t),Pul(t; υ)

)
= V

∑
i∈N

puli (t)−
∑
i∈N

Qi(t)θ
M
i (t)

= V
∑
i∈N

puli (t)−
∑
i∈N

τW log2

1 +
puli (t)Hi(t)

1 +
∑
j∈N

pulj (t)Hj(t)I (Hj(t) > Hi(t))

×Qi(t)


= V
∑
i∈N

puli (t)−
∑
i∈N

τW log2

1 +
∑
j∈N

pulj (t)Hj(t)I (Hj(t) > Hi(t)) + puli (t)Hi(t)

×Qi(t)


︸ ︷︷ ︸
∆
=P+(t)

+
∑
i∈N

τW log2

1 +
∑
j∈N

pulj (t)Hj(t)I (Hj(t) > Hi(t))

×Qi(t)


︸ ︷︷ ︸
∆
=P−(t)

. (15)

J̃
(
Pul(t),Pul(t; υ)

)
= P+(t) +

∑
i∈N

τW log2

i−1∑
j=1

pul
j

(t; υ)Hj(t)

×Qi(t)


+ τWQi(t)
d

dpuli (t)

∑
i∈N

log2

i−1∑
j=1

pul
j

(t; υ)Hj(t)

(puli (t)− pul
i

(t; υ)
)

+
γP

2

∥∥Pul(t)−Pul(t; υ)
∥∥2
. (16)

point method in each repetition of the SCA scheme, we
can solve this problem. As previously discussed, the result-
ing solution obtained by the SCA algorithm for problem
P3 converges to the stationary solution of original non-
convex problem P2.2 [46]. The SCA algorithm is briefly
described in Algorithm. In this scheme, Pul(t; 0) represents
the initial points vector for the algorithm chosen from the
feasible region of the problem, namely K. In addition, pa-
rameter γ determines the step size of the algorithm defined
as γ (υ) = (1 − αγ (υ − 1))γ (υ − 1), where γ (0) ∈ (0, 1]

and α ∈
(

0, 1
γ(0)

)
. The SCA algorithm is terminated when∣∣∣J̃ (Pul(t),Pul(t; υ + 1)

)
− J̃

(
Pul(t),Pul(t; υ)

)∣∣∣ ≤ δ is
satisfied where δ determines the accuracy of the algorithm.
Note that, we can use conventional methods such as interior
point methods for solving problem P3.

Remark 3: It should be noted that, the unique solution for the
optimization offloading problem P1 is obtained by summing
up the optimal solutions of problems P2.1 and P3.

Proof: Recalling that P (t) ,
∑
i∈N

(puli (t) + p`i (t)) and

θΣ
i (t) , θ`i (t) + θMi (t), the objective function P2 can be

rewritten as in (17). Substituting p`i (t) = κ[fi(t)]
3, θ`i (t) =

τ fi(t)ξi
and θMi (t) = τRi(t) with (7) in the above objective

function, we have (18). It is straightforward that the objective
function consists of two distinct parts. The first term is related

to the local processing which is a function of the number
of CPU cycle (fi(t)), and the second term is related to the
edge processing and the function of transmit power of the
network users (puli (t)). Therefore, P2 can be divided into two
separate parts as P2.1 and P2.2. Obviously, the final answer
is obtained by aggregating these two solutions.

Performance Analysis: Following the framework of
Lyapunov optimization [39], we derive the upper bounds for
the expected average power consumption and the expected
average queue length achieved by the proposed algorithm,
which are summarized in the following Lemma2.

Lemma 2. Assuming P3 is feasible, the performance bounds
of the time average power consumption of MUs satisfies

lim
T→∞

sup
1

T
E

[
T−1∑
t=0

P (t)

]
≤ P opt +

Ψ

V
, (19)

where P opt is the optimal value of P3 that a stable system
can achieve. In addition, suppose that ε > 0 and again let
assume P3 is feasible. There exists Γ (ε) (with P opt < Γ (ε))
that satisfies the Slater conditions [39]. Then, the time average
sum queue lengths of the task buffers satisfies

lim
T→∞

sup
1

T
E

[
T−1∑
t=0

N∑
i=1

P (t)

]
≤ 1

ε

(
Ψ + V

(
Γ (ε)− P opt

))
.

