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Composite Differential Evolution Aided Channel
Allocation in OFDMA Systems with Proportional Rate

Constraints
Nitin Sharma and Alagan Anpalagan

Abstract: Orthogonal frequency division multiple access (OFDMA)
is a promising technique, which can provide high downlink capac-
ity for the future wireless systems. The total capacity of OFDMA
can be maximized by adaptively assigning subchannels to the user
with the best gain for that subchannel, with power subsequently
distributed by water-filling. In this paper, we propose the use of
composite differential evolution (CoDE) algorithm to allocate the
subchannels. The CoDE algorithm is population-based where a set
of potential solutions evolves to approach a near-optimal solution
for the problem under study. CoDE uses three trial vector gener-
ation strategies and three control parameter settings. It randomly
combines them to generate trial vectors. In CoDE, three trial vec-
tors are generated for each target vector unlike other differential
evolution (DE) techniques where only a single trial vector is gen-
erated. Then the best one enters the next generation if it is better
than its target vector. It is shown that the proposed method obtains
higher sum capacities as compared to that obtained by previous
works, with comparable computational complexity.

Index Terms: Computational complexity, differential evolution
(DE), orthogonal frequency division multiple access (OFDMA), re-
source allocation, sum capacity.

I. INTRODUCTION

The advent of new generation of communication technologies
has ushered in an era of high data rates, better quality and im-
proved reliability. In order to meet the need of high data rates
and reliable data services, orthogonal frequency division multi-
ple access (OFDMA) has been selected as the multiple access
scheme for state-of-the-art wireless systems such as LTE and
WiMAX. Orthogonal frequency division multiplexing (OFDM)
is a promising modulation technique which mitigates the effect
of frequency selective fading, inherent in high data rate environ-
ment. It can be considered as a type of multicarrier modulation
scheme, based on the idea of dividing a given high-bit-rate data
stream into several parallel lower bit-rate streams and modulat-
ing each stream on separate carriers often called subchannels
or tones. Multicarrier modulation schemes eliminate or mini-
mize inter-symbol interference by making the symbol time large
enough so that the channel-induced delays are an insignificant
fraction of the symbol duration. Therefore, in high data rate sys-
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tems in which the symbol duration is small, being inversely pro-
portional to the data rate, splitting the data stream into many
parallel streams increases the symbol duration of each stream
such that the delay spread is only a small fraction of the sym-
bol duration. The number of subchannels should be selected in
such a way that each subchannel has a bandwidth less than the
coherence bandwidth of the channel, thus each subchannel ex-
periences relatively flat fading. OFDMA adds multiple access to
OFDM [1], [2] by allowing a number of users to share an OFDM
symbol. OFDMA can also take advantage of channel diversity
among users in different locations by adaptively assigning sub-
channels depending on channel characteristics. This approach
allows efficient use of all the subchannels.

Resource allocation in OFDMA [3]–[13] includes subchan-
nel allocation, power allocation, and bit loading. Developing ef-
ficient resource management techniques have drawn enormous
attention in recent years. Solutions to the resource allocation
problem in OFDMA have been broadly divided into two cate-
gories: Margin adaptive (MA) and rate adaptive (RA) [8]. Re-
source allocation was tackled in [11] using MA scheme, wherein
an iterative subchannel and power allocation algorithm was pro-
posed to minimize the total transmit power given a set of fixed
user data rates and the bit error rate (BER) requirements. In
[4], RA method was used, wherein the objective was to max-
imize the total data rates over all users subject to power and
BER constraints. It was shown in [4] that in order to maxi-
mize the total capacity each subchannel should be assigned to
the user with best gain on it. However, there was no considera-
tion given for the fairness of allocation among the users, which
can leave some users with low channel gains, without any chan-
nel being allocated to them. In [8], [9], and [12] proportional
fairness was incorporated by imposing a set of nonlinear con-
straints into the optimization problem. The cost of better propor-
tional fairness is higher computational cost. Most of the existing
literature assume the availability of perfect channel state infor-
mation at transmitter and receiver. This restricts the practical
systems to use algorithms with lower computational cost. How-
ever, there are instances [14]–[16] where the effect of imperfect
or partial channel state information at transmitter on the capac-
ity of the OFDMA systems was considered. In [14], through-
put performance analysis of the chunk-based subcarrier alloca-
tion was presented by considering the average BER constraint
over a chunk in downlink OFDMA transmission. The outage
probabilities per subcarrier were compared between the average
BER-constraint based chunk allocation and the average signal-
to-noise-ratio (SNR) based chunk allocation. The effects of sys-
tem parameters, such as the number of users, the number of
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subcarriers per chunk, and the coherence bandwidth, were also
evaluated. It was shown through numerical results that, when
the chunk bandwidth is smaller than the coherence bandwidth,
the average downlink throughput of the chunk-based subcarrier
allocation is very close to that of the single-subcarrier-based al-
location.

Authors in [15] developed an analytical framework in or-
der to investigate heterogeneous partial feedback in a general
OFDMA-based heterogeneous multicell employing the best-M
partial feedback strategy. Exact sum rate analysis was first car-
ried out and closed form expressions were obtained by decom-
position of the probability density function of the selected user’s
signal-to-interference-plus-noise ratio. Further, asymptotic anal-
ysis using extreme value theory to examine the effect of par-
tial feedback on the randomness of multiuser diversity was per-
formed. Through this analysis it was shown that the best-1 feed-
back is asymptotically optimal. The asymptotic approximation
for the sum rate in order to determine the minimum required
partial feedback was also derived in [15]. In [16], the through-
put of an adaptive frequency division duplex OFDMA system
with channel state information digitized over a feedback channel
to the transmitter was investigated. Therein, the instantaneous
SNR of the different subcarriers was used as channel state infor-
mation to exploit multi-user diversity using adaptive subcarrier
allocation. A closed form expression of the average throughput
of an adaptive multi-user OFDMA system using imperfect chan-
nel state information and uncoded M-QAM modulation was de-
rived. Furthermore, a closed form expression of the average
throughput of an OFDMA system exploiting frequency diver-
sity, which does not require channel state information at the
transmitter, was presented. Both the throughput performances
were compared with the aim to identify the optimal transmis-
sion strategy depending on the grade of channel state informa-
tion imperfectness.