(20)
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V P (t)−
∑
i∈N

Qi(t)θ
Σ
i (t) = V

(∑
i∈N

(puli (t) + p`i (t))

)
−
∑
i∈N

Qi(t)
(
θ`i (t) + θMi (t)

)
=

(
V
∑
i∈N

p`i (t)−
∑
i∈N

Qi(t)θ
`
i (t)

)
+

(
V
∑
i∈N

puli (t)−
∑
i∈N

Qi(t)θ
M
i (t)

)
. (17)

V P (t)−
∑
i∈N

Qi(t)θ
Σ
i (t) =

(
V
∑
i∈N

κ[fi(t)]
3 −

∑
i∈N

Qi(t)τ
fi(t)

ξi

)
+

(
V
∑
i∈N

puli (t)−
∑
i∈N

Qi(t)τRi(t)

)
(18)

=

(
V
∑
i∈N

κ[fi(t)]
3 −

∑
i∈N

Qi(t)τ
fi(t)

ξi

)
+

V ∑
i∈N

puli (t)−
∑
i∈N

Qi(t)τW log2(1+
puli (t)Hi(t)

1 +
∑
j∈N

pulj (t)Hj(t) (Hj(t) > Hi(t))
)

 .

Furthermore, the queue backlog Qi(t), i ∈ N , is the mean
rate stable.

Proof: Please see [39, Page 47].

Lemma 2 demonstrates the trade-off between power con-
sumption and queue length or equivalently the execution
delay. It is observed that the upper bound of the average
power consumption decreases inversely proportional to V
(i.e., O(1/V )), while the upper bound of the average queue
length increases linearly with V (i.e., O (V )). Accordingly,
by tuning V, we can achieve a flexible trade-off between two
conflicting objectives. When the MD has no power limitation,
the user is able to decrease V which leads to reducing the
queue length (or equivalently the execution delay) and pleasure
superior quality of experience (QoE). Furthermore, if the
power limitation is more strict (e.g., the device battery is
running out and the charger is unavailable), the user is able to
increase V to save more power by spending more cost. This
cost includes increasing the length of the average queue length
and following that increasing the execution delay.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
NOMA-based computation offloading scheme to confirm the
theoretical analysis in the previous sections. In addition, we
present some comparison results between our proposed algo-
rithm and other available methods for the following scenarios:

i) Local Computing: All MDs execute their computational
tasks locally via own devices. In other words, users will not
be able to use the MEC server to perform their own processing.

ii) Full Offloading: All MDs offload entire their computation
tasks to the MEC server embedded in the MBS simultaneously
where the MEC server processes these tasks on behalf of the
users.

Algorithm : SCA Solution for P3

Initialization:
Pul(t; 0) ∈ K; γ (0) ∈ (0, 1]; set υ = 0 and FLAG = 1

1: while FLAG == 1 do
2: Compute J̃

(
Pul(t),Pul(t; υ)

)
according to (16).

3: Compute Pul(t; υ) from P3.
4: if

∣∣∣J̃ (
Pul(t),Pul(t; υ + 1)

)
− J̃

(
Pul(t),Pul(t; υ)

)∣∣∣ ≤ δ do
5: Pul

opt(t) = Pul(t; υ).
6: Break
7: else
8: Set Pul(t; υ+1) = Pul(t; υ)+γ(υ)(P̂ul(Pul(t; υ))−

Pul(t; υ)).
9: υ ← υ + 1.

10: end if
11: end while
Output: Pul

opt(t)

iii) Partial Offloading: MDs are able to execute a part of
their own processing tasks locally, while the rest is offloaded
to the MEC server.

It should be noted that we examine cases (ii) and (iii)
with the assumptions of orthogonal multiple access (OMA)
and NOMA where in the OMA case, we assume that all MDs
adopt the OFDMA protocol for computation offloading. In
addition, we use the Little’s law [47] in our simulations to
compute the average sum queue length of the task buffers for
each MD used in the measurement of the execution delay as
follows:

Q̄i = lim
T→∞

1

T
E

[
T−1∑
t=0

Qi(t)

]
, i ∈ N . (21)

Furthermore, to evaluate the performance of the proposed
model and according to Little’s law [47], the average execution
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delay based on the time slot can be written as

D̄ =
∑

i∈N
Q̄i

/∑
i∈N

λi. (22)

For the system model in Fig. 1, we consider a centralized
MEC network where users are uniformly distributed over the
network with the distance at most 100 meters from the MBS.
The simulation results are averaged over 5000 time slots. The
important simulation parameters are listed in Table I.

TABLE I
SIMULATION PARAMETERS

Notation Description Value

θi(t) Number of generated computational
bits by ith user at time slot t ∈ T

∼ U
[
θmin
i , θmax

i

]
ξi Number of CPU cycles per bit re-

quired by user i
737.5 cycles/bit [14]

W Available bandwidth 10MHz

N Total number of network’s users 4

τ Length of each time slot 1ms [14]

k Effective switch capacitance 10−26 [48]

δ Termination accuracy 10−3 [13]

α Step size constant 10−5 [13]

pmax
i Maximum power budget for user i 500mW [14]

fmax
i Maximum CPU-cycle frequency for

user i
1GHz [14]

L0 Path-loss at the reference distance −40 dB [14]

η Path-loss exponent 4 [14]

d0 Reference distance 1m [14]

We first verify the theoretical results obtained in Lemma 2 for
our proposed NOMA-based MEC scheme.

In Fig. 2, we investigate the impact of the control parameter
V on the power consumption of MDs, execution delay and the
average queue buffer length per user for the aforementioned
scenarios. According to Fig. 2, it can be obviously observed
that there exists a [O (1/V ) , O (V )] trade-off among average
power consumption and average queue length attained via
adjusting parameter V . Fig. 2(a) shows that, by increment
parameter V, the average power consumption is decreased
and converges to P opt when V goes to infinity. Meanwhile,
based on the results in Fig. 2(b) and Fig. 2(c), the average
queue length and execution delay are linearly increased by
V and becomes unlimited without restrictions, when V goes
to infinity. These results verify the first and the second parts
of Lemma 2 that the average power consumption follows
O(1/V ) (see Fig. 2(a)), while the average queue length and
the execution delay follow O(V ) (see Fig. 2(b) and Fig.
2(c)) asymptotically. The interesting point is that when V is
smaller than 107, the power consumption decreases rapidly
with V, while the average queue length and the execution delay
increase approximately linearly with V . More precisely, by
increasing V, users can enjoy more power saving, meanwhile,
it only endures linear increasing in delay.

On the other hand, according to (21), increment in V leads
to an approximately linear increase in the execution delay and
the average queue buffer length of MDs as seen in Fig. 2. The
above results demonstrate that selecting a proper parameter V
is critical in order to balance two objective functions in our
network model, i.e., power consumption and execution delay.
In Fig. 2, the merits of NOMA and partial offloading can be
easily explored when compared to other scenarios. As can be
seen, the partial offloading with the NOMA access displays a
better performance in comparison to the full offloading with
the OMA (especially OFDMA) in terms of the delay execution
and the power consumption. For instance, for V = 4.1× 107,
the power consumption of the proposed model is reduced
about 15%, 60%, 65% and 75%, and for the delay in receiving
the desired service, we have 25%, 50%, 60%, 90% reduction
for our scheme in comparison with other cases in Fig. 2.

In order to evaluate the feasibility of the proposed algorithm,
we conducted simulations ten times to verify the convergence
or stability of our model. For this purpose, we investigated
the average buffer queue length on the users side versus time
slots, in Fig. 3. Deploying three different values of parameter
V (i.e., 107, 3×107 and 5×107 bits2 ×W−1), we considered
the average buffer queue length for the three cases NOMA-
based partial offloading, OMA-based partial offloading, and
local computing. As can be seen, the average buffer queue
length initially increases and stabilizes at a constant level.
This implicates the satisfaction of the buffer queue stability
constraint specified in C3 of P1. In addition, the average
queue length in the proposed model is less than the OMA
counterpart. In other words, the proposed model will be stable
at a lower level of average queue length when compared to
other cases. For instance, for V = 3 × 107, the average
queue length in the proposed model, OMA-based partial
offloading, and local computing, reach their stabilities in 7.5,
12 and 50 kb, respectively. This validates that the proposed
model outperforms other scenarios, and users requests are
performed by less delay. It is clear that by increasing the
control parameter V, the average value of queue length is
increased at different schemes. This leads to decreasing of
the power consumption at the user side with higher cost.
This cost consists of the increment of the queue length which
consequently makes the user request processing to be delayed.
By controlling parameter V, the user is able to have a trade-off
between execution delay and power consumption.

The impact of N and θmaxi on the convergence time is
investigated for the proposed algorithm by following the sum
queue length of the task buffer of users by different values of
N and θmaxi , in Fig. 4. We maintained the total computation
arrival rate of the task in the MEC server in a fixed value (i.e.,
N∑
i=1

λi = 18 kb). It is seen that by variation of the channel

state, the sum of the queue length of the users is incremental
at the beginning, and finally it is stabilized at a specified level.
As can be seen, by increasing the number of users, the sum
of the queue length is stabilized in a higher time slot and
levels. For instance, if N is set to 10 and 20, the sum of
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Fig. 2. Power consumption of the MDs, execution delay and the average queue length per user vs. the control parameter V .
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Fig. 3. Average queue length per user vs. time slots for different schemes.