Genetic algorithms (GAs), which are a class of evolutionary
algorithms [3], were used in [6], [7], [10], and [13] for resource
allocation. In this paper, the use of the composite differential
evolution (CoDE) [17] algorithm, which is an adaptive differ-
ential evolution (DE) [18] variant, is proposed for subchannel
allocation among the users. DE is simple, straight forward to
implement and has few number of control parameters, thus the
space complexity of DE is low. The gross performance of DE
in terms of accuracy, convergence, speed and robustness makes
it attractive choice for resource allocation in OFDMA. Being
computationally less expensive than GA and particle swarm op-
timization (PSO) [3], CoDE is better placed to quickly arrive at
an optimal allocation. Evolutionary algorithms basically are un-
constrained optimization methods and require additional mech-
anisms to deal with constraints. Furthermore, in practical ap-
plications, the choice of stopping criteria can significantly influ-
ence the duration of an optimization process. Therefore, in this
paper, we propose the use of dynamic-objective based constraint
handling along with standard deviation based stopping criterion.

This paper is organized as follows: Section II gives the
OFDMA system model. Section III provides a brief overview
of related work and compares CoDE algorithm with GAs and
other traditional algorithms. Section IV briefly describes CoDE
algorithms and its various subcomponents. In Section V the use
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Fig. 1. System model.

of CoDE algorithm for channel allocation in downlink OFDMA
systems is presented. Simulation results are illustrated in Sec-
tion VI and conclusions and future scope are presented in Sec-
tion VII.

II. SYSTEM MODEL

Consider an OFDMA system with K users and N subchan-
nels, as shown in Fig. 1. The serial data from all the users are
fed into the resource allocation block at the transmitter, which
then allocates bits from different users to different subchannels.
It is assumed that each subchannel has a bandwidth that is much
smaller than the coherence bandwidth of the channel and that
the instantaneous channel gains on all the subchannels of all the
users are known to the transmitter. Using this channel informa-
tion, the transmitter applies the subchannel, bit, and power al-
location algorithm to assign different subchannels to different
users and the number of bits/OFDM symbol to be transmitted
on each subchannel. Depending on the number of bits assigned
to a subchannel, the adaptive modulator will use a correspond-
ing modulation scheme, and the transmit power level will be
adjusted according to the subchannel, bit, and power allocation
algorithm. The basic idea behind adaptive modulation is quite
simple: transmit as high a data rate as possible when the channel
is good, and transmit at a lower rate when the channel is poor,
in order to avoid excessive dropped packets.

Each user’s data is distributed across the set of subchannels
assigned to the user. The assumption is that, each subchannel is
uniquely assigned to a single user and two or more users never
share the same subchannel. The throughput optimization prob-
lem is formulated on the same lines as in [8]. We desire to allo-
cate the subchannels and power in such a way that the total error
free capacity is maximized while the total power constraint is
met. As compared to method in [8], where optimal power allo-
cation was proposed to maximize the total error free capacity,
we propose the use of CoDE algorithm for subchannel alloca-
tion assuming equal power allocation on each subchannel. The
optimization problem can hence be postulated as follows:

max
ρk,n,pk,n

K
∑

k=1

N
∑

n=1

ρk,n
N

log2

(

1 +
pk,nh

2
k,n

No
B
N

)

. (1)
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Subject to constraints:

C1:
K
∑

k=1

N
∑

n=1

pk,n ≤ Ptotal,

C2: pk,n ≥ 0 ∀k, n,

C3: ρk,n ∈ {0, 1} ∀k, n,

C4:
K
∑

k=1

ρk,n = 1 ∀n,

C5: R1 : R2 : R3 : ... : Rk = γ1 : γ2 : γ3 : · · · : γk.

In (1), No is the power spectral density of additive white
Gaussian noise (AWGN), B is the total available bandwidth and
hk,n is the channel gain for user k in subchannel n. In C1, Ptotal

is the total available power and pk,n is the power allocated for
user k in subchannel n. According to C3, ρk,n can only be either
1 or 0, indicating whether subchannel n is allocated to the user
k or not. C4 restricts allocation of one subchannel to one user
only and C5 is the proportional rate constraint. The capacity for
user k, denoted as Rk, is defined as:

Rk =

N
∑

n=1

ρk,n
N

log2

(

1 +
pk,nh

2
k,n

No
B
N

)

. (2)

Note here that the rates defined in (1) and (2) are rates per
Hertz of bandwidth in units of bits/sec/Hz.

III. RELATED WORK

The resource allocation problem in (1) is an NP-hard com-
binatorial optimization [8] problem with non-linear constraints.
Hence, it is highly improbable to solve the problem optimally
using polynomial time algorithms. An optimal solution will re-
quire joint allocation of power and subchannels to the users.
There are few instances where subchannel and power were
jointly allocated using multi-objective GAs such as NSGA-II
[7]. Because of high computational complexity involved, such
multi-objective algorithms may not be suitable for real time ap-
plications. Furthermore, the base station has to rapidly com-
pute the optimal subchannel and power allocation if the wireless
channel changes rapidly. Hence, suboptimal algorithms with
lower complexity are preferred for cost-effective implementa-
tions. Separating the subchannel and power allocation is a way
to reduce the complexity since the number of variables in the
objective function is almost reduced by half.

In this paper, we propose the use of CoDE [17] algorithm,
which is an adaptive variant of DE [18]. To justify the use of
CoDE as compared to other optimization algorithms for the re-
source allocation problem under consideration, we shall briefly
introduce and compare them on the basis of their working prin-
ciple.

DE [18] is a population-based stochastic global optimization
algorithm which optimizes a problem by iteratively trying to im-
prove a candidate solution with respect to a given measure of
quality. The basic principle of DE is to create new candidate
solutions by combining the parent individual and several other
individuals of the same population, and a candidate replaces the

parent only if it has better fitness. Recently, DE has drawn enor-
mous attention from researchers for its use in multi-objective,
constrained, large scale and uncertain optimization problems.
The main feature of DE is its simplicity and is straight forward
to implement, and has fewer number of control parameters. The
space complexity of DE is low. The gross performance of DE
in terms of accuracy, convergence, speed and robustness makes
it attractive for application to various real world optimization
problems [19]–[25].

The control parameters involved in DE are highly depen-
dent on the optimization problem. Moreover, the selection of
the appropriate strategy for trial vector generation requires addi-
tional computational time using a trial-and-error search proce-
dure. Due to the above drawbacks, there has been an increasing
interest among researchers in designing new adaptive and self
adaptive DE variants. CoDE [17] is a recently presented adap-
tive DE variant, which combines three different trial vector gen-
eration strategies with three preset control parameter settings.
The above combination is performed in a random way in or-
der to generate trial vectors. The main advantage of CoDE is
that it has a simple structure and thus it is very easy to be im-
plemented in any programming language. Wireless channels are
highly dynamic resulting in the channel characteristics chang-
ing in short intervals of time. Thus, the channel gains of users
for various subchannels change frequently. This demands a new
allocation pattern of subchannels in order to maximize the sum
capacity. Thus quick allocation of the subchannels is a highly
desired characteristic of the allocation algorithm. Being com-
putationally less expensive than GA and PSO, CoDE is better
placed to quickly arrive at an optimal allocation. Moreover, the
experimental results presented in [17] suggest that the CoDE
is better in overall performance as compared to the other algo-
rithms used for comparison.

Reddy in [6] proposed a simple GA with the aim to minimize
the overall transmitted power while satisfying the constraint of
minimum data rate for each user. The bits were finally allocated
using the water-filling algorithm. Unfortunately, the GA in [6]
failed to guarantee a minimum data rate for each user. The PSO
algorithm was used to solve the resource allocation problem in
[26] through MA allocation. However, no fairness among the
users was considered. In the case of large path loss differences
among users, it is possible that the users with higher average
channel gains will be allocated most of the resources, i.e., sub-
channels and power, for a significant portion of time. Hence, the
users with lower average channel gains may not be able to trans-
mit any data due to non allocation of subchannels to them. In this
paper, the use of CoDE is proposed for RA resource allocation.
The proportional fairness among the users is also enforced by
providing subchannels to each user according to their require-
ments. With the proportional rate constraints, the data rate fair-
ness among users can be flexibly controlled by a set of param-
eters. Further, the total system throughput is also adjustable by
varying the proportional fairness parameters.
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IV. PRELIMINARIES ON COMPOSITE
DIFFERENTIAL EVOLUTION (CODE)

A. Differential Evolution (DE)

DE [18], is a class of simple yet efficient evolutionary algo-
rithms for continuous optimization problems. DE is similar to
other EAs where a population of individuals is used to search
for an optimal solution [27]. The main difference between tra-
ditional EAs and DE is that in traditional EAs, mutation results
in small perturbations to the genes of an individual, while in DE
the mutation is an arithmetic combination of individuals [27].
At the beginning of the evolution process, the DE mutation op-
erator favors exploration; however, as evolution progresses, the
mutation operator favors exploitation [28]. Hence, DE automat-
ically adapts the mutation increments (i.e., search step) to the
best value based on the stage of the evolutionary process and
not based on a predefined probability density function. DE uses
the difference between randomly selected vectors (individuals)
as the source of variation for a third vector referred to as the tar-
get vector. Trial solutions are generated by adding a weighted
difference vector to the target vector. This process is referred to
as the mutation operator where the target vector is mutated. A
recombination or crossover step is then applied to produce an
offspring which is only accepted if it improves the fitness of the
parent individual.

Due to its simple structure, ease of implementation, and fast
convergence speed, DE has been successfully applied to solve
a wide range of optimization problems such as clustering [29],
unsupervised image classification [30], digital filter design [31],
and other non-linear function/process optimization [32]–[35]. In
short, DE is generally considered as a reliable, accurate, robust,
and fast optimization technique used in many practical optimiza-
tion problems. The basic DE algorithm is described in more de-
tail in following paragraphs:

During the evolution, DE maintains a population of M indi-
vidual members, where M is the population size, and each mem-
ber is a point in the solution space S. DE improves its popula-
tion generation by generation. It extracts distance and direction
information from the current population for generating new so-
lutions for the next generation. Almost all the DE variants adopt
the following algorithmic framework:
• Step 1) Set the current generation number G = 0.
• Step 2) Sample M points ~xi,G, · · ·, ~xM,G from S to form an

initial population.
• Step 3) For i =1,· · ·,M , do

– Step 3.1) Mutation: Generate a mutant vector ~vi,G by using
a DE mutation operator;

– Step 3.2) Repair: If ~vi,G is not feasible (i.e., not in S), use
a repair operator to make ~vi,G feasible;

– Step 3.3) Crossover: Mix ~xi,G and ~vi,G to generate a trial
vector ~ui,G by using a DE crossover operator;

– Step 3.4) Replacement: If f (~ui,G) ≤ f (~xi,G), set
~xi,G+1 = ~ui,G otherwise, set ~xi,G+1 = ~xi,G

• Step 4) If a preset stopping condition is not met, set G=G+1
and go to Step 3.