the queue length is stabilized after about 250 and 500 time
slots, respectively. Fig. 5 illustrates the relation between the
average power consumption and the average execution delay
for different values of V, θmax

i and for N = 4, 6. It can be
observed that any increase in the number of users and θmax

i

leads to an increase in the average delay rate and the power
consumption as well. Clearly, the average consumed power of
the network gets higher when the number of MDs increases.
However, increasing θmax

i makes the queue buffer in the user
side needs more time for getting depleted by considering a
large amount of input data. In addition, it is concluded that

more power should be consumed for the local computing and
full offloading of the computational tasks to the MEC server.
Fig. 6 compares the power consumption versus the average
execution delay of the proposed NOMA-based partial com-
putation offloading scheme with the aforementioned scenarios
with the NOMA and OMA cases and for different values of
V . According to this figure, by increasing the controlling pa-
rameter V, the power consumption of all investigated schemes
are reduced. For the proposed NOMA-based partial offloading
scheme, this result comes from the fact that due to the increase
in V, in terms of the objective function defined in problem
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Fig. 5. Power consumption of MDs vs. the average execution delay for
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i and N for the proposed NOMA-based partial
offloading.

P3, the weight of the power function increases. On the other
hand, according to (22) and for large values of V, the average
queue buffer length increases that leads to an increase in the
execution delay. In addition, comparing the proposed NOMA-
based model with the case when users employ the OFDMA
protocol, the proposed scheme has a better performance in
terms of the power consumption and execution delays. Thus,
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Fig. 6. Power consumption of MDs vs. the average execution delay for
different scenarios with the NOMA and OMA cases.

according to the results in Fig. 6, the advantage of the proposed
hybrid processing algorithm is quite clear.

Eventually, in Fig. 7, the power consumption and average
execution delay of all users are represented by the number
of MDs in the network for different values of the network’s
bandwidth. In this figure, as expected, there is an increase
in the power consumption and average execution delay by
increasing the number of users and also reducing the network’s
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Fig. 7. Power consumption and execution delay of MDs vs. the number of MDs for different values of the network’s bandwidth.

bandwidth. The main reason is that by considering the limita-
tion of resources such as bandwidth and due to the increased
interference of the network, the data transmission rate to the
MEC server is reduced and hence the buffer needs more time
to discharge, which will increase the processing delay. In
addition, MDs should consume more powers for offloading
their computational tasks to the MEC server. However, by
increasing the bandwidth, the data transmission rate gets
higher, and then lower power is spent on the data offloading
process to the MEC server.
Remark 4: In order to clarify the issue of power-latency trade-
off in our system model, we should note that the objective
function in problem P2, i.e., V P (t) −

∑
i∈N

Qi(t)θ
Σ
i (t) com-

bines the weight of the power consumption and the queue
stability constraint. According to the Little’s Law [47] and
using (17), the average execution delay imposed by each user
is calculated by

∑
i∈N Q̄i

/∑
i∈N λi (time slots). This implies

that the average execution delay is proportional to the average
queue lengths of the task buffer in each device. Accordingly,
the average sum queue length of the task buffers for each MD
is used as a measurement of the execution delay, which can

be obtained as Q̄i = lim
T→∞

1
T

[
T−1∑
t=0

Qi(t)

]
, ∀i ∈ N . On the

other hand, the results in Fig. 6 directly points out of the
power-delay trade-off through the illustration of the power
consumption in terms of the execution delay for different
values of the parameter V and for the NOMA and OMA cases.
As shown in Fig. 6, with increasing the control parameter V,
the power consumption decreases, while the network latency
is increased and vice versa.

V. CONCLUSION

In this paper, we studied the problem of NOMA-based mobile
edge computing based on the queue theory where it was
assumed that each device of the network had the buffer and
the computational tasks generated at various time slots and
placed in the queue buffer of each device. We assumed that
the users’ could employ two approaches to compute their
tasks, i.e., the local computing and computing on the edge
server. The main goal of the paper was to minimize the
average power consumption of the whole network’s users to
perform these computations with a buffer stability condition.
Toward this goal, we modeled the problem in the form of
a stochastic optimization problem and used the Lyapunov
method to achieve a dynamic power-latency trade-off for MEC
offloading in such a network. We divided the objective function
into two parts, i.e., the local computing and partial offloading
computation tasks on the edge server. It was demonstrated
that the problem in the server side has a non-convex form, so
we employed the successive convex approximation method to
solve the problem. We showed that our simulation results for
the proposed NOMA-based partial offloading scheme displays
a better performance compared to the previous works in terms
of the average power consumption, execution delay and the
average sum queue length of the task buffers for each MD.
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