In the ith pass of the loop in Step 3, ~xi,G is called a target vector,
~vi,G is its mutant vector, and ~ui,G is its trial vector. ~ui,G inherits
some parameter values from ~xi,G in Step 3.3 and enters the next

generation if its objective function value is better than or equal
to the objective function value of ~xi,G.
The characteristic feature of DE is its mutation operators. Five
commonly used mutation operators are:
DE/rand/1:

~vi,G = ~xr1,G + F (~xr2,G − ~xr3,G) (3)

DE/rand/2:

~vi,G = ~xr1,G + F (~xr2,G − ~xr3,G) + F (~xr4,G − ~xr5,G) (4)

DE/best/1:

~vi,G = ~xbest,G + F (~xr1,G − ~xr2,G) (5)

DE/best/2:

~vi,G = ~xbest,G + F (~xr1,G − ~xr2,G) + F (~xr3,G − ~xr4,G) (6)

DE/current-to-best/1:

~vi,G = ~xi,G + F (~xbest,G − ~xi,G) + F (~xr1,G − ~xr2,G) (7)

where r1, r2, r3, r4, and r5 are different indexes uniformly ran-
domly selected from {1, · · ·,M} and are also different from i. F
is a control parameter, often called the scaling factor and ~xbest,G

is the best individual in the current population.
DE performs a crossover operator on ~xi,G and ~vi,G to gener-

ate the trial vector ~ui,G. The following two crossover operators
are widely used in the DE implementations.
Binomial crossover:
The trial vector ~ui,G = (ui,1,G, ui,2,G, · · ·, ui,D,G) is generated
in the following way:

ui,j,G =

{

vi,j,G, if βj(0,1) ≤ Cr or j = jrand;
xi,j,G, otherwise (8)

where index jrand is a randomly chosen integer in the range
[1,D], where D is the dimension of the problem defined by the
number of variables, βj(0,1) is a uniform random number in
(0,1), and Cr ∈ (0, 1] is the user-defined crossover control pa-
rameter. Due to the use of jrand, ~ui,G is always different from
~xi,G.
Exponential crossover:
The trial vector ~ui,G = (ui,1,G, ui,2,G, · · ·, ui,D,G) is created as
follows [36]:

ui,j,G =

{

vi,j,G, for j = 〈l〉D, 〈l + 1〉D, · · ·, 〈l + L− 1〉D;
xi,j,G, otherwise

(9)
where i = 1, 2, · · ·,M, j = 1, 2, · · ·, D, and 〈〉D denotes the
modulo function with modulus D. The starting index l is a ran-
domly chosen integer in the range of [1,D]. The integer L is also
drawn from the range [1,D] with the probability Pr (L ≥ v) =
Cv−1

r , v > 0. The parameters l and L are re-generated for each
trial vector. If the jth element ui,j,G of the trail vector ~ui,G is
infeasible (i.e., out of boundary), then it is reset using repair op-
erator, described below.
Repair operator:
A simple and popular repair operator works as follows:
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if the jth element ui,j,G of the trail vector ~ui,G =
(ui,1,G, ui,2,G, · · ·, ui,D,G) is out of the search region [Lj , Uj],
then ui,j,G is reset as follows:

ui,j,G =

{

min{Uj, 2Lj − ui,j,G}, if ui,j,G < Lj;
max{Uj , 2Lj − ui,j,G}, if ui,j,G > Uj .

(10)

Finally, the selection operator is used to select the better one
from the target vector ~xi,G and the trail vector ~ui,G to enter next
generation. The selection operator is defined as follows:

~xi,G+1 =

{

~ui,G, if f (~ui,j) ≤ f (~xi,j) ;
~xi,G, otherwise. (11)

Different DE variants can be obtained by combining different
mutation operators with different crossover operators. For ex-
ample, DE/rand/1/bin can be obtained by combining DE/rand/1
with the binomial crossover, and DE/rand/1/exp can be obtained
by combining DE/rand/1 with the exponential crossover. In gen-
eral, DE/rand/1/bin is the most classic variant of DE.

B. Composite Differential Evolution (CoDE)

Trial vector generation strategies and control parameters have
a significant influence on the performance of DE. DE exhibits
remarkable performance in a wide variety of problems from di-
verse fields. It uses mutation, crossover, and selection operators
at each generation to move its population towards the global op-
timum. The DE performance mainly depends on two compo-
nents. One is its trial vector generation strategy (i.e., mutation
and crossover operators), and the other is its control parameters
(i.e., population size M, scaling factor F, and crossover control
parameter Cr).

There are numerous forms of DE depending upon the trial
vector generation strategy and the choice of control parame-
ters such as DE algorithm with strategy adaptation, adaptive DE
with optional external archive, self-adapting control parameters
in DE and DE algorithm with ensemble of parameters and mu-
tation and crossover strategies [17] among the others apart from
CoDE. In summary, CoDE is the best in overall performance
among the five methods in comparison on basic multimodal
functions, expanded multimodal functions, and hybrid compo-
sition functions.

Each trial vector generation strategy i.e., rand/1/bin,
rand/2/bin or current-to-rand/1 in CoDE randomly selects a con-
trol parameter setting from the three pre-determined parameter
groups for generating a trial vector. CoDE uses random control
settings in the search. Therefore, CoDE is more effective. This
is because random selection of the control parameter settings in-
creases the search diversity.
The three vector generation strategies used:
rand/1/bin:

ui,j,G =







xr1,j,G + F (xr2,j,G − xr3,j,G), if βj < Cr;
or j = jrand;
xi,j,G, otherwise.

(12)
rand/2/bin:

ui,j,G =







xr1,j,G + F (xr2,j,G − xr3,j,G) + F (xr4,j,G

−xr5,j,G), if βj < Cror j = jrand;
xi,j,G, otherwise.

(13)

Subcarrier-1 Subcarrier-2 · · · Subcarrier-N
4 15 · · · k

Fig. 2. Encoding of individuals for subcarrier allocation.

current-to-rand/1:

~ui,G = ~xi,G + βj(~xr1,G − ~xi,G) + F (~xr2,G − ~xr3,G). (14)

The Control Parameter Settings used:

F = [1.0, 1.0, 0.8], Cr = [0.1, 0.9, 0.2].

V. RESOURCE ALLOCATION IN MULTIUSER OFDM
USING CODE

Our objective is to maximize the sum capacity of the system,
subject to the constraints of total maximum power and propor-
tional rate for each user, given by (1) and constraints C1–C5.
Further, it is assumed that no two users can share a particular
subcarrier and all subchannels are assumed to share equal power.
Finally, the bits of each user are modulated into N M-level
quadrature amplitude modulation OFDM symbols and transmit-
ted simultaneously on N orthogonal subcarriers and then inverse
fast Fourier transform module combines these symbols and re-
turn an OFDMA symbol. With the equal power allocation, the
transmit rate of kth user on the nth subcarrier can be calculated
as follows:

rk,n = log2

(

1 +
Ptotal

N
h2
k,n

No
B
N

)

. (15)

In general, the algorithm begins with a randomly initiated
population of M, D dimensional real-valued parameter vectors.
Each vector, also known as genome/chromosome, forms a can-
didate solution to the multidimensional optimization problem.
Each individual of the population corresponds to a subchannel
allocation. It is coded as a vector of length N whose indices
represent the subchannels, and the value of each vector entry
is an integer in the range [1,K] representing the user that has
been assigned the subchannel corresponding to that entry. For
instance, the nth entry of an individual has value of k implies
that subchannel n is assigned user k. Fig. 2 depicts the coding
of a particular individuals in one generation. Entire population
is made up of M such individuals in each generation.

The steps involved in subchannel allocation for multiuser
OFDM system using CoDE are shown in Fig. 3.

A. Constraint Handling

An efficient and adequate constraint-handling technique is
a key element in the design of optimization algorithm. Al-
though the use of penalty functions is the most common tech-
nique for constraint-handling, there are a lot of different ap-
proaches for dealing with constraints [37]. A comprehensive dis-
cussion about constraint handling is presented in [38]. In con-
straint handling using penalty approach, a penalty is added to
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Input: M: The number of individuals at each generation i.e., population size.
Max_FES : Maximum number of function evaluations.
The strategy candidate pool: rand/1/bin, rand/2/bin, current-to-best/1.
The parameter candidate pool: [F=1.0, Cr=0.1], [F=1.0, Cr=0.9], and [F=0.8, Cr=0.2].
Step 1: Set G = 0.
Step 2: Allocate equal power (Ptotal/Number of subchannels) to all subchannels.
Step 3: Coding of individuals: Each individual of the population corresponds to a subchannel allocation. It is coded as
a vector of length N whose indices represent the subchannels, and the value of each vector entry is an integer in the range
[1,K] representing the user that has been assigned the subchannel corresponding to that entry. For instance, the mth entry
of an individual has value of n, implies that subchannel m is assigned to user n.
Step 4: Initial population: The initial population of size M can be randomly generated, with high-quality individuals
possibly being fed into the population. A fine individual could be either a good subchannel allocation generated by
appropriate randomization, or the suboptimal solutions existing in literature. With a carefully selected starting population,
the time required for CoDE to reach an optimum solution would be substantially reduced.
Step 5: Evaluate the objective function values f (~x1,0),f (~x2,0) , · · ·, f (~xM,0).
Step 6: Set FES = M.
Step 7: While FES < max_FES do
Step 8: PG+1 = Φ.
Step 9: for i =1:M do
Step 10: Use the three strategies each with a control parameter setting randomly selected from the parameter pool, to
generate three trial vectors ~ui1,G, ~ui2,G, and ~ui3,G for the target vector.
Step 11: Evaluate the objective function values of the three trial vectors ~ui1,G, ~ui2,G, and ~ui3,G.
Step 12: Choose the best trial vector

(

~u∗

i1,G

)

from the three trial vectors ~ui1,G, ~ui2,G, and ~ui3,G.
Step 13:PG+1 = PG+1∪ select

(

~xi,G, ~u
∗

i,G

)

.
Step 14: FES = FES + 3.
Step 15: end for
Step 16: G = G + 1.
Step 17: end while
Output: The individual with the smallest objective function value in the population.

Fig. 3. Pseudo code for subchannel allocation using CoDE.

the objective function to penalize an individual for constraint
violation so that the constrained optimization is converted to
unconstrained optimization. The optimization might be ineffi-
cient with this technique. In this study, a dynamic constraint
handling approach is adopted in order to improve the efficiency,
i.e., reducing the computation time. The dynamic constraint
handling called dynamic-objective constraint-handling method
(DOCHM) is adopted from the work by Lu and Chen [39] in
our work.

By defining auxiliary function F(X), the dynamic constraint
handling convert the original problem into bi-objective opti-
mization problem min(F(X), f (X)) where F(X) is treated as the
first objective function and f (X) is the second (the main) objec-
tive. The auxiliary function F(X) will be merely used to deter-
mine whether or not an individual (candidate solution) is within
the feasible region and how close a solution is to the feasible
region. If an individual lies outside the feasible region, the al-
gorithm will take F(X) as its optimization objective. Otherwise,
the algorithm will instead optimize the real objective function
f (X). During the optimization process, if an individual leaves
the feasible region, it will once again optimize F(X). Therefore,
the optimizer has the ability to dynamically drive the individuals
into the feasible region. The dynamic constraint handling can be
illustrated in the following pseudo-code:
If F(X) = 0 (constraints are satisfied)

f (X) = f (X) (the main objective function)

else
f (X) = F(X) (the auxiliary objective function)

end
The auxiliary objective function is defined as:

F (X) =

D
∑

i=1

max(0, di) (16)

where X is solution variables, D is dimension of the problem and
di represents the distance of ith individual (candidate solution),
represented by ’*’ marks, to the constraint violation boundary.

For the resource allocation problem under consideration there
are five constraints (C1–C5) defined in Section II. Constraint C1
limits the total power which can be allocated to all the users over
all subchannels to Ptotal. According to constraint C2, if a user
is allocated a particular subchannel, the algorithm should allo-
cate minimum finite power to that user on that subchannel. In
our proposed solution, the constraints C1 and C2 are handled by
allocating equal power, which is equal to Ptotal/number of sub-
channels, on all subchannels.

According to constraints C3 and C4, no two users can share a
particular subchannel. These constraints are handled in coding
of individuals, as described in Step 3 in Figs. 2 and 3.

Finally, in constraint C5, {γi}Ki=1 is a set of predetermined
values that are used to ensure proportional fairness among users.
The fairness index is defined as:
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F =

(

K
∑

k=1

γk

)2

K
K
∑

k=1

γ2
k

(17)

with the maximum value of 1 to be the greatest fairness case
in which all users would achieve the same data rate. Since the
problem formulation in (1) is to allocate resources to satisfy the
rate constraints strictly for each channel realization, we define a
quantity to measure how well the rate constraints are satisfied.
The imbalance coefficient is defined as:

f =
1

K

K
∑

k=1

[

γk −

K
∑

k=1

γi

K

]

(18)

In order to handle this constraint we used DOCHM as described
above.

B. Stopping Criterion

Although the objective of min-max optimization is usually
clear, i.e., the global optimum should be found, it is not easy to
decide when the execution of an optimization algorithm should
be terminated. For practical applications, the choice of stopping
criteria can significantly influence the duration of an optimiza-
tion process. Due to different stopping criteria, an optimization
run might be terminated before the population has converged, or
computational resources might be wasted because the optimiza-
tion run is terminated too lengthy.

A good work on stopping criteria especially for PSO and DE
optimizations has been presented by Zielinski and Laur [40].
They suggested that it would be better to use stopping crite-
ria that consider knowledge from the state of the optimization
run. The time of termination would be determined adaptively, so
function evaluations could be saved. According to their work, a
good technique for stopping criteria is distribution-based crite-
ria. It considers the diversity in the population. If the diversity
is low, the individuals (candidate of solutions) are close to each
other after a sufficient number of iterations η, so it is assumed
that convergence has been obtained. In general, the distribution-
based criteria either in variable (population) space or objective
function space are classified as reliable means for detecting con-
vergence [40].

In this study, standard deviation of populations is used to
check the diversity. If the standard deviation σd is below a
threshold (small number, ε), the optimization stops. It can be
formulated as follows:

σd =

√

√

√

√

1

η

η
∑

j=1

(xj
best,d − xbest,d)2

< ε(max(xbest,d)− min(xbest,d)), for d = 1, 2, · · ·, D
(19)

where xj
best,d represents the best individual in jth generation

(iteration) for dth dimension and xbest,d is the mean value of
the best individuals.

Table 1. Parameters for stopping criterion.

Definition Value
Maximum iteration (if stopping criterion fails) 100
Number of iteration for which stopping criterion ap-
plies

40

Standard deviation threshold for which stopping cri-
terion applies

1%

VI. SIMULATION AND RESULTS

In the following we present simulation results and compar-
isons of proposed algorithm with that of no fairness method
[4], linear method [12], genetic algorithm based subcarrier al-
location (GABSA) [13], genetic algorithm based power alloca-
tion (GABPA) and immune clonal optimization [41]. For com-
parison with GABPA approach, we modified GA used in [13]
and use it for power allocation, while the subcarriers were al-
located using the method proposed in [12]. In our simulation,
the wireless channel is modeled as a frequency selective chan-
nel consisting of six independent Rayleigh multipaths. Further-
more, each multipath component was modeled as Clarke’s flat
fading model [9]. The power delay profile was assumed to be
exponentially decaying with e−2l, where l is the multipath in-
dex. Therefore relative power of the six multipath components
are [0,−8.69,−17.37,−26.06,−34.74,−43.43] dB. The total
available bandwidth and transmit power were 1 MHz and 1 W,
respectively. The power spectral density of additive white Gaus-
sian noise was -80 dBW/Hz, and the total bandwidth of 1 MHz
is divided into 64 subchannels. The maximum path loss differ-
ence was 40 dB. Stopping criterion used for CoDE, GABPA,
GABSA, and immune clonal optimization [41] are shown in Ta-
ble 1.

A. Sum Capacity versus Number of Users

Fig. 4 shows the variation of sum capacity with the number of
users, for a fixed number of subchannels (N = 64). The popula-
tion size was also fixed to 30 and SNR was fixed to 10 dB. The
number of users was varied from 2 to 16 in increment of 2. A
total of 100 times of samples are used for each number of users.
This figure shows the comparisons of the sum capacity achieved
by the proposed algorithm with that of no fairness method in
[4], linear [12] and immune clonal optimization [41]. It is evi-
dent from Fig. 4 that the use of CoDE for subchannel allocation
for OFDMA systems provides consistently higher than the lin-
ear method as well as immune clonal method. Since no fairness
was considered in [4] it achieves maximum capacity.

Moreover, as the number of users increases, the sum capacity
also increases; this is because of added multiuser diversity gain.
Multiuser diversity is obtained by opportunistic user scheduling
at either the transmitter or the receiver. The effect of multiuser
diversity is predominant in systems with large number of users,
as with the increasing number of users in the system, the prob-
ability that a given subchannel is in a deep fade for all users
decreases. The main advantage of using CoDE algorithm over
the immune clonal method is better sum capacity without the
need of any parameter tuning.
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Fig. 4. Sum capacity versus number of users (K) for N = 64.

B. Sum Capacity versus Number of Iterations

In order to study the effect of number of iterations on sum ca-
pacity, we fixed the number of users to 16 and population size to
30. Since, no fairness method [4] and linear method are not it-
erative methods, these methods were not used for comparisons.
The stopping criterion using standard deviation was not consid-
ered for this set of simulation, and the algorithm was allowed to
run for a fixed number of iterations. As it is evident from Fig. 5,
the sum capacity initially increased with the number of itera-
tions and then gradually saturated for the higher values. It is
also evident from fig. 5 that the proposed method provides bet-
ter gain in sum capacity and also converges faster than immune
clonal optimization and GA based approaches. This fact makes
CoDE aided subchannel allocation a suitable choice for practi-
cal wireless systems such as LTE and WiMAX (802.16e), where
the convergence rate plays a very important role as the wireless
channel changes rapidly. The fact that the channel is assumed
to be constant during the allocation makes convergence rate a
very important parameter for wireless systems. The faster con-
vergence of CoDE as compared to immune clonal optimization
algorithm can be attributed to equal power allocation. Moreover,
no parameter tuning is required in CoDE algorithm.

C. Sum Capacity versus SNR

Fig. 6 shows the comparison of sum capacity achieved by pro-
posed algorithm with no fairness method, linear and immune
clonal optimization for different values of SNR. The number
of users was fixed 16 and population size was fixed to 30. As
expected, it can be observed from Fig. 6 that the sum capacity
increases with the average SNR and the proposed algorithm con-
sistently outperforms the linear and immune clonal optimization
algorithm.

D. Proportional Fairness

Fig. 7 shows the achieved sum capacities in a multiuser
OFDM system with 4 users plotted against the change in pro-
portional rate constraint defined in Table 2. The simulation pa-

20 40 60 80 100 120 140
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

Number of iterations

S
u

m
 c

a
p

a
ci

ty
 (

b
it

s/
se

c/
H

z)

 

 

Proposed

Immune [41]

GABPA

GABSA [13]

Fig. 5. Sum capacity versus number of iterations (K = 16, N = 64).
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Fig. 6. Sum capacity versus SNR (K = 16, N = 64).

rameters are the same as those in the previous sections. The
average channel power of user 1 to user 3 is the same, while the
average channel power of user 4 is 10 dB higher than the other
three users. As the fairness index increases, that is the imbalance
coefficient as defined in (18) becomes large, higher sum capac-
ity is achieved. This is reasonable because user 4 has higher av-
erage SNR and can utilize the resources more efficiently. The
proposed scheme achieved almost similar fairness as achieved
by the schemes in linear and immune, although in the proposed
algorithm only subchannel allocation was performed as com-
pared to both power and subchannel allocation in [12] and [41].
This result reaffirms the fact that subchannel allocation provides
much higher capacity at lower computational cost than joint sub-
channel and power allocation [41], at the cost of only slight
degradation in the fairness of resource allocation.

As expected, the proposed algorithm achieved slightly lower
sum capacity as compared to the algorithm proposed in [4].
Since the algorithm in [4] is not constrained by fairness require-
ment, it allocates all the resources to the users with the best
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Table 2. Proportional fairness comparison.

Index Rate constraint f (Proposed) f [41] f [12] f [13] f (GABPA)
1 γ1 : γ2 : γ3 : γ4 = 1 : 1 : 1 : 1 0 0 0 0
2 γ1 : γ2 : γ3 : γ4 = 1 : 1 : 1 : 4 1.7421 1.6875 1.7312 1.7455 1.7387
3 γ1 : γ2 : γ3 : γ4 = 1 : 1 : 1 : 8 10.3213 9.7625 10.2332 10.3312 10.3013
4 γ1 : γ2 : γ3 : γ4 = 1 : 1 : 1 : 16 34.4613 33.75 35.52 35.11 34.88
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Fig. 7. Sum capacity versus index of proportional rate constraint (see
Table 2 for index values).
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Fig. 8. Normalized capacity ratios per user for 4 users averaged over
100 channels, with the required normalized proportions γ shown as
the leftmost bar for each user.

channel gains on them. However, it may leave some users with-
out any channel allocated to them and hence not fair.

Figs. 8 and 9 show the normalized proportions of the capacities
for each user for the case of 4 users averaged over 100 channel
samples. The normalized capacities are given byRk/

∑4

k=1 Rk.
This is compared to the normalized proportionality constraints
{γ}4k=1. The proportional rate constraints of γ1 : γ2 : γ3 : γ4 =
1 : 1 : 1 : 1 and γ1 : γ2 : γ3 : γ4 = 1 : 1 : 1 : 4, were used
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Fig. 9. Normalized capacity ratios per user for 4 users averaged over
100 channels, with the required normalized proportions γ shown as
the leftmost bar for each user.

for simulation results in Figs. 8 and 9 respectively. The first col-
umn denotes the ideal distributions i.e., γk/

∑4

k=1 γk. It can be
observed that the capacity obtained after subchannel allocation
using the proposed algorithm closely follows the proportional
rate constraints. It can also be observed that the proportional-
ity obtained by proposed algorithm is fairly close to the method
in [41], linear method [12], GABSA [13], and GABPA algo-
rithms. This result reaffirms the fact that subchannel allocation
with equal power allocation can provide similar fairness as can
be obtained by joint power and subchannel allocation as well as
separate subchannel and power allocation. However, the com-
plexity of subchannel allocation with equal power allocation is
much less than that of joint subchannel and power allocation.

The algorithm in [4] allocates resource to users with best gain
on it and does not consider the fairness; hence, when user 4 has
better channel conditions, it obtains almost all the resources and
other users get smaller resource.

Comparison of the imbalance coefficient obtained by pro-
posed method with that of obtained by immune clonal optimiza-
tion is shown in Table 2. It can be observed from the table , that
the joint subchannel and power allocation [41] achieves slightly
lower imbalance coefficient as compared to the all the other
methods used in this work, which means that the joint subchan-
nel and power allocation is only slightly better in proportional
allocation of resources as compared to only subchannel allo-
cation and separate subchannel and power allocation schemes.
The cost of better proportional fairness is higher computational
cost. In wireless communication where the channels are highly
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dynamic, algorithms with lower computational complexity are
preferred. Moreover, the assumption of perfect channel state in-
formation at transmitter and receiver also restricts the practical
systems to use algorithms with lower computational cost. Anal-
ysis of computational complexity is presented in following sub-
section.

E. Comparison with Optimal Solution

In this subsection we compare the performance of proposed
scheme with respect to optimal solution. For this comparison
we studied the effect of variation in the fairness coefficient ra-
tio (defined in C5) γ1/γ2 on the sum capacity achieved by pro-
posed approaches in comparison to optimal solution. The fair-
ness index defined in (17) can be calculated for different values
of fairness coefficient ratios (shown on x-axis of Fig. 10) used
for this comparison. With the aim to reduce the time for cal-
culating the optimal solution using exhaustive search, number
of users and subchannels were fixed to 2 and 10 respectively. A
total of 200 channel realizations were simulated and the the av-
erage of sum capacities obtained were then plotted in Fig. 10. It
can be observed from the figure that, for the case of no path loss
difference between the two users, the sum capacity was almost
constant and hence not very sensitive to the fairness constraint
ratio γ1/γ2. On the other hand, for the case of path loss dif-
ference between two users the sum capacity varies significantly
with the fairness constraint ratio. For instance, in the case, when
the user 1 mean channel power (Pavg(1)) was 10 dB higher than
the user 2 mean channel power (Pavg(2)), the sum capacity re-
duced with the reduction in γ1/γ2. This result is in consistence
with the expected result, as γ1/γ2 decreases user 2 gets more
priority. Therefore, user 2 is assigned significant portion of the
available resources, which, consequently, reduces the achieved
capacity, because the mean channel power of user 1 is 10 dB
higher than user 2. It can also be observed from fig. 10 that the
proposed scheme achieves about 95% and 97% of the optimal
sum capacity. Although in a real wireless communication sys-
tems, the number of users and subchannels will be much larger,
we expect the proposed approaches to perform even better and
further close to optimum. Since the EAs are expected to perform
better for the case of large parameters.

F. Complexity Analysis

In order to analyze the computational complexity of the al-
gorithm, recall that K refers to the total number of users in the
system. N refers to the number of subchannels, which is a power
of 2 and much larger than K. Furthermore, M denotes the num-
ber of individuals at each generation, i.e, the population size, G
denotes the number of generations for which the algorithm is al-
lowed to run.

For the above defined parameters the complexity of proposed
algorithm is M×G× (complexity of function evaluation in each
generation). The complexity of function evaluation in each gen-
eration is mainly governed by the complexity of fitness function
evaluation and complexity of trial vector generation. The com-
plexity of fitness function evaluation is O(N) for N >> K .
Similarly, the complexity of trail vector generation is also O(N)
for each trail vector. Therefore, the total complexity of propose
algorithms can be evaluated to O(M × G × N). The method
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Fig. 10. Performance comparison of proposed scheme and optimal al-
gorithms for the case of two users and ten subchannels.

in [41] uses immune clonal optimization to allocate subchannels
followed by power allocation. Effectively, it requires searching
the whole solution space two times as compared to proposed
algorithm. The complexity of immune clonal optimization was
claimed to be O(M × G × (NQ + NZ)) where Q and Z are
parameters related to subchannel and power allocation respec-
tively. In light of above discussion it is clear that the computa-
tional complexity of proposed algorithm is much less than im-
mune clonal optimization method.

VII. CONCLUSION

In this paper, we have proposed the use of CoDE algorithm
to solve the problem of subchannel allocation in the downlink
of OFDMA systems. The results produced by the simulations
indicate that the algorithm performs better in terms of sum ca-
pacities as compared to both non-evolutionary and evolutionary
algorithms. The sum capacity increases with the increase num-
ber of users. The sum capacity also increases initially with the
increase in number of iterations but rapidly saturates to a near
optimal value. This result suggests that CoDE aided subchan-
nel allocation can provide significant gain in capacity even with
small number of iterations. Moreover, in CoDE aided subchan-
nel allocation the search and subchannel allocation is performed
simultaneously as compared to traditional methods where the
subchannels are first sorted in accordance of their gains and then
allocation is performed. This significantly reduces the complex-
ity of CoDE aided allocation. Hence it may be concluded that
the proposed algorithm is order of magnitude faster as compared
to the other methods. This fact makes CoDE aided subchannel
allocation a suitable choice for practical wireless systems such
as LTE and WiMAX (802.16e) where the convergence rate plays
a very important role as the wireless channel changes rapidly.
The fact that the channel is assumed to be constant during the
allocation makes convergence rate a very important parameter
for wireless systems. The future scope of this paper could be
to use multiple antennas on both transmitter and receiver site,
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which can provide further gain in capacity because of spatial
multiplexing.
